MATH 340: Discrete Structures II. Winter 2016.
Due in class on Thursday, February 4th.

Assignment \#1: Matchings.

1. Stable matching algorithm. Apply the Boy Proposal algorithm to find a stable matching given the preference lists below. Are there any other stable matchings?

$$
\begin{aligned}
& \mathbf{B}_{1}: G_{2}>G_{1}>G_{4}>G_{5}>G_{3} \\
& \mathbf{B}_{\mathbf{2}}: G_{4}>G_{2}>G_{1}>G_{3}>G_{5} \\
& \mathbf{B}_{3}: G_{2}>G_{5}>G_{3}>G_{4}>G_{1} \\
& \mathbf{B}_{4}: G_{1}>G_{4}>G_{3}>G_{2}>G_{5} \\
& \mathbf{B}_{\mathbf{5}}: G_{2}>G_{4}>G_{1}>G_{5}>G_{3} \\
& \\
& \mathbf{G}_{1}: B_{5}>B_{1}>B_{2}>B_{4}>B_{3} \\
& \mathbf{G}_{2}: B_{3}>B_{2}>B_{4}>B_{1}>B_{5} \\
& \mathbf{G}_{3}: B_{2}>B_{3}>B_{4}>B_{5}>B_{1} \\
& \mathbf{G}_{4}: B_{1}>B_{5}>B_{4}>B_{3}>B_{2} \\
& \mathbf{G}_{5}: B_{4}>B_{2}>B_{5}>B_{3}>B_{1}
\end{aligned}
$$

2. More stable matchings. Suppose that in a group of 100 boys and 100 girls there is a boy B, such that B is second highest on every woman's preference list. Is it possible that in every stable matching B ends up with the girl he likes least of all?
3. Edge-coloring. Let G be a (not necessarily bipartite) graph with maximum degree $\Delta>0$.
a) Show that $\chi^{\prime}(G) \leq 2 \Delta-1$.
b) Suppose that G has a perfect matching M such that $G \backslash M$ is bipartite. Determine $\chi^{\prime}(G)$ in terms of Δ. Justify your answer.

Reminder: $G \backslash M$ is the graph obtained from G by deleting all the edges of M.
4. Systems of distinct representatives. Let $\left(S_{1}, S_{2}, \ldots, S_{n}\right)$ be a collection of subsets of $\{1,2, \ldots, n+1\}$ such that $S_{k}=\{1,2, \ldots, k+1\}$ for each $k=1,2, \ldots, n$. Show that there are exactly 2^{n} ways to chose a system of distinct representatives for ($S_{1}, S_{2}, \ldots, S_{n}$).
Hint: Use induction on n.
5. Kônig's theorem. Let G be a bipartite graph with bipartition (A, B), such that $|A|=|B|=8$, and every vertex of G has degree at least four. Show that G has a perfect matching.
Hint: Show that if X is a vertex cover of G then either $|X \cap A| \geq 4$ and $|X \cap B| \geq 4$, or $A \subseteq X$, or $B \subseteq X$.
6. Matching markets. Consider a matching market with with four buyers (A, B, C, D) and four sellers (X, Y, Z, W), where the valuations of the buyers are listed in the following table.

	X	Y	Z	W
A	7	6	8	3
B	7	5	7	7
C	5	2	8	6
D	4	2	7	4

Use the method seen in class to find a set of market clearing prices.

