Problem Seminar. Fall 2017.

Problem Set 8. Geometry.

Classical results.

1. Triangle area. Let ABC be a triangle with side lengths a = BC, b = CA, and c = AB, and let r be its inradius and R be its circumradius. Let s = (a + b + c)/2 be its semiperimeter. Then its area is

$$sr = \sqrt{s(s-a)(s-b)(s-c)} = \frac{abc}{4R} = \frac{1}{2}ab\sin C.$$

- 2. Every polygon (not necessarily convex) has a triangulation.
- 4. **Pick.** The area of any polygon with integer vertex coordinates is exactly I + B/2 1, where *I* is the number of lattice points in its interior, and *B* is the number of lattice points on its boundary.

Problems.

- 1. **Putnam 1999. B1.** Right triangle *ABC* has right angle at *C* and $\angle BAC = \theta$; the point *D* is chosen on *AB* so that |AC| = |AD| = 1; the point *E* is chosen on *BC* so that $\angle CDE = \theta$. The perpendicular to *BC* at *E* meets *AB* at *F*. Evaluate $\lim_{\theta \to 0} |EF|$.
- 2. **Putnam 2008. B1.** What is the maximum number of rational points that can lie on a circle in \mathbb{R}^2 whose center is not a rational point? (A *rational point* is a point both of whose coordinates are rational numbers.)
- 3. Putnam 1955. A2. *O* is the center of a regular *n*-gon $P_1P_2 \dots P_n$ and *X* is a point outside the *n*-gon on the line OP_1 . Show that $|XP_1| \cdot |XP_2| \cdot \dots \cdot |XP_n| + |OP_1|^n = |OX|^n$.
- 4. **Putnam 1957. A5.** Let S be a set of n points in the plane such that the greatest distance between two points of S is 1. Show that at most n pairs of points of S are at distance 1 apart.
- 5. Putnam 2012. B2. Let P be a given (non-degenerate) polyhedron. Prove that there is a constant c(P) > 0 with the following property: If a collection of n balls whose volumes sum to V contains the entire surface of P, then $n > c(P)/V^2$.

6. Putnam 2013. A5. For $m \ge 3$, a list of $\binom{m}{3}$ real numbers a_{ijk} $(1 \le i < j < k \le m)$ is said to be *area definite* for \mathbb{R}^n if the inequality

$$\sum_{1 \le i < j < k \le m} a_{ijk} \cdot \operatorname{Area}(\Delta A_i A_j A_k) \ge 0$$

holds for every choice of m points A_1, \ldots, A_m in \mathbb{R}^n . For example, the list of four numbers $a_{123} = a_{124} = a_{134} = 1$, $a_{234} = -1$ is area definite for \mathbb{R}^2 . Prove that if a list of $\binom{m}{3}$ numbers is area definite for \mathbb{R}^2 , then it is area definite for \mathbb{R}^3 .

- 7. **Putnam 1991.** A4. Does there exist an infinite sequence of closed discs D_1, D_2, D_3, \ldots in the plane, with centers c_1, c_2, c_3, \ldots , respectively, such that
 - (a) the c_i have no limit point in the finite plane,
 - (b) the sum of the areas of the D_i is finite, and
 - (c) every line in the plane intersects at least one of the D_i ?
- 8. Putnam 2000. A5. Three distinct points with integer coordinates lie in the plane on a circle of radius r > 0. Show that two of these points are separated by a distance of at least $r^{1/3}$.
- 9. **Putnam 1992.** A6. Four points are chosen at random on the surface of a sphere. What is the probability that the center of the sphere lies inside the tetrahedron whose vertices are at the four points?