Problem Solving Seminar. Fall 2019.

Problem Set 8. Miscellaneous I

1. Putnam 2014. A1. Prove that every nonzero coefficient of the Taylor series of

$$
\left(1-x+x^{2}\right) e^{x}
$$

about $x=0$ is a rational number whose numerator (in lowest terms) is either 1 or a prime number.
2. Putnam 2014. A2. Let A be the $n \times n$ matrix whose entry in the i-th row and j-th column is

$$
\frac{1}{\min (i, j)}
$$

for $1 \leq i, j \leq n$. Compute $\operatorname{det}(A)$.
3. Putnam 2014. A3. Let $a_{0}=5 / 2$ and $a_{k}=a_{k-1}^{2}-2$ for $k \geq 1$. Compute

$$
\prod_{k=0}^{\infty}\left(1-\frac{1}{a_{k}}\right)
$$

in closed form.
4. Putnam 2009. A1. Let f be a real-valued function on the plane such that for every square $A B C D$ in the plane, $f(A)+f(B)+f(C)+f(D)=0$. Does it follow that $f(P)=0$ for all points P in the plane?
5. Putnam 2009. A2. Functions f, g, h are differentiable on some open interval around 0 and satisfy the equations and initial conditions

$$
\begin{aligned}
& f^{\prime}=2 f^{2} g h+\frac{1}{g h}, \quad f(0)=1, \\
& g^{\prime}=f g^{2} h+\frac{4}{f h}, \quad g(0)=1, \\
& h^{\prime}=3 f g h^{2}+\frac{1}{f g}, \quad h(0)=1 .
\end{aligned}
$$

Find an explicit formula for $f(x)$, valid in some open interval around 0 .
6. Putnam 2009. A3. Let d_{n} be the determinant of the $n \times n$ matrix whose entries, from left to right and then from top to bottom, are $\cos 1, \cos 2, \ldots, \cos n^{2}$. (For example,

$$
d_{3}=\left|\begin{array}{ccc}
\cos 1 & \cos 2 & \cos 3 \\
\cos 4 & \cos 5 & \cos 6 \\
\cos 7 & \cos 8 & \cos 9
\end{array}\right| .
$$

The argument of cos is always in radians, not degrees.) Evaluate $\lim _{n \rightarrow \infty} d_{n}$.
7. Putnam 2009. B1. Show that every positive rational number can be written as a quotient of products of factorials of (not necessarily distinct) primes. For example,

$$
\frac{10}{9}=\frac{2!\cdot 5!}{3!\cdot 3!\cdot 3!} .
$$

8. Putnam 2009. B2. A game involves jumping to the right on the real number line. If a and b are real numbers and $b>a$, the cost of jumping from a to b is $b^{3}-a b^{2}$. For what real numbers c can one travel from 0 to 1 in a finite number of jumps with total cost exactly c ?
9. Putnam 2009. B3. Call a subset S of $\{1,2, \ldots, n\}$ mediocre if it has the following property: Whenever a and b are elements of S whose average is an integer, that average is also an element of S. Let $A(n)$ be the number of mediocre subsets of $\{1,2, \ldots, n\}$. [For instance, every subset of $\{1,2,3\}$ except $\{1,3\}$ is mediocre, so $A(3)=7$.] Find all positive integers n such that $A(n+2)-2 A(n+1)+A(n)=1$.
