MATH 550: Combinatorics. Winter 2015.

Assignment \#1: Set systems. Due in class on Tuesday, February 17th.

1. Bollobás 3.9. Suppose $\mathcal{A} \subseteq \mathcal{P}([n])$ is an ideal, i.e. if $B \subseteq A$ and $A \in \mathcal{A}$ then $B \in \mathcal{A}$. Use the local LYM inequality to show that the average size of an element of \mathcal{A} is at most $n / 2$.
2. Let n be a positive integer. Consider a set $\mathcal{T}_{n}=\{0,1,2\}^{n}$ consisting of all sequences $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ with $a_{i} \in\{0,1,2\}$ for $i \in[n]$.
We define a partial order on \mathcal{T}_{n} so that $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \leq\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ if and only if $a_{i} \leq b_{i}$ for every $i \in[n]$. (For example $(1,0,1) \leq(1,2,2)$, while $(1,0,1)$ and $(0,1,2)$ are incomparable.)
For a sequence $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ define the weight of a to be $w(\mathbf{a}):=a_{1}+a_{2}+\ldots+a_{n}$. A chain $\mathcal{C}=\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{k}\right)$ with $\mathbf{a}_{1}<\mathbf{a}_{2}<\ldots<\mathbf{a}_{k}$ in \mathcal{T}_{n} is called symmetric if $w\left(\mathbf{a}_{i+1}\right)=w\left(\mathbf{a}_{i}\right)+1$ for $i=1,2, \ldots, k-1$ and $w\left(\mathbf{a}_{1}\right)+w\left(\mathbf{a}_{k}\right)=2 n$.
a) Show that \mathcal{T}_{n} allows a symmetric chain decomposition.
b) Give an example of an antichain in \mathcal{T}_{n} which intersects every symmetric chain. Deduce that this antichain is maximum. (An antichain is a subset $\mathcal{A} \in \mathcal{T}_{n}$ such that for $\mathbf{a}, \mathbf{b} \in \mathcal{A}$ if $\mathbf{a} \leq \mathbf{b}$ then $\mathbf{a}=\mathbf{b}$, i. e. no two distinct elements of \mathcal{A} are comparable.)
3. Let p be a prime and $n<p$ a positive integer. Show that for any $x_{1}, x_{2}, \ldots, x_{n} \in$ $\mathbb{Z} / p \mathbb{Z} \backslash\{0\}$ and any $x \in \mathbb{Z} / p \mathbb{Z}$, the number of subsets $A \in \mathcal{P}([n])$ such that $\sum_{i \in A} x_{i}=x$ is at most $\binom{n}{\lfloor n / 2\rfloor}$. (Hint: Define sparse set system appropriately and emulate Kleitman's solution to the Littlewood-Offord problem.)
4. Hilton, 1974. Let $1 \leq g \leq h \leq n$ be integers with $g+h \leq n$. Let $\mathcal{F} \subseteq \mathcal{P}([n])$ be an intersecting family and suppose that $g \leq|F| \leq h$ for every $F \in \mathcal{F}$. Use Erdős-Ko-Rado theorem to show that

$$
|\mathcal{F}| \leq \sum_{i=g}^{h}\binom{n-1}{i-1} .
$$

5. A k-sunflower in a set system \mathcal{F} on X is a collection of distinct sets $F_{1}, F_{2}, \ldots, F_{k} \in$ \mathcal{F} such that for some $Z \subseteq X$ we have $F_{i} \cap F_{j}=Z$ for all $1 \leq i<j \leq k$. (I.e. the intersection of every pair of distinct sets in the sunflower is the same.) Let $c(k, r)$ denote the maximum possible size of a set system \mathcal{F} such that
$(*)|F| \leq r$ for every $F \in \mathcal{F}$, and \mathcal{F} does not contain a k-sunflower.
Suppose that a set system \mathcal{F} on X satisfies (*).
a) Show that there exists a set $Y \subseteq X$ with $|Y| \leq(k-1) r$ such that every set in \mathcal{F} contains an element of Y.
b) Let $\mathcal{F}_{y}=\{F-y \mid F \in \mathcal{F}, y \in F\}$. Show that $\left|\mathcal{F}_{y}\right| \leq c(k, r-1)$ for every y.
c) Deduce from a) and b) that

$$
c(k, r) \leq(k-1)^{r} r!
$$

d) Construct an explicit example of a family \mathcal{F} satisfying ($*$) to show that

$$
c(k, r) \geq(k-1)^{r} .
$$

6. Let $r \geq 1$ be an integer, $\mathcal{A} \subseteq X^{(r)}$ and $i, j \in X$. Write down a detailed proof of the inequality

$$
\left|\partial \tilde{R}_{i j}(\mathcal{A})\right| \leq|\partial \mathcal{A}|
$$

7. What is the minimum size of compressed $\mathcal{A} \subseteq \mathbb{N}^{(3)}$ such that $\{1,10,100\},\{1,20,50\} \in$ \mathcal{A} ?
