MATH 350: Graph Theory and Combinatorics. Fall 2013.

Assignment #3: Network flows, covers and Ramsey’s theorem.

1. Let G be a directed graph and for each edge e let ¢(e) > 0 be an
integer, so that for every vertex v,
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Show there is a list 1, ..., C}, of directed cycles (possibly with repetition)
so that for every edge e of G,

Hi:1<i<n, ecEC)} = aoe).

Solution: Induction on S := ZeeE(G) ¢(e). Base case: S = 0 is trivial.
For the induction step, it suffices to find a directed cycle C' in G so that
¢(e) > 1 for every edge e € E(G), as one can then apply the induction
hypothesis to
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Let e be an edge of G with ¢(e) > 1, a tail v and a head v. Then ¢
restricted to G \ e is a v-u-flow of value 1 and by Lemma 10.3 there exists

a directed path P in G \ e so that ¢ is positive on every edge of the path.
The path P together with e forms the desired cycle.

2. Let s,t be vertices of a digraph G, and let ¢ : E(G) — R, be an
s —t flow. Show that there is an s — ¢ flow ¢ : E(G) — Z so that

(i) its total value is at least that of ¢, and
(ii) |v(e) — @(e)| < 1 for every edge e of G.

The proof is by induction on

S(¢) := max([value(¢)],0) +2 > [é(e)].
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The base case: If S(¢) = 0 then 1) = 0 satisfies the required conditions.
Induction step: Suppose first that value(¢) > 0. Then there exists a
directed s — t-path P in G such that ¢(e) > 0 for every e € E(P). We
define a new flow ¢’ : E(G) — R, as follows. Let ¢’ be a flow equal to ¢
on every edge in E(G) — E(P). Let ¢'(e) = ¢(e) — 1 for every e € E(P),
where for edges e € E(P) with ¢'(e) < 1 we set ¢'(e) = 1 — ¢(e), instead
of ¢(e) — 1, and we change the direction of such edges. It is straighforward
to check that ¢’ is, indeed, a flow. Further, value(¢') = value(¢) — 1, and
|¢'(e)] < |p(e)] for every e € E(G). It follows that S(¢') < S(¢), and
there exists a flow ¢’ : E(G) — Z satisfying the induction hypothesis for
¢'.

Let ¢ be defined to be identical to ¢' on E(G) — E(P) and let ¢(e) =
Y'(e) + 1, for e € E(P). Once again we need to be careful with the edges
for which the direction has changed between ¢ and ¢": If ¢(e) < 1 for some
e € E(P), and ¢'(e) = 1 for the edge e with the reverse direction then
we set ¢(e) = 0. One can verify that value(y)) = value(¢’) + 1 and that
[v(e) —o(e)] = [U'(e) — ¢'(e)]. It follows that i) satisfies conditions (i) and
(ii), as desired.

It remains to consider the case when value(¢) < 0. An argument analogous
to the one used in the previous case can produce an appropriate flow
using a directed t — s-path P’ or a directed cycle in C' in G, instead of the
path P, as long as at least one edge e of the corresponding path or cycle
satisfies ¢(e) > 1 and all the remaining edges have positive value of the
flow.

Let e € E(G) directed from u to v satisfy ¢(e) > 1. ( If no such edge
exists then S(¢) = 0 and the base case applies.) Consider the graph G’
containing only the edges of G with the positive flow value. If G’ contains
a directed path from v to u then G contains a cycle as described in the
preceding paragraph and the proof is finished. Otherwise, there exists
X CV(G) withv € X, u € V(G) — X such that every edge of G’ with one
end in X and another in V(G) — X is directed from V(G) — X to X. As
value(¢) < 0, it follows that s € X, ¢t € V(G) — X. One can now show that
there exists a directed path from v to s in X and from ¢ to v in V(G) — X.
Thus e belongs to a directed ¢t — s-path P’ in G’ and as mentioned in te
previous paragraph the argument analogous to the one used for a directed
s — t-path completes the proof.



3. Show that R(3,4) = 9.

Solution: We start by showing that R(3,4) < 9. Suppose for a contradic-
tion that G is a graph on > 9 vertices containing no independent set of size
3 and no clique of size 4. By Theorem 11.1 R(3,3) < R(3,2)+ R(2,3) = 6.
If deg(v) > 6 for some vertex v € V(G), then as in the proof of Theorem
11.1 we obtain a contradiction. Similarly, as R(2,4) = 4 no vertex of G
can have 4 non-neighbors. We deduce that |V (G)| = 9 and deg(v) =5 for
every v € V(G). But this is impossible, as >, ;v deg(v) must be even.

To show that R(3,4) > 8 consider a graph G with V(G) = {1,2,...,8}
with the vertices ¢ and j being adjacent in G if and only if |i —j| & {1,4,7}.
It is not hard to check that G contains neither an independent set of size
3, nor a clique of size 4.

4. Show that any coloring of edges of K, with n > 6 in two colors

”) monochromatic triangles.
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Solution: We know that every coloring of edges of K contains a monochro-
matic triangle. There are (Z) ways of choosing 6 vertices out of n and every
such choice yields a monochromatic triangle, while every monochromatic
triangle can be counted up to (”53) times. Thus there must be at least

(2)/ (”53) = 2—10 (g) monochromatic triangles.

9. Let

T ‘= Rk(3, 3, Ceey 3).
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(Le. 7 is the minimum integer n > 0 such that every coloring of edges of
K, in k colors is guaranteed to produce a monochromatic triangle.) Show
that

re < ]C(T‘kfl — 1) + 2

for k& > 2.

Solution: We need to show that for n = k(r;—; — 1) 4+ 2 every coloring of
edges of K, in k colors is guaranteed to produce a monochromatic triangle.
Let v be an arbitrary vertex of K, at least f"T_ll = 1,1 edges incident
with v have the same color, say k. Let X be the set of vertices joined to v
by edges of this color. If two vertices of X are joined by an edge of color k



they form a monochromatic triangle with v. Otherwise, only £ — 1 colors
are used on edges joining the vertices of X, and the subgraph induced on
X contains a monochromatic triangle by definition of r,_;.



