Problem Seminar. Fall 2016.

Problem Set 2. The Pigeonhole principle.

The pigeonhole principle.

If n + 1 objects are distributed among n boxes, then some box will contain at least 2 objects.

Classical results.

- 1. Given n integers, prove that some non-empty subset has sum divisible by n.
- 2. Let A be a set of n + 1 integers chosen from $\{1, 2, ..., 2n\}$. Show that some element of A divides another.
- 3. Prove that every sequence of n^2 distinct numbers contains a monotone (monotonically increasing) subsequence of length n.

Problems.

- 1. Put 2002. A2. Given any five points on a sphere, show that some four of them must lie on a closed hemisphere.
- 2. IMO 1972. Prove that from a set of ten distinct two-digit numbers, it is possible to select two disjoint subsets whose members have the same sum.
- 3. Put 1995. B1. For a partition π of $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, let $\pi(x)$ be the number of elements in the part containing x. Prove that for any two partitions π and π' , there are two distinct numbers x and y in $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ such that $\pi(x) = \pi(y)$ and $\pi'(x) = \pi'(y)$. [A partition of a set S is a collection of disjoint subsets (parts) whose union is S.]
- 4. Germany 1976. Let P_1, P_2, \ldots, P_{2n} be a permutation of the vertices of a regular polygon. Prove that the closed polygonal curve $P_1P_2 \ldots P_{2n}$ contains a pair of parallel segments.
- 5. **Put 2006.** A3. Let $1, 2, 3, \ldots, 2005, 2006, 2007, 2009, 2012, 2016, \ldots$ be a sequence defined by $x_k = k$ for $k = 1, 2, \ldots, 2006$ and $x_{k+1} = x_k + x_{k-2005}$ for $k \ge 2006$. Show that the sequence has 2005 consecutive terms each divisible by 2006.
- 6. US 2000. Find the smallest positive integer n such that if n squares of a 1000×1000 chessboard are colored, then there will exist three colored squares whose centers form a right triangle with sides parallel to the edges of the board.
- 7. Put 1980. B4. Let $A_1, A_2, \ldots, A_{1066}$ be subsets of a finite set X such that $|A_i| > \frac{1}{2}|X|$ for $1 \le i \le 1066$. Prove that there exist ten elements x_1, \ldots, x_{10} of X such that every A_i contains at least one of x_1, \ldots, x_{10} . (Here |S| means the number of elements in the set S.)
- 8. Put 1993. A4. Let x_1, x_2, \ldots, x_{19} be positive integers each of which is less than or equal to 93. Let y_1, y_2, \ldots, y_{93} be positive integers each of which is less than or equal to 19. Prove that there exists a (nonempty) sum of some x_i 's equal to a sum of some y_i 's.