MATH 550: Combinatorics. Winter 2015.

Final exam. Due electronically at snorin@math.mcgill.ca by 5PM on Thursday, April 30th.

1. Turan-type problems.

Let G be a graph on $n \ge 5$ vertices and let $w : E(G) \to \mathbb{Z}_+$ be a weight function on edges of G. Suppose that for every set $S \subseteq V(G)$ with |S| = 5 the sum of the weights of the edges of G with both ends in S is at most 32.

- a) Show that the sum of the weights of all edges of G is at most $3\binom{n}{2} + n 2$.
- b) Show that for every $n \ge 5$ there exist G, w satisfying the conditions above such that the sum of the weights of all edges of G is at least $3\binom{n}{2} + (n-1)/2$.

2. Ramsey Theorem.

For a pair of positive integers $n \ge t$ let d(n, t) denote the minimum number of monochromatic copies of K_t among all edge colorings of K_n in two colors.

- **a)** Show that $d(t) := \lim_{n \to \infty} \frac{d(n,t)}{\binom{n}{t}}$ exists for every t and is positive.
- **b)** Show that $d(t) \leq 2^{1-\binom{t}{2}}$ for every $t \geq 2$.
- c) Show that d(3) = 1/4.
- **d)** Show that $d(4) \ge 2^{-10}$.

3. Convexity.

- a) Show that if $x, y, z \in \mathbb{R}^2$ are three points at pairwise distance at most 1 then there exists a disk in \mathbb{R}^2 of radius $1/\sqrt{3}$ containing x, y and z.
- b) Show that if $X \subseteq \mathbb{R}^2$ is a finite set of diameter at most 1 then X is contained in some disk of radius $1/\sqrt{3}$.
- c) Find the minimum c such that every finite set of diameter at most 1 in \mathbb{R}^3 is contained in some ball of radius c.

4. Szemeredi-Trotter theorem.

Show that there exists a constant C>0 so that for any finite set $P\subseteq \mathbb{R}^2$ one has

$$|\{(a,b) \mid a, b \in P, \|a-b\| = 1\}| \le C|P|^{4/3}$$

(*Hint:* Modify Szemeredi-Trotter theorem so that it applies to circles instead of lines.)

5. Combinatorial Nullstellensatz.

Let G be a graph containing a Hamiltonian cycle. Suppose that every vertex $v \in V(G)$ is assigned a set S(v) of two distinct real numbers. Show that it is possible to choose a number $c(v) \in S(v)$ for every vertex $v \in V(G)$, so that $\sum_{w \in N(v)} c(w) \neq 0$ for every $v \in V(G)$.

(A Hamiltonian cycle is a cycle containing every vertex of the graph. We denote by N(v) the set of all vertices adjacent to the vertex v.)

6. Shannon capacity.

Let $\Theta(C_9)$ denote the Shannon capacity of the cycle of length 9. Show that

$$\sqrt{18} \le \Theta(C_9) \le \frac{9}{2}$$