Problem Solving Seminar. Fall 2019. Problem Set 8. Miscellaneous I

1. Putnam 2014. A1. Prove that every nonzero coefficient of the Taylor series of

$$(1 - x + x^2)e^x$$

about x = 0 is a rational number whose numerator (in lowest terms) is either 1 or a prime number.

2. Putnam 2014. A2. Let A be the $n \times n$ matrix whose entry in the *i*-th row and *j*-th column is

$$\frac{1}{\min(i,j)}$$

for $1 \leq i, j \leq n$. Compute det(A).

3. **Putnam 2014.** A3. Let $a_0 = 5/2$ and $a_k = a_{k-1}^2 - 2$ for $k \ge 1$. Compute

$$\prod_{k=0}^{\infty} \left(1 - \frac{1}{a_k} \right)$$

in closed form.

- 4. **Putnam 2009.** A1. Let f be a real-valued function on the plane such that for every square ABCD in the plane, f(A) + f(B) + f(C) + f(D) = 0. Does it follow that f(P) = 0 for all points P in the plane?
- 5. Putnam 2009. A2. Functions f, g, h are differentiable on some open interval around 0 and satisfy the equations and initial conditions

$$f' = 2f^2gh + \frac{1}{gh}, \quad f(0) = 1,$$

$$g' = fg^2h + \frac{4}{fh}, \quad g(0) = 1,$$

$$h' = 3fgh^2 + \frac{1}{fg}, \quad h(0) = 1.$$

Find an explicit formula for f(x), valid in some open interval around 0.

6. Putnam 2009. A3. Let d_n be the determinant of the $n \times n$ matrix whose entries, from left to right and then from top to bottom, are $\cos 1, \cos 2, \ldots, \cos n^2$. (For example,

$$d_3 = \begin{vmatrix} \cos 1 & \cos 2 & \cos 3 \\ \cos 4 & \cos 5 & \cos 6 \\ \cos 7 & \cos 8 & \cos 9 \end{vmatrix}.$$

The argument of cos is always in radians, not degrees.) Evaluate $\lim_{n\to\infty} d_n$.

7. Putnam 2009. B1. Show that every positive rational number can be written as a quotient of products of factorials of (not necessarily distinct) primes. For example,

$$\frac{10}{9} = \frac{2! \cdot 5!}{3! \cdot 3! \cdot 3!}.$$

- 8. Putnam 2009. B2. A game involves jumping to the right on the real number line. If a and b are real numbers and b > a, the cost of jumping from a to b is $b^3 ab^2$. For what real numbers c can one travel from 0 to 1 in a finite number of jumps with total cost exactly c?
- 9. Putnam 2009. B3. Call a subset S of {1,2,...,n} mediocre if it has the following property: Whenever a and b are elements of S whose average is an integer, that average is also an element of S. Let A(n) be the number of mediocre subsets of {1,2,...,n}. [For instance, every subset of {1,2,3} except {1,3} is mediocre, so A(3) = 7.] Find all positive integers n such that A(n+2) 2A(n+1) + A(n) = 1.