
MATH 350: Graph Theory and Combinatorics. Fall 2015.

Assignment #4: Ramsey theorem, matching and vertex coloring. Solutions.

1. Show that R(3, 4) = 9.

Solution: First we show that R(3, 4) ≤ 9. Let G be a graph with |V (G)| = 9. Our goal
is to show that α(G) ≥ 3 or ω(G) ≥ 4. As R(3, 3) = 6, if some vertex v of G has at least 6
neighbors, the neighborhood of v contains an independent set of size 3 or a clique of size
3, implying the required statement for G. Similarly, as R(2, 4) = 4, we are if some vertex
of G has ≥ 4 non-neighbors. Thus we may assume that every vertex of G has exactly 5
neighbors and exactly 3 non-neighbors. But this last case is impossible as every graph
contains odd number of vertices of even degree.

To show that R(3, 4) > 8, consider the graph G obtained from the cycle with vertices
v1, v2, . . . , v8 in cyclic order by adding edges v1v5 and v2v6. As the length eight cycle con-
tains exactly two independent sets of size four, namely {v1, v3, v5, v7} and {v2, v4, v6, v8},
we have α(G) = 3. It is also easy to see that ω(G) = 2, that is G has no K3 subgraph. It
follows that R(3, 4) = R(4, 3) > 8.

2. Let
rk := Rk(3, 3, . . . , 3︸ ︷︷ ︸

k times

).

(I.e. rk is the minimum integer n > 0 such that every coloring of edges of Kn in k colors
is guaranteed to produce a monochromatic triangle.) Show that

rk ≤ k(rk−1 − 1) + 2

for k ≥ 2.

Solution: We need to show that for n = k(rk−1− 1) + 2 every coloring of edges of Kn in
k colors is guaranteed to produce a monochromatic triangle. Let v be an arbitrary vertex
of Kn at least dn−1

k
e = rk−1 edges incident with v have the same color, say k. Let X be

the set of vertices joined to v by edges of this color. If two vertices of X are joined by an
edge of color k they form a monochromatic triangle with v. Otherwise, only k − 1 colors
are used on edges joining the vertices of X, and the subgraph induced on X contains a
monochromatic triangle by definition of rk−1.

3. Let G be a graph and Z ⊆ V (G). Show that the following are equivalent:

(i) G has a matching covering Z, and

(ii) for every X ⊆ V (G) there are at most |X| odd components C of G\X such that
V (C) ⊆ Z.

Solution: (i) ⇒ (ii): Let M be a matching covering Z. For every X ⊆ V (G) and every
component C of G\X, some edge of M joins a vertex of X to a vertex of C. Thus there
at least as many vertices as there are such odd components.



(ii) ⇒ (i): Let G′ be obtained from G by adding a set Y of |V (G)| extra vertices, so that
the vertices of Y are pairwise adjacent and every vertex of Y is adjacent to every vertex
in V (G) − Z. Any matching in G covering Z can be extended to a perfect matching in
G′. Conversely, every perfect matching of G′ contains a matching in G covering Z. Thus
by Tutte’s theorem (13.1) (i) holds as long as the following condition holds:

(iii) G′\X ′ has at most |X ′| odd components for every X ′ ⊆ V (G′).

Condition (iii) is trivially satisfied when Y ⊆ X ′ and we assume that Y 6⊆ X ′. All the
vertices of V (G′)−Z −X ′ belong to the same component of G′\X ′. Let X = X ′ ∩V (G).
By (ii) and the preceding observation G′\X ′ has at most |X|+ 1 odd components. As in
the proof of Theorem 13.1 the number of odd components of G′\X ′ has the same parity
as |X ′|. Therefore (iii) holds, as desired.

4. Show that if G is a loopless graph, k ≥ 1 is an integer and χ(G) > k then G has a
path with k edges.

Solution: Order the vertices of G arbitrarily: v1, v2, . . . , vn. We apply the coloring
algorithm with respect to this ordering. If vi receives color c then it has a neighbor vj
with j < i such that vj receives color c− 1. This observation easily implies by induction
on c that every vertex vi which receives color c is an end of some path P with c− 1 edges
such that V (P ) ⊆ {v1, v2, . . . , vi}. Thus, if a vertex receives a color k + 1 then it is an
end of a path with k edges, as desired.

5. Let G be a loopless graph with χ(G) = k for some positive integer k. Show that G
contains at least k vertices with degree at least k − 1.

Solution: Order the vertices of G in the non-increasing order of degrees and apply the
coloring algorithm to this ordering. If a vertex v receives color k then it must be preceded
by ≥ k − 1 of its neighbors in the ordering. Thus v has degree ≥ k − 1 and so does each
of its ≥ k − 1 neighbors preceding it in the ordering.


