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Figure 1: Counterexample for Problem 1a).

MATH 350: Graph Theory and Combinatorics. Fall 2013.

Assignment #1: Paths, Cycles and Trees. Solutions.

1. For each of the following statements decide if it is true or false, and
either prove it or give a counterexample.

a) If u, v, w are vertices of G, and there is an even length path from u to
v and an even length path from v to w then there is an even length
path from u to w.

Solution: False. See Figure 1.

b) If G is connected and has no path with length larger than k, then
every two paths in G of length k have at least one vertex in common.

Solution: True. Suppose for a contradiction that P1 and P2 are two
vertex disjoint paths of length k. Let vertices of Pi be v

i
1, v

i
2, . . . , v

i
k+1,

in order. Let Q be the a path with one end in V (P1) and another in
V (P2) chosen to be a short as possible. Let v1n and v2m be the ends of
Q. We can suppose without loss of generality that m,n ≥ k/2 + 1.
Then a path obtained by taking the union of the subpath of P1 from
v11 to v1n, the path Q and the subpath of P2 from v21 to v2m has at least
m+ n ≥ k + 2 vertices, a contradiction.

c) If u, v, w are vertices of G, and there is a cycle of G containing u and
v, and a cycle containing v and w, then there is a cycle containing u
and w.

Solution: False. Consider a graph G with V (G) = {u, v, w} and
E(G) consisting of a pair of edges joining u to v and a pair of edges
joining v to w.

d) If e, f, g are edges of G, and there is a cycle containing e and f , and a
cycle containing f and g, then there is a cycle containing e and g.



Solution: True. Without loss of generality we may assume that G is
connected. The result follows immediately from the next claim.

Claim: If there exist does not exist a cycle containing edges e and g
then there does not exist a vertex u ∈ V (G) such that every path in
G sharing one end with e and another with g contains u.

Proof: The claim trivially holds if e or g is a loop, so we assume that
neither is. Let P with vertex set v1, v2, . . . , vk, in order, be a path
with e joining v1 to v2 and g joining vk−1 and vk. Let fi ∈ E(Pi) be
the edge with ends vi and vi+1. Let j be chosen minimum so that no
cycle in G contains e and fj. We will show that u = vj satisfies the
claim.

Suppose not. Let C be a cycle containing e and fj−1 and let P ′ be a
path from an end of e to an end of f avoiding u. Choose a subpath Q
of P ′ with one end in V (C) and another in {vj+1, vj+2, . . . , vk} as short
as possible. Then C ∪ Q ∪ P contains a cycle containing both e and
fj, a contradiction. (The last statement requires some case checking.)

2. Let d1, d2, . . . , dn be positive integers with n ≥ 2. Prove that there
exists a tree with vertex degrees d1, d2, . . . , dn if and only if

n∑
i=1

di = 2n− 2.

Solution: “Only if” direction: By Theorems 1.1 and 3.1, if T is a tree
with degrees d1, d2, . . . , dn then

n∑
i=1

di = 2|E(T )| = 2|V (T )| − 2 = 2n− 2.

“If” direction: By induction on n. The base case n = 2 is trivial, as K2

is the unique tree on two vertices. For the induction step, if n > 2, then
n <

∑n
i=1 dn = 2n − 2 < 2n, therefore at least one of the di’s is equal to

1, and at least one of the di’s is bigger than 1. Without loss of generality,
dn = 1, dn−1 > 1. By the induction hypothesis there exists a tree T ′ with
vertex degrees d1, d2, . . . , dn−1 − 1. Let T be obtained from T ′ by adding
a leaf to it with the unique neighbor of the leaf being a vertex of degree
dn−1 − 1. It is easy to check that T is a tree and has degrees d1, d2, . . . , dn.

3. Let T be a tree, and let T1, . . . , Tn be connected subgraphs of
T so that V (Ti ∩ Tj) ̸= ∅ for all i, j with 1 ≤ i < j ≤ n. Show that
V (T1 ∩ T2 ∩ . . . ∩ Tn) ̸= ∅.



Solution: Proof by induction on V (T ). Base case |V (T )| = 1 is trivial.
For the induction step, let v be a leaf of T and let u be the unique vertex
of T adjacent to v. Let T ′ = T \ v and let T ′

i = T ′ \ v for i = 1, 2, . . . , n.
If V (T ′

i ∩ T ′
j) ̸= ∅ for all i, j with 1 ≤ i < j ≤ n, then we can apply the

induction hypothesis to T ′ to complete the proof. Thus we may assume,
without loss of generality, that V (T ′

1)∩ V (T ′
2) = ∅. It follows that V (T1)∩

V (T2) = {v}. Thus either u ̸∈ V (T1) or u ̸∈ V (T2). Without loss of
generality, we have V (T1) = {v}. Therefore v ∈ V (Ti) for every 1 ≤ i ≤ n

by the assumption and v ∈ V (T1 ∩ T2 ∩ . . . ∩ Tn), as desired.

4. Let v1, v2, v3 be distinct vertices of a graph G such that G\v1, G\v2,
G \ v3 are all acyclic. Show that G contains at most one cycle.
Solution: Suppose for a contradiction that C1 and C2 are two distinct
cycles in G. We have v1, v2, v3 ∈ V (C1 ∩ C2). Let P be a path with ends
in V (C1) so that P ⊆ C2, P ( C1, chosen to be as short as possible. (We
can choose such a path as a subpath of C2 with ends v1 and v2 satisfies the
required conditions.) Then no internal vertex of P belongs to C1. Let Q1

and Q2 be the two paths in C1 with the same ends as P . Then C1 = Q1∪Q2

and C3 := Q1∪P and C4 := Q2∪P are also cycles. As C1, C3 and C4 have
only two vertices in common (the ends of P ), one of G \ v1, G \ v2, G \ v3
contains C1, C3 or C4. A contradiction.

5. Let G be a non-null graph such that for every pair of vertices
u, v ∈ V (G) there exists a path in G from u to v of length at most k. Show
that either G contains a cycle of length ≤ 2k + 1 or G is a tree.
Solution: Clearly, G is connected. If G is not a tree then it contains a
cycle. Let C be the cycle in G of smallest length and let v1, v2, . . . , vl be
the vertices of C in order. Suppose for a contradiction that l > 2k+1. Let
P be the shortest path from v1 to vk+1 in G. Then P has length at most k
and it follows that P ( C. Thus there exists a subpath Q of P with ends
vi, vj ∈ V (P ) and otherwise disjoint from C. The union of Q with each
of the two paths in C with ends vi and vj is a cycle, and so each of these
cycles must have length at least l. The sum of their lengths, however, is
equal to l + 2|E(Q)| ≤ l + 2|E(P )| ≤ l + 2k < 2l, a contradtiction.


