MATH 350: Graph Theory and Combinatorics. Fall 2013. Due in class on Thursday, October 3rd.

Assignment #1: Paths, Cycles and Trees.

1. For each of the following statements decide if it is true or false, and either prove it or give a counterexample.

- a) If u, v, w are vertices of G, and there is an even length path from u to v and an even length path from v to w then there is an even length path from u to w.
- b) If G is connected and has no path with length larger than k, then every two paths in G of length k have at least one vertex in common.
- c) If u, v, w are vertices of G, and there is a cycle of G containing u and v, and a cycle containing v and w, then there is a cycle containing u and w.
- d) If e, f, g are edges of G, and there is a cycle containing e and f, and a cycle containing f and g, then there is a cycle containing e and g.

2. Let d_1, d_2, \ldots, d_n be positive integers with $n \ge 2$. Prove that there exists a tree with vertex degrees d_1, d_2, \ldots, d_n if and only if

$$\sum_{i=1}^{n} d_i = 2n - 2.$$

3. Let T be a tree, and let T_1, \ldots, T_n be connected subgraphs of T so that $V(T_i \cap T_j) \neq \emptyset$ for all i, j with $1 \leq i < j \leq n$. Show that $V(T_1 \cap T_2 \cap \ldots \cap T_n) \neq \emptyset$. [*Hint*: Delete a leaf and use induction on |V(T)|.]

4. Let v_1, v_2, v_3 be distinct vertices of a graph G such that $G \setminus v_1, G \setminus v_2, G \setminus v_3$ are all acyclic. Show that G contains at most one cycle.

5. Let G be a non-null graph such that for every pair of vertices $u, v \in V(G)$ there exists a path in G from u to v of length at most k. Show that either G contains a cycle of length $\leq 2k + 1$ or G is a tree.