Problem Solving Seminar. Fall 2019.

Problem Set 3. Algebra.

Classical results.

1. Hilbert. Let

$$H = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \dots & \frac{1}{n} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \dots & \frac{1}{n+1} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \dots & \frac{1}{n+2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{1}{n} & \frac{1}{n+1} & \frac{1}{n+2} & \dots & \frac{1}{2n-1} \end{bmatrix}$$

Then $det(H) \neq 0$.

- 2. Let p be a prime. Show that the polynomial $x^{p-1} + x^{p-2} + \ldots + x + 1$ can not be expressed as a product of two non-constant polynomials with integer coefficients.
- 3. In Oddtown there are n citizens and m clubs $A_1, A_2, \ldots, A_m \subseteq \{1, 2, \ldots, n\}$. The laws of Oddtown prescribe that
 - The clubs must have distinct memberships. $(A_i \neq A_j \text{ for } i \neq j)$,
 - Every club has odd number of members,
 - Every two distinct clubs have an even number of members in common. $(|A_i \cap A_j|$ is even if $i \neq j$).

Show that $m \leq n$.

Problems.

- 1. **Putnam 1959.** A1. Prove that one can find a polynomial P(y) with real coefficients such that $P(x 1/x) = x^n 1/x^n$ if and only if n is odd.
- 2. Putnam 1991. A2. M and N are real unequal $n \times n$ matrices satisfying $M^3 = N^3$ and $M^2N = N^2M$. Can we choose M and N so that $M^2 + N^2$ is invertible?
- 3. **Putnam 2012.** A2. Let * be a commutative and associative binary operation on a set S. Assume that for every x and y in S, there exists z in S such that x * z = y. (This z may depend on x and y.) Show that if a, b, c are in S and a * c = b * c, then a = b.
- 4. **Putnam 2008. A2.** Alan and Barbara play a game in which they take turns filling entries of an initially empty 2008 × 2008 array. Alan plays first. At each turn, a player chooses a real number and places it in a vacant entry. The game ends when all the entries are filled. Alan wins if the determinant of the resulting matrix is nonzero; Barbara wins if it is zero. Which player has a winning strategy?
- 5. **Putnam 1994.** A4. Let A and B be 2×2 matrices with integer entries such that A, A + B, A + 2B, A + 3B, and A + 4B are all invertible matrices whose inverses have integer entries. Show that A + 5B is invertible and that its inverse has integer entries.
- Putnam 2006. B4. Let Z denote the set of points in ℝⁿ whose coordinates are 0 or 1. (Thus Z has 2ⁿ elements, which are the vertices of a unit hypercube in ℝⁿ.) Let k be given, 0 ≤ k ≤ n. Find the maximum, over all vector subspaces V ⊆ ℝⁿ of dimension k, of the number of points in V ∩ Z.

- 7. **Putnam 2014.** A6. Let n be a positive integer. What is the largest k for which there exist $n \times n$ matrices M_1, \ldots, M_k and N_1, \ldots, N_k with real entries such that for all i and j, the matrix product $M_i N_j$ has a zero entry somewhere on its diagonal if and only if $i \neq j$?
- 8. **Putnam 1996. B6.** The origin lies inside a convex polygon whose vertices have coordinates (a_i, b_i) for i = 1, 2, ..., n. Show that we can find x, y > 0 such that

$$a_1 x^{a_1} y^{b_1} + a_2 x^{a_2} y^{b_2} + \ldots + a_n x^{a_n} y^{b_n} = 0$$

and

$$b_1 x^{a_1} y^{b_1} + b_2 x^{a_2} y^{b_2} + \ldots + b_n x^{a_n} y^{b_n} = 0.$$