Problem Solving Seminar. Fall 2019.

Problem Set 2. Number theory.

Classical results.

1. Euler. For a positive integer n and any integer a relatively prime to n one has

$$
a^{\phi(n)} \equiv 1(\bmod n),
$$

where $\phi(n)$ is the number of positive integers between 1 and n relatively prime to n.
2. Polignac's formula. If p is a prime number and n a positive integer, then the exponent of p in n ! is

$$
\left\lfloor\frac{n}{p}\right\rfloor+\left\lfloor\frac{n}{p^{2}}\right\rfloor+\left\lfloor\frac{n}{p^{3}}\right\rfloor+\ldots .
$$

3. Wilson.

$$
(p-1)!\equiv-1(\bmod p)
$$

for any prime p.
4. Chinese Remainder theorem. Let $m_{1}, m_{2}, \ldots, m_{k}$ be pairwise positive integers greater than 1 , such that $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$ for $i \neq j$. Then for any integers $a_{1}, a_{2}, \ldots, a_{k}$ the system of congruences

$$
\begin{aligned}
x \equiv a_{1} & \left(\bmod m_{1}\right), \\
x \equiv a_{2} & \left(\bmod m_{2}\right), \\
& \cdots \\
x \equiv a_{k} & \left(\bmod m_{k}\right) .
\end{aligned}
$$

has solutions, and any two such solutions are congruent modulo $m=m_{1} m_{2} \ldots m_{k}$.

Problems.

1. Prove that n ! is not divisible by 2^{n} for any positive integer n.
2. Prove that for every n, there exist n consecutive integers each of which is divisible by two different primes.
3. Putnam 1956. A2. Given any positive integer n, show that we can find a positive integer m such that $m n$ uses all ten digits when written in the usual base 10 .
4. Put 1993. B1. Find the smallest positive integer n such that for every integer m, with $0<m<1993$, there exists an integer k for which

$$
\frac{m}{1993}<\frac{k}{n}<\frac{m+1}{1994} .
$$

5. Putnam 2000. A2. Prove that there exist infinitely many integers n such that $n, n+1, n+2$ are each the sum of the squares of two integers. [Example: $0=0^{2}+0^{2}, 1=0^{2}+1^{2}$, $2=1^{2}+1^{2}$.]
6. Putnam 2017. B2. Suppose that a positive integer N can be expressed as the sum of k consecutive positive integers

$$
N=a+(a+1)+(a+2)+\cdots+(a+k-1)
$$

for $k=2017$ but for no other values of $k>1$. Considering all positive integers N with this property, what is the smallest positive integer a that occurs in any of these expressions?
7. IMO 2011. Let f be a function from the set of integers to the set of positive integers. Suppose that, for any two integers m and n, the difference $f(m)-f(n)$ is divisible by $f(m-n)$. Prove that, for all integers m and n with $f(m) \leq f(n)$, the number $f(n)$ is divisible by $f(m)$.
8. Put 1996. A6. The sequence a_{n} is defined by $a_{1}=1, a_{2}=2, a_{3}=24$, and, for $n \geq 4$,

$$
a_{n}=\frac{6 a_{n-1}^{2} a_{n-3}-8 a_{n-1} a_{n-2}^{2}}{a_{n-2} a_{n-3}}
$$

Show that, for all n, a_{n} is an integer multiple of n.

