MATH 340: Discrete Structures II. Winter 2016.
Due in class on Tuesday, April 5th.

Assignment \#5: Enumeration.

1. Combinatorial identities.

a) Give an algebraic proof of the following identity:

$$
\binom{n+1}{m+1}=\sum_{k=m}^{n}\binom{k}{m}
$$

b) Give a combinatorial (bijective) proof of the identity in a).
2. Labelled trees.

Let $f:[n] \rightarrow[n]$ be a function, and let T_{f} be a labelled tree on n vertices, constructed from f using the procedure demonstrated in class. Suppose that f takes exactly k different values. Show that T_{f} has at least $n-k$ and at most $n-k+2$ leaves.

3. Catalan numbers.

Give a bijection to show that the following is counted by Catalan numbers. The number of orderings of numbers $\{1,2, \ldots, 2 n\}$, such that

- the numbers $\{1,3, \ldots, 2 n-1\}$ appear in order,
- the numbers $\{2,4, \ldots, 2 n\}$ appear in order,
- $2 k-1$ preceded $2 k$ for every $1 \leq k \leq n$.
(For example, for $n=2$ the orderings 1234 and 1324 are the only ones satisfying the above conditions. The ordering 3124 is invalid, as $\{1,3\}$ is not in order, 1243 is invalid, as 4 precedes 3.)

4. Plane trees.

Show that for $n \geq 2$ there are exactly $\frac{1}{n}\binom{2 n-2}{n-1}$ rooted plane trees on $n+1$ vertices in which the root vertex has degree two.
5. Generating functions.

For the following recurrences, find the ordinary generating function $F(x)$ and use it to obtain a closed formula for $f(n)$.
a) $f(n)=3 f(n-1)-2 f(n-2)$ for $n \geq 2, f(0)=3, f(1)=5$,
b) $f(n)=8 f(n-1)-16 f(n-2)$ for $n \geq 2, f(0)=0, f(1)=4$.

