MATH 350: Graph Theory and Combinatorics. Fall 2013. Due in class on Monday, October 21st.

Assignment #2: Bipartite graphs, matchings and connectivity.

1. Show that every loopless graph G contains a bipartite subgraph with at least |E(G)|/2 edges.

2. Let *G* be a loopless graph in which every vertex has degree ≥ 1 . Let *X* be the largest matching in *G*, and let *Y* be the smallest set of edges of *G* so that every vertex of *G* is incident with ≥ 1 edge in *Y*. Show that |X| + |Y| = |V(G)|.

3. Let G be a bipartite graph with bipartition (A, B) in which every vertex has degree ≥ 1 . Assume that for every edge of G with ends $a \in A$ and $b \in B$ we have deg $(a) \geq deg(b)$. Show that there exists a matching in G covering A.

4. Given integers $n \ge m \ge k \ge 0$, determine the maximum possible number of edges in a bipartite graph G with bipartition (A, B), with |A| = n, |B| = m and no matching of size k.

5. Let v be a vertex in a 2-connected graph G. Show that v has a neighbor u such that $G \setminus u \setminus v$ is connected.

6.

- a) Distinct $u, v \in V(G)$ are k-linked if there are k paths $P_1, ..., P_k$ of G from u to v so that $E(P_i \cap P_j) = \emptyset$ $(1 \le i < j \le k)$. Suppose u, v, w are distinct and u, v are k-linked, and so are v, w. Does it follow that u, w are k-linked?
- **b)** Subsets $X, Y \subseteq V(G)$ are *k*-joined if |X| = |Y| = k and there are *k* paths $P_1, ..., P_k$ of *G* from *X* to *Y* so that $V(P_i \cap P_j) = \emptyset$ $(1 \le i < j \le k)$. Suppose $X, Y, Z \subseteq V(G)$ and X, Y are *k*-joined, and so are *Y*, *Z*. Does it follow that *X*, *Z* are *k*-joined?