Figure 1: Counterexample for Problem 1la).

MATH 350: Graph Theory and Combinatorics. Fall 2013.

Assignment #1: Paths, Cycles and Trees. Solutions.

1. For each of the following statements decide if it is true or false, and
either prove it or give a counterexample.

a) If u,v,w are vertices of G, and there is an even length path from wu to
v and an even length path from v to w then there is an even length
path from u to w.

Solution: False. See Figure 1.

b) If G is connected and has no path with length larger than k, then
every two paths in G of length k£ have at least one vertex in common.

Solution: True. Suppose for a contradiction that P, and P are two
vertex disjoint paths of length k. Let vertices of P, be v}, v}, . .. ,v,iﬂ,
in order. Let @) be the a path with one end in V(P;) and another in
V(P) chosen to be a short as possible. Let v} and v2, be the ends of
(). We can suppose without loss of generality that m,n > k/2 + 1.
Then a path obtained by taking the union of the subpath of P; from
v{ to v}, the path @ and the subpath of P, from v to v2, has at least
m 4+ n > k + 2 vertices, a contradiction.

c) If u,v,w are vertices of G, and there is a cycle of G containing u and
v, and a cycle containing v and w, then there is a cycle containing u
and w.

Solution: False. Consider a graph G with V(G) = {u,v,w} and
E(G) consisting of a pair of edges joining u to v and a pair of edges
jolning v to w.

d) If e, f, g are edges of G, and there is a cycle containing e and f, and a
cycle containing f and g, then there is a cycle containing e and g.



Solution: True. Without loss of generality we may assume that G is
connected. The result follows immediately from the next claim.

Claim: If there exist does not exist a cycle containing edges e and g
then there does not exist a vertex u € V(G) such that every path in
G sharing one end with e and another with ¢ contains .

Proof: The claim trivially holds if e or g is a loop, so we assume that
neither is. Let P with vertex set vy, vo, ..., v, in order, be a path
with e joining v; to v9 and ¢ joining vy and v. Let f; € E(P;) be
the edge with ends v; and v;;1. Let 7 be chosen minimum so that no
cycle in G contains e and f;. We will show that u = v; satisfies the
claim.

Suppose not. Let C be a cycle containing e and f;_; and let P’ be a
path from an end of e to an end of f avoiding u. Choose a subpath @)
of P" with one end in V(C') and another in {v; 1, v;49,...,v;} as short
as possible. Then C'U () U P contains a cycle containing both e and
fj, a contradiction. (The last statement requires some case checking.)

2. Let dy,ds, ..., d, be positive integers with n > 2. Prove that there
exists a tree with vertex degrees di,do, ..., d, if and only if

1=1

Solution: “Only if” direction: By Theorems 1.1 and 3.1, if T is a tree
with degrees dy, ds, ..., d, then

> di =2|E(T)| =2|V(T)| —2=2n-2.
=1

“If” direction: By induction on n. The base case n = 2 is trivial, as Ky
is the unique tree on two vertices. For the induction step, if n > 2, then
n < Y. d, =2n—2 < 2n, therefore at least one of the d;’s is equal to
1, and at least one of the d;’s is bigger than 1. Without loss of generality,
d, =1, d,_1 > 1. By the induction hypothesis there exists a tree 17" with
vertex degrees di,do,...,d,—1 — 1. Let T be obtained from 7" by adding
a leaf to it with the unique neighbor of the leaf being a vertex of degree
d,_1— 1. It is easy to check that T" is a tree and has degrees dy, ds, . .., d,.

3. Let T be a tree, and let T1,...,T,, be connected subgraphs of
T so that V(T; NT;) # 0 for all 4,5 with 1 < ¢ < 7 < n. Show that
VihnTyn...NnT,) #0.



Solution: Proof by induction on V(7'). Base case |V(T)| = 1 is trivial.
For the induction step, let v be a leaf of T" and let u be the unique vertex
of T" adjacent to v. Let 7" =T \ v and let T/ = T"\ v fori =1,2,...,n.
If V(T; N Tj) # 0 for all 4, j with 1 <4 < j < n, then we can apply the
induction hypothesis to 7”7 to complete the proof. Thus we may assume,
without loss of generality, that V(T7) NV (T3) = 0. It follows that V' (77) N
V(T3) = {v}. Thus either u ¢ V(T1) or u € V(T3). Without loss of
generality, we have V(T1) = {v}. Therefore v € V(T;) for every 1 <i <n
by the assumption and v € V(T1 N Ty N ... NT,), as desired.

4.  Let v1,v9,v3 be distinct vertices of a graph G such that G\ vy, G\ vs,
G \ v are all acyclic. Show that G contains at most one cycle.

Solution: Suppose for a contradiction that C; and Cy are two distinct
cycles in GG. We have vy, vy, v3 € V(Cy; N Cy). Let P be a path with ends
in V(C4) so that P C Cy, P C C}, chosen to be as short as possible. (We
can choose such a path as a subpath of (' with ends v, and vy satisfies the
required conditions.) Then no internal vertex of P belongs to C;. Let ¢4
and (o be the two paths in ] with the same ends as P. Then C = Q1UQ)»
and C3 := Q1 UP and Cy := QU P are also cycles. As ('}, C3 and C4 have
only two vertices in common (the ends of P), one of G\ v1, G \ v, G\ v3
contains C, C3 or C4. A contradiction.

5. Let G be a non-null graph such that for every pair of vertices
u,v € V(Q) there exists a path in G from u to v of length at most k. Show
that either G' contains a cycle of length < 2k + 1 or G is a tree.
Solution: Clearly, G is connected. If G is not a tree then it contains a
cycle. Let C be the cycle in G of smallest length and let vy, vs,...,v; be
the vertices of C' in order. Suppose for a contradiction that [ > 2k + 1. Let
P be the shortest path from vy to viy1 in G. Then P has length at most k
and it follows that P C C. Thus there exists a subpath @) of P with ends
v;,v; € V(P) and otherwise disjoint from C. The union of () with each
of the two paths in C' with ends v; and v; is a cycle, and so each of these
cycles must have length at least [. The sum of their lengths, however, is
equal to [ +2|E(Q)| < 1+ 2|E(P)| <1+ 2k < 2[, a contradtiction.



