
MATH 350: Graph Theory and Combinatorics. Fall 2013.

Assignment #3: Network flows, covers and Ramsey’s theorem.

1. Let G be a directed graph and for each edge e let ϕ(e) ≥ 0 be an
integer, so that for every vertex v,∑

e∈δ−(v)

ϕ(e) =
∑

e∈δ+(v)

ϕ(e)

Show there is a list C1, ..., Cn of directed cycles (possibly with repetition)
so that for every edge e of G,

|{i : 1 ≤ i ≤ n, e ∈ E(Ci)}| = ϕ(e).

Solution: Induction on S :=
∑

e∈E(G) ϕ(e). Base case: S = 0 is trivial.
For the induction step, it suffices to find a directed cycle C in G so that
ϕ(e) ≥ 1 for every edge e ∈ E(G), as one can then apply the induction
hypothesis to

ϕ′(e) :=

{
ϕ(e), if e ̸∈ E(G)

ϕ(e)− 1, if e ∈ E(G)

Let e be an edge of G with ϕ(e) ≥ 1, a tail u and a head v. Then ϕ
restricted to G \ e is a v-u-flow of value 1 and by Lemma 10.3 there exists
a directed path P in G \ e so that ϕ is positive on every edge of the path.
The path P together with e forms the desired cycle.

2. Let s, t be vertices of a digraph G, and let ϕ : E(G) → R+ be an
s− t flow. Show that there is an s− t flow ψ : E(G) → Z+ so that

(i) its total value is at least that of ϕ, and

(ii) |ψ(e)− ϕ(e)| < 1 for every edge e of G.

The proof is by induction on

S(ϕ) := max(⌈value(ϕ)⌉, 0) + 2
∑

e∈E(G)

⌊ϕ(e)⌋.



The base case: If S(ϕ) = 0 then ψ ≡ 0 satisfies the required conditions.
Induction step: Suppose first that value(ϕ) > 0. Then there exists a
directed s − t-path P in G such that ϕ(e) > 0 for every e ∈ E(P ). We
define a new flow ϕ′ : E(G) → R+, as follows. Let ϕ

′ be a flow equal to ϕ
on every edge in E(G) − E(P ). Let ϕ′(e) = ϕ(e) − 1 for every e ∈ E(P ),
where for edges e ∈ E(P ) with ϕ′(e) < 1 we set ϕ′(e) = 1 − ϕ(e), instead
of ϕ(e)− 1, and we change the direction of such edges. It is straighforward
to check that ϕ′ is, indeed, a flow. Further, value(ϕ′) = value(ϕ) − 1, and
⌊ϕ′(e)⌋ ≤ ⌊ϕ(e)⌋ for every e ∈ E(G). It follows that S(ϕ′) < S(ϕ), and
there exists a flow ψ′ : E(G) → Z+ satisfying the induction hypothesis for
ϕ′.
Let ψ be defined to be identical to ψ′ on E(G) − E(P ) and let ψ(e) =
ψ′(e) + 1, for e ∈ E(P ). Once again we need to be careful with the edges
for which the direction has changed between ϕ and ϕ′: If ϕ(e) < 1 for some
e ∈ E(P ), and ψ′(e) = 1 for the edge e with the reverse direction then
we set ψ(e) = 0. One can verify that value(ψ) = value(ψ′) + 1 and that
|ψ(e)−ϕ(e)| = |ψ′(e)−ϕ′(e)|. It follows that ψ satisfies conditions (i) and
(ii), as desired.
It remains to consider the case when value(ϕ) ≤ 0. An argument analogous
to the one used in the previous case can produce an appropriate flow ψ
using a directed t− s-path P ′ or a directed cycle in C in G, instead of the
path P , as long as at least one edge e of the corresponding path or cycle
satisfies ϕ(e) ≥ 1 and all the remaining edges have positive value of the
flow.
Let e ∈ E(G) directed from u to v satisfy ϕ(e) ≥ 1. ( If no such edge
exists then S(ϕ) = 0 and the base case applies.) Consider the graph G′

containing only the edges of G with the positive flow value. If G′ contains
a directed path from v to u then G contains a cycle as described in the
preceding paragraph and the proof is finished. Otherwise, there exists
X ⊆ V (G) with v ∈ X, u ∈ V (G)−X such that every edge of G′ with one
end in X and another in V (G)−X is directed from V (G)−X to X. As
value(ϕ) ≤ 0, it follows that s ∈ X, t ∈ V (G)−X. One can now show that
there exists a directed path from v to s in X and from t to u in V (G)−X.
Thus e belongs to a directed t − s-path P ′ in G′ and as mentioned in te
previous paragraph the argument analogous to the one used for a directed
s− t-path completes the proof.



3. Show that R(3, 4) = 9.

Solution: We start by showing that R(3, 4) ≤ 9. Suppose for a contradic-
tion that G is a graph on ≥ 9 vertices containing no independent set of size
3 and no clique of size 4. By Theorem 11.1 R(3, 3) ≤ R(3, 2)+R(2, 3) = 6.
If deg(v) ≥ 6 for some vertex v ∈ V (G), then as in the proof of Theorem
11.1 we obtain a contradiction. Similarly, as R(2, 4) = 4 no vertex of G
can have 4 non-neighbors. We deduce that |V (G)| = 9 and deg(v) = 5 for
every v ∈ V (G). But this is impossible, as

∑
v inV (G) deg(v) must be even.

To show that R(3, 4) > 8 consider a graph G with V (G) = {1, 2, . . . , 8}
with the vertices i and j being adjacent in G if and only if |i−j| ̸∈ {1, 4, 7}.
It is not hard to check that G contains neither an independent set of size
3, nor a clique of size 4.

4. Show that any coloring of edges of Kn with n ≥ 6 in two colors
contains at least 1

20

(
n
3

)
monochromatic triangles.

Solution: We know that every coloring of edges ofK6 contains a monochro-
matic triangle. There are

(
n
6

)
ways of choosing 6 vertices out of n and every

such choice yields a monochromatic triangle, while every monochromatic
triangle can be counted up to

(
n−3
3

)
times. Thus there must be at least(

n
6

)
/
(
n−3
3

)
= 1

20

(
n
3

)
monochromatic triangles.

5. Let
rk := Rk(3, 3, . . . , 3︸ ︷︷ ︸

k times

).

(I.e. rk is the minimum integer n > 0 such that every coloring of edges of
Kn in k colors is guaranteed to produce a monochromatic triangle.) Show
that

rk ≤ k(rk−1 − 1) + 2

for k ≥ 2.

Solution: We need to show that for n = k(rk−1 − 1) + 2 every coloring of
edges of Kn in k colors is guaranteed to produce a monochromatic triangle.
Let v be an arbitrary vertex of Kn at least ⌈n−1

k ⌉ = rk−1 edges incident
with v have the same color, say k. Let X be the set of vertices joined to v
by edges of this color. If two vertices of X are joined by an edge of color k



they form a monochromatic triangle with v. Otherwise, only k − 1 colors
are used on edges joining the vertices of X, and the subgraph induced on
X contains a monochromatic triangle by definition of rk−1.


