MATH 350: Graph Theory and Combinatorics. Fall 2013. Due in class on Thursday, November 21st.

Assignment #4: Matchings and coloring.

- **1.** Let G be a graph and $Z \subseteq V(G)$. Show that the following are equivalent:
- (i) G has a matching covering Z, and
- (ii) for every $X \subseteq V(G)$ there are at most |X| odd components C of $G \setminus X$ such that $V(C) \subseteq Z$.
- **2.** Let G be a 2-connected 3-regular graph and let e be an edge of G. Show that e belongs to some perfect matching of G.
- **3.** Show that if G is a loopless graph, $k \ge 1$ is an integer and $\chi(G) > k$ then G has a path with k edges.
- **4.** Let G be a loopless graph in which every two odd cycles share a vertex. Show that $\chi(G) \leq 5$.
- **5.** Let G be a loopless graph with $\chi(G) = k$ for some positive integer k. Show that G contains at least k vertices with degree $\geq k 1$.