MATH 340: Discrete Structures II. Winter 2016.
Due in class on Tuesday, February 16th.

Assignment \#2: Planar graphs.

1. Euler's formula.
a) Let G be a planar graph, such that every vertex of G has degree at least five, and at least one vertex of G has degree ten. Show that G has at least seventeen vertices.
b) Let G be a graph drawn in the plane. Suppose that every face of G is bounded by a cycle of odd length. Show that the number of faces of G is even.
2. Coloring planar graphs.
a) Show without using the Four Color Theorem that if a planar graph G has no K_{3} subgraph then $\chi(G) \leq 4$.
b) Prove or disprove the following statement: If a planar graph G has no K_{4} subgraph then $\chi(G) \leq 3$.

Hint: In a) show that G contains a vertex of degree at most three.
3. Art Gallery theorem. Prove or disprove the following statements.
a) If a gallery can be guarded by one guard then it is convex.
b) If a gallery can not be guarded by one guard then it has at least six walls.
c) If a gallery has at least six walls then it can not be guarded by one guard.
4. Kuratowski's theorem. Let G be a connected non-planar graph with m edges and n vertices. Suppose further that $G \backslash e$ is planar for every edge e of G. Show that $m-n=3$, or $m-n=5$.

5. Testing planarity. Determine whether the above two graphs are planar. (For each graph either provide a planar drawing, or prove that this graph is not planar.)

