Classical results.

1. Hilbert. Let

$$
H=\left[\begin{array}{ccccc}
1 & \frac{1}{2} & \frac{1}{3} & \cdots & \frac{1}{n} \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \cdots & \frac{1}{n+1} \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \cdots & \frac{1}{n+2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\frac{1}{n} & \frac{1}{n+1} & \frac{1}{n+2} & \cdots & \frac{1}{2 n-1}
\end{array}\right]
$$

Then $\operatorname{det}(H) \neq 0$.
2. Let p be a prime. Show that the polynomial $x^{p-1}+x^{p-2}+\ldots+x+1$ can not be expressed as a product of two non-constant polynomials with integer coefficients.
3. In Oddtown there are n citizens and m clubs $A_{1}, A_{2}, \ldots, A_{m} \subseteq\{1,2, \ldots, n\}$. The laws of Oddtown prescribe that

- The clubs must have distinct memberships. $\left(A_{i} \neq A_{j}\right.$ for $\left.i \neq j\right)$,
- Every club has odd number of members,
- Every two distinct clubs have an even number of members in common. $\left(\left|A_{i} \cap A_{j}\right|\right.$ is even if $i \neq j$).

Show that $m \leq n$.

Problems.

1. Putnam 1959. A1. Prove that one can find a polynomial $P(y)$ with real coefficients such that $P(x-1 / x)=x^{n}-1 / x^{n}$ if and only if n is odd.
2. Putnam 1991. A2. M and N are real unequal $n \times n$ matrices satisfying $M^{3}=N^{3}$ and $M^{2} N=$ $N^{2} M$. Can we choose M and N so that $M^{2}+N^{2}$ is invertible?
3. Putnam 2012. A2. Let $*$ be a commutative and associative binary operation on a set S. Assume that for every x and y in S, there exists z in S such that $x * z=y$. (This z may depend on x and y.) Show that if a, b, c are in S and $a * c=b * c$, then $a=b$.
4. Putnam 2008. A2. Alan and Barbara play a game in which they take turns filling entries of an initially empty 2008×2008 array. Alan plays first. At each turn, a player chooses a real number and places it in a vacant entry. The game ends when all the entries are filled. Alan wins if the determinant of the resulting matrix is nonzero; Barbara wins if it is zero. Which player has a winning strategy?
5. Putnam 1994. A4. Let A and B be 2×2 matrices with integer entries such that $A, A+B, A+$ $2 B, A+3 B$, and $A+4 B$ are all invertible matrices whose inverses have integer entries. Show that $A+5 B$ is invertible and that its inverse has integer entries.
6. Putnam 2006. B4. Let Z denote the set of points in \mathbb{R}^{n} whose coordinates are 0 or 1 . (Thus Z has 2^{n} elements, which are the vertices of a unit hypercube in \mathbb{R}^{n}.) Let k be given, $0 \leq k \leq n$. Find the maximum, over all vector subspaces $V \subseteq \mathbb{R}^{n}$ of dimension k, of the number of points in $V \cap Z$.
7. Putnam 2014. A6. Let n be a positive integer. What is the largest k for which there exist $n \times n$ matrices M_{1}, \ldots, M_{k} and N_{1}, \ldots, N_{k} with real entries such that for all i and j, the matrix product $M_{i} N_{j}$ has a zero entry somewhere on its diagonal if and only if $i \neq j$?
8. Putnam 1996. B6. The origin lies inside a convex polygon whose vertices have coordinates $\left(a_{i}, b_{i}\right)$ for $i=1,2, \ldots, n$. Show that we can find $x, y>0$ such that

$$
a_{1} x^{a_{1}} y^{b_{1}}+a_{2} x^{a_{2}} y^{b_{2}}+\ldots+a_{n} x^{a_{n}} y^{b_{n}}=0
$$

and

$$
b_{1} x^{a_{1}} y^{b_{1}}+b_{2} x^{a_{2}} y^{b_{2}}+\ldots+b_{n} x^{a_{n}} y^{b_{n}}=0 .
$$

