
MATH 350: Graph Theory and Combinatorics. Fall 2013.

Assignment #5: Planar graphs. Solutions.

1. A graph G is outerplanar if it can be drawn in the plane so that
every vertex is incident with the infinite region. Show that a graph G is
outerplanar if and only if G has no K4 or K2,3 minor.

Solution: Let G′ be obtained from G by adding an extra vertex to G

adjacent to every other vertex. Then G′ is planar if and only if G is
outerplanar and it is easy to cherk that G contains a K4 or K2,3 minor if
and only if G′ contains a K5 or K3,3 minor. Thus the problem follows from
Kuratowski’s theorem (18.2).

2. Let G be a simple 2-connected graph drawn in the plane so that all
vertices are incident with the infinite region. Suppose that every bounded
region of G has length 3. Let k be the number of vertices of degree 2 in G,
and let r be the number of regions of G sharing no edges with the infinite
region. Show that k = r + 2 if |V (G)| > 3.

Solution: Let |V (G)| = n and let t be the total number of bounded regions
of G. Note that a bounded region of G shares two edges with the infinite
region if and only if one of the vertices on the boundary of the region has
degree 2. The infinite region of G is bounded by a cycle of length n and
thus n = 2k+(t− k− r) = t+ k− r. On the other hand, 2|E(G)| = 3t+n

and by Euler’s formula we have n− (3t+n)/2+(t+1) = 2, or equivalently
n = t + 2. Combining these two identities we obtain t + k − r = t + 2,
implying k = r + 2.

3. Let G be a 2-connected loopless graph drawn in the plane. For
each vertex v, define S(v) = 1

2 − 1
deg(v) . Show that for some region R,∑

v∼R S(v) < 1, where the sum is over all vertices v incident with R.

Solution: Suppose that ∑
v∼R

S(v) ≥ 1 (1)

for every region R. Note that every vertex v ∈ V (G) belongs to exactly



deg(v) regions. Let r denote the number of regions of the drawing of G.
Summing (1) over all the regions we obtain

r ≤
∑
R

∑
v∼R

S(v) =
∑

v∈V (G)

deg(v)S(v)

=
∑

v∈V (G)

1

2
deg(v)−

∑
v∈V (G)

1 = |E(G)| − |V (G)|.

It follows that |V (G)| − |E(G)|+ r ≤ 0, contradicting the Euler’s formula.

4. Let G be a graph drawn in the plane. Show that G is bipartite if
and only if every region of the drawing has even length.

Solution: Every region of G is bounded by a union of vertex disjoint
closed walks. If G is bipartite then every closed walk has even length and
so every region has an even length.
We now show that if every region of the drawing has even length then G is
bipartite. The proof is by induction on |E(G)|. The base case (|E(G)| = 0)
is trivial. For the induction step, we may assume that G is not a forest.
Let e be an edge of G which is not a cut-edge and let u and v be its ends.
Thus the regions on the two sides of e are distinct. Let R be a region on
one of the side of e. There exists a closed walk W ′ in G which contains e
only once and is part of the boundary of R. Let W be a walk from u to v
obtained from W ′ by removing e. By the induction hypothesis,the graph
G \ e is bipartite, and the walk W has odd length. It follows that u and
v belong to the different parts of every bipartition of G \ e and thus G is
bipartite.

5. Let G be drawn in the plane so that

• the boundary of the infinite region is some cycle C,

• every other region has boundary a cycle of length 3,

• every vertex of G not in C has even degree.

Show that χ(G) ≤ 3.

Solution: Following the hint, we prove the result by induction on |V (G)|.
The induction base |V (G)| = 3 is trivial. For the induction step, suppose



first that some two vertices of C are joined by an edge e ̸∈ E(C). We can
express C + e as a union of two cycles C1 and C2. Let G1 and G2 be the
subgraphs of G bounded by C1 and C2, respectively. Then G1 and G2 are
3-colorable by the induction hypothesis and we can combine their colorings
to produce a coloring of G, as G1∩G2 consists of a pair of adjacent vertices.

Suppose now that G contains no edge e as above. Consider v ̸∈ V (C).
Assume first that there are no parallel edges incident to v. Let u0, u1, . . . , uk
be the neighbors of v, listed in the order that the edges incident to v appear
around it, with u0, uk ∈ V (C). In a graph G\v the infinite face is bounded
by a cycle obtained from C by replacing v with u0, u1, . . . , uk. By the
induction hypothesis there exists a 3-coloring c : V (G\v) → {1, 2, 3}. Note
that for each vertex u ∈ V (G\v) the colors of its neighbors alternate as we
enumerate these neighbors in the order edges incident to u appear around
u. As deg(ui) is even for i = 1, 2, . . . , k−1 we deduce that c(ui−1) = c(ui+1)
for each such i. It follows that only two colors are used on u0, u1, . . . , uk
and thus c can be extended to v.

Suppose, finally, that some vertex v ∈ V (C) is joined to another vertex
u ∈ V (G) by a pair of parallel edges e and f . (The graph G does not
contain any loops as every finite face is bounded by a cycle of length 3.)
Let R be the region of the plane bounded by e and f . Let G1 be the
subgraph of G drawn within R. Let G2 be obtained from G by deleting
the vertices within the interior of R and the edge f . Applying the induction
hypothesis to G1 and G2 we obtain a valid coloring of G, as in the previous
paragraph. The only caveat is that we need to verify that the degree of u
is even in G2.

Suppose not. Then the degree of u is even in G1. Consider the graph G∗
1

dual to G1. In G∗
1 every region is bounded by an even cycle. Thus G∗

1

is bipartite, but every vertex of G∗
1 has degree 3, except for one vertex of

degree 2, corresponding to the infinite face of G1. Summing degrees of the
vertices on either side of the bipartition we obtain is contradiction, as one
of the sums will be divisible by 3, but not the other. This contradiction
finishes the proof.


