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Abstract. This article revisits the maximum entropy algorithm in the context of recovering the
probability distribution of an asset from the prices of finitely many associated European call options
via partially finite convex programming. We are able to provide an effective characterization of the
constraint qualification under which the problem reduces to optimizing an explicit function in finitely
many variables. We also prove that the value (or objective) function is lower semicontinuous on its
domain. Reference is given to a website which exploits these ideas for the efficient computation of
the maximum entropy solution (MES).
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1. Introduction. Entropy optimization, used for recovering a probability dis-
tribution from information on a few of its moments, is well established and ubiquitous
throughout the sciences [14]. Recently (cf. Buchen and Kelly [9] and Avellaneda et
al. [1], [2]), this idea has been explored in the context of financial derivatives. In this
risk-neutral model, one wishes to infer the probability distribution for the price of an
asset at some future date T from the prices of European call options based upon the
asset with expiration at T .

A classical approach to the application of entropy optimization has been to use
the theory of Lagrange multipliers. While this formal approach does yield correct and
useful results, it does not provide for a complete analysis. The purpose of this article
is to analyze the option-maximum entropy problem within the framework of partially
finite programming and demonstrate the extra insight and power that this approach
provides. In doing so, we not only legitimize the formal calculations with Lagrange
multipliers but also provide a more detailed analysis of the maximum entropy solution
and the notion of admissible data. We also specifically exploit the unique structure of
the piecewise linear constraints to reduce the problem to maximization of an explicit
function of finitely many variables; hence greatly simplifying the computation of the
maximum entropy solution.

The option-maximum entropy problem. Let I be an the interval of the form
[0,K) with either some fixed K > 0 or K = +∞. For 0 = k1 < k2 < · · · < km, and
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d ∈ R
m,

(P)

∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize Ih(p) :=
∫
I

h
(
p(x)

)
dx

s.t. 1 =

∫
I

p(x) dx,

dj =

∫
I

cj(x)p(x) dx.

Here, p(x) denotes the probability density function for the price x of an asset at a
set future time T , and dj represents the price of a European call option based on the
underlying asset with strike price kj and expiration date T . The interval I denotes
the set of feasible prices for the asset at time T which may or may not be a priori
constrained. The function cj(x) represent the payoffs of the jth option as a function
of the asset price x at time T . Thus

cj(x) = (x − kj)
+ = max{0 , x − kj}.(1)

Finally the convex function h : R → R represents the entropy functional, the most
common of which being the Boltzmann–Shannon entropy

h(t) :=




t log t− t if t > 0,
0 if t = 0,
+∞ if t < 0.

(2)

Note that traditionally, the entropy is taken to be −h, and hence maximum entropy
entails solving for the minimum in (P). We refer to the minimizer associated with
(P) as the maximum entropy solution, or simply the MES.

The particular choice of the Boltzmann–Shannon entropy yields a simple case
of the minimum cross entropy problem using the Kullback–Leibler entropy. Here the
idea is that given additionally a prior guess q(x) for the asset price distribution at
T (which one might infer from the market), one seeks to find the least prejudiced
posterior density p(x) consistent with the constraints which is closest to or least
deviant from q(x) in the following sense (see Cover and Thomas [10] for details): find
a constraint satisfying p(x) which minimizes∫

I

p(x) log

(
p(x)

q(x)

)
dx.

Our problem (P) is the simple case of the above where no prior is available and hence
q(x) is close to a uniform distribution and may be taken to be a constant. Of course
to be precise, it will be uniform if p(x) = 0 for all x sufficiently large (cf. [9]). For
simplicity we first carry out our analysis for the Boltzmann–Shannon entropy (i.e.,
uniform prior). In section 7, we briefly comment on the necessary modifications and
drawbacks in the more realistic situation of including a nontrivial prior.

The constraints in (P) may appear to be missing something. Indeed, they should
read

dj = DC(T )

∫
I

cj(x)p(x) dx,

where DC(T ) represents the riskless discount factor up to time T . For example, one
could take

DC(T ) = e−rT ,
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where r is the risk-free constant interest rate. Without loss of generality we set
DC(T ) = 1 throughout this paper. Finally, we emphasize that this model, in which
the option prices are simply the expected values of a discounted pay-off function,
assumes risk-neutrality. See [13] (also [9] and the references therein) for further infor-
mation on risk-neutral pricing and arbitrage-free models.

Convex programming approach. In this article, we reexamine problem (P)
within the general framework of convex duality and partially finite convex program-
ming. Why this approach? To begin with, it legitimizes the calculations done in [9]
and [1] which are based upon Lagrange multipliers. This standard approach is based
on relaxing the hard constraints via Lagrange multipliers, reducing the problem to

sup
λ∈Rm+1

inf
p

L(λ, p),(3)

where

L(λ, p) := Ih(p) + λ0

(
1−

∫ ∞

0

p dx

)
+

m∑
i=1

λi

(
di −

∫ ∞

0

ci p dx

)
.(4)

The minimization over p is carried out via the first variation of L(λ, p) with respect
to p; i.e., one “differentiates” the Lagrangian with respect to density functions p.
There is a problem with this type of calculation. Indeed, the Lagrangian has support
on the set {p ∈ L1(I) | p ≥ 0 a.e.}. The complement of this set is dense in L1 and,
moreover, any reasonable definition of the Boltzmann–Shannon entropy gives a value
of +∞ on any function in the complement. Thus, not only is the Lagrangian nowhere
differentiable, it is indeed nowhere continuous. The approach via conjugation-duality
is in part to circumvent this differentiation. Moreover, with other entropies, there
can be additional complications to these formal calculations resulting from a lack
of weak compactness. See [8] for a fuller discussion. We emphasize, however, that
the benefits of our approach are far from confined to the legitimization of the now
fairly ubiquitous if flawed formal analysis with “Lagrange multipliers.” Such benefits
include the following:

• We transform the maximum entropy problem into a closed-form finite-dimen-
sional maximization problem. That is, under certain explicit conditions on the
data, finding the MES is equivalent to maximizing an explicit dual function
(cf. (9), (12), and (16)) of finitely many real variables. The simple fact that
the dual function can be written explicitly with no integrals is an advantage
of using a uniform prior.

• Our approach greatly simplifies the numerical computation1 of the MES
where many of the previous numerical calculations (cf. [9]) involved in com-
puting the optimal λ can now be done symbolically.

• We give a detailed analysis of the constraint qualification (CQ) and a full in-
vestigation of when the MES exists, and when the maximization with respect
to λ in the dual (cf. (9), (12)) does indeed yield the solution. These results
are pertinent when analyzing the dependence of the MES on the data d.

1An interface has been set up at http://www.cecm.sfu.ca/projects/MomEnt+/moment.html
which computes the MES for a variety of moment constraints, including the ones discussed in the
present paper. One can test our algorithm by first pricing the list of options using, for example, a
log-normal distribution, and then comparing the distribution with the computed MES based only on
the option prices. In this way, one finds that the accuracy of recovering a known distribution with
eight options is quite high even with a uniform prior.
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• Our general approach applies to any convex entropy, not just to the standard
Boltzmann–Shannon entropy used in [9], [1]. It is also amenable to natural
extensions such as relaxations of the constraints, for example, requiring the
moments to lie in some small finite interval.

• Partially finite duality and attainment results are usually confined to pri-
mal function spaces defined over bounded domains. The problem provides
an interesting and simple example whereby a partially finite duality and at-
tainment theorem can be proved in the case where the primal functions are
defined over an infinite domain (Theorem 2). We know of no general result
which would capture this.

In section 3 we prove two duality results: one for the case of a finite interval I
and the other for I = [0,∞). The first (Corollary 1) is a direct consequence of a
well-known duality result (Theorem 1). The latter (Theorem 2) is proved directly by
exploiting the monotonicity of the constraints ci. In either case, the MES exists if d
satisfies the CQ. Conversely, for the MES to exist in its exponential form (cf. (10),
and (13)), this CQ must hold. The CQ amounts to the data d lying in the relative
interior of the feasible set, i.e., the set of vectors (y0, y1, . . . , ym) ∈ R

m+1 such that

yi =

∫
I

ci(x)p(x) dx for i = 0, . . . ,m

for some distribution p with finite entropy. In section 4 we show that this condition
is equivalent to the data d lying in some open polyhedral set which we characterize
explicitly (cf. Proposition 2). It is important to note that the feasible set is not
relatively open, and hence there can exist boundary points which are feasible even
though the CQ fails. In such cases, the analysis via the Lagrange multipliers λi will
fail. Indeed, as the data approaches such a boundary point, some components of the
associated λ will become infinite.

We provide a simple—though perhaps artificial from a finance point of view—
example to illustrate these points. We use only two constraints for simplicity (similar
examples exist with many options) and assume the first option has strike price zero.
That is, we consider strike prices k1 = 0, k2 with associated option prices d1 and d2

(with d2 ≥ 1/2). This data satisfies the CQ if and only if

0 < d1 − d2 < k2.

The boundary point where d1 − d2 = k2 is of particular interest. Clearly, this data is
feasible; for example, consider

p = χ[k2+d2− 1
2 ,k2+d2+

1
2 ].

Moreover one can readily show (see (18)) that any probability distribution satisfying
the associated constraints must vanish on the interval [0, k2]. Hence, no MES solution
of the exponential form (i.e., (10)) can exist. Indeed, as data satisfying the CQ
tends to this boundary point, the associated λ must blow up. This simple example
illustrates that an infimum associated with problem (P) might still be finite but not
attainable. In section 6, we explore this matter further by studying the value (or
objective) function and whether or not there exists a duality gap.

2. Preliminaries. We first reformulate problem (P). Let I = [0,K) with either
K > 0 fixed or K = +∞. For m ≥ 1, we assume that 0 = k1 < · · · < km < K, and
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d = (d0, d1, . . . , dm) ∈ R
m+1 with d0 = 1. Consider

(P) inf
{Ih(p) + δ

(
Ap − d

∣∣ 0)} , where Ih(p) :=
∫
I

h(p(x)) dx,

δ is the indicator function defined for the set {0}, i.e., for y ∈ R
m+1,

δ
(
y
∣∣ 0) :=

{
0 if y = 0,

∞ otherwise,

and A is the linear operator defined by

Ap :=

∫
I

c(x)p(x) dx ∈ R
m+1,

with c(x) = (c0(x), c1(x), . . . , cm(x)), c0(x) ≡ 1, cj(x) = (x− kj)
+ = max{0, x− kj}.

Finally, h always denotes the Boltzmann–Shannon entropy defined by (2). The space
we will work in for admissible p is L1(I). We will separate the cases of bounded I and
I = [0,∞). For the latter case, A may be infinite on some p ∈ L1([0,∞)), and hence
for the problem at hand A is not a well-defined linear operator on L1([0,∞)) as it
would be on, say, L1([0,M ]) for some fixed M > 0. One notes that even though the
operator A is densely defined on L1([0,∞)), it is not closed. Hence this case requires
a different approach. For the case of bounded I, we will directly apply partially finite
convex programming (Theorem 1) to establish the duality relation under a CQ. A
similar duality relation (Theorem 2), under the same CQ, holds true for the infinite
domain I = [0,∞) and will be proved directly, bypassing the Fenchel duality of
Theorem 1.

For omitted definitions and elementary facts from convex analysis in R
n we refer

the reader to [17]. Let V and V  be vector spaces equipped with 〈·, ·〉, a bilinear
product on V ×V . The convex (Fenchel) conjugate of a convex function f on V with
respect to 〈·, ·〉 is the function f defined on V ∗ by

f(ξ) := sup
{〈x, ξ〉 − f(x)

∣∣ x ∈ V
}
.

We consider the functional on L1(I) (for I bounded or unbounded) defined by

u �−→ Ih(u) :=
∫
I

h(u(x)) dx,(5)

where the integral is interpreted in the sense of Rockafellar (cf. [18, p. 7]). Thus Ih
is a well-defined operator from L1(I) to [−∞,∞] and, since the entropy h is convex,
also convex on L1(I).

For the conjugate of this integral functional, we take I to be a bounded interval
and let L := L1(I) and L∗ := L∞(I). One can define a bilinear product on L×L by

(u, u) �−→ 〈
u, u

〉
:=

∫
I

u(x)u(x) dx.(6)

To compute the convex conjugate of Ih with respect to (6), we may conjugate the
integrand, as in the following proposition.

Proposition 1. Let I be bounded and consider the pair 〈L,L〉 of subspaces of
L1(I) as defined above with bilinear product (6). Then for any q ∈ L, we have

I
h(q) =

∫
I

h
(
q(t)

)
dt.
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The proof of Proposition 1 can be found in either [19] or [16]. Finally, we recall a
Fenchel duality theorem in its partially finite version. The proof of Theorem 1 as stated
can be inferred from Theorem 4.2 in [4], with the attainment of the infimum proved
via Theorems 3.7 and 3.8 of [7]. In what follows, “ri” denotes the relative interior of
a subset of R

n and “dom” denotes the effective domain of a convex function (i.e., the
set of points at which the function is finite).

Theorem 1. Let V and V  be vector spaces, and let 〈·, ·〉 be a bilinear product
on V × V . Let G : V → R

n be a linear map with adjoint GT , let F : V → R̄ be a
proper convex function, and let g : R

n → R̄ be a proper concave function. Then, under
the CQ

(CQ) ri(G domF ) ∩ ri(dom g) �= ∅,
we have

inf
{
F (u)− g(Gu)

∣∣ u ∈ V
}
= sup

{
g(λ)− F (GTλ)

∣∣ λ ∈ R
n
}
,(7)

with the supremum on the right being attained when finite. Moreover for the case
where V is a normed vector space with dual V ∗, if F is strongly rotund (i.e., satisfies
the three conclusions of Lemma 2), the infimum on the left is attained at a unique u.

3. Duality results. Theorem 1 directly applies to (P) with I bounded. That
is, n = m+1, V = L1(I), V  = L∞(I), 〈·, ·〉 is given by (6), G := A, and the function
g is defined by

g(Ap) = − δ
(
Ap − d

∣∣ 0) .
Lastly, F = Ih, where h is the Boltzmann–Shannon entropy functional defined by (2),
which by Lemma 2 is strongly rotund. The CQ amounts to

(CQ) d ∈ ri(A dom Ih).(8)

Precisely, we have the following.
Corollary 1. Let I be bounded and assume (8) holds. Then (P) has a unique

solution and

inf
{Ih(p) ∣∣ p ∈ L1(I), Ap = d

}
= sup

{
m∑
i=0

λidi − I
h(A

T (λ))

∣∣∣∣∣ λ ∈ R
m+1

}
.(9)

Moreover the solution of the primal problem (left-hand side of (9)) is

e
∑m

i=0 λ̄ici(x),(10)

with λ̄i being the unique solution to the dual problem (right-hand side of (9)).
It is straightforward to check (see section 5) that

I
h(A

T (λ)) =

∫
I

eµ(x) dx, µ(x) :=

m∑
i=0

λici(x),

where one can explicitly carry out the integration (cf. (16)). We also note in section
5 that the distribution given by (10) is indeed a probability distribution.
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As previously mentioned, the case where I = [0,∞) is best treated differently. The
duality result is identical; however, to prove it we shall bypass the direct application
of Theorem 1 and exploit properties of the value function. We rewrite the CQ as

(CQ) d ∈ riA,(11)

where

A :=
{
x ∈ R

m+1
∣∣ ∃ p ∈ L1[0,∞) with Ih(p) finite and Ap = x

}
.

We have the following theorem.
Theorem 2. Let I = [0,∞) and assume (11) holds. Then (P) has a unique

solution and

inf
{Ih(p) ∣∣ p ∈ L1([0,∞)), Ap = d

}

= sup

{
m∑
i=0

λidi −
∫ ∞

0

eµ(x) dx

∣∣∣∣∣ λ ∈ R
m+1

}
.(12)

Moreover, the solution of the primal problem is

e
∑m

i=0 λ̄ici(x),(13)

with λ̄i being the unique value of the right-hand side of (12).
Proof of Theorem 2. Consider the value function

V(d) := inf {Ih(p) ∣∣ Ap = d
}
= inf

{Ih(p) + δ
(
Ap − d

∣∣ 0) ∣∣ p ∈ L1([0,∞))} .

We prove that under the (CQ) of (11),

V(d) = sup

{
m∑
i=0

λidi −
∫ ∞

0

eµ(x) dx

∣∣∣∣∣ λ ∈ R
m+1

}
.(14)

First note that (14) easily holds with = replaced with ≥. To see this, note that by
the definition of h, for every p ∈ dom Ih with

∫
ci(x)p(x)dx = di, we have∫

h(µ)dx +

∫
h(p)dx ≥

∫ m∑
i=0

λi ci(x) p(x) dx =

m∑
i=0

λidi

holding for any λ ∈ R
m+1. The inequality follows by first taking the infimum over all

such p, and then the supremum over λ ∈ R
m+1.

We now prove the reverse inequality. The (CQ) implies that d ∈ ri(domV).
Moreover, it is easily verified that V is convex on its domain. Hence (see, for example,
[3]), there exists a λ̄ ∈ R

m+1 such that λ̄ ∈ ∂V(d), the subgradient of V at d. Thus
for all z ∈ R

m+1, V(z) ≥ V(d) + 〈λ̄, z− d〉. Fix M > 0. Restricting our attention to
p with support in [0,M ], we have (by definition of V(z)) for all p ∈ L1([0,M))

V(d) − 〈λ̄,d〉 ≤ Ih(p) − 〈λ̄,Ap〉.
Setting µ̄(x) =

∑m
i=0 λ̄ici(x), we have

V(d) −
m∑
i=0

λ̄idi ≤
∫ M

0

(h(p(x)) − p(x) µ̄(x)) dx,
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and hence

sup
p∈L1[0,M ]

{∫ M

0

p(x)µ̄(x) − h(p(x)) dx

}
≤

m∑
i=0

λ̄idi − V(d).

The left-hand side of the above is by definition I
h(µ̄). Hence applying Proposition 1

to Ih(p) on [0,M ], we have

I
h(µ̄) =

∫ M

0

h(µ̄)dx =

∫ M

0

eµ̄(x)dx ≤
m∑
i=0

λ̄idi − V(d),

or

m∑
i=0

λ̄i di −
∫ M

0

eµ̄(x)dx ≥ V(d).

Since the above holds for each M > 0, the monotone convergence theorem implies

m∑
i=0

λ̄idi −
∫ ∞

0

eµ̄(x)dx ≥ V(d).(15)

Lastly, we prove primal attainment. The (CQ) holds, and hence the supremum
on the right of (12) is finite, and moreover the previous analysis shows that there
exists λ̄ which attains this supremum. It remains to show that the dual function

D(λ) :=

m∑
i=0

λidi −
∫ ∞

0

eµ(x) dx

is differentiable at λ = λ̄. To this end, we note that by (15),∫ ∞

km

eµ̄(x) dx < ∞.

Since for x > km, µ̄(x) = λ̄0 + x
∑m

i=1 λ̄i − ∑m
i=1 kiλ̄i, we must have

∑m
i=1 λ̄i < 0,

and hence D(λ) is differentiable at λ = λ̄. Thus

dk =

∫ ∞

0

ck(x) e
µ̄(x),

p̄(x) := eµ̄(x) is feasible for the primal problem, and

Ih(eµ̄(x)) =

m∑
k=0

λ̄k dk −
∫ ∞

0

eµ̄(x)dx.

Since equality holds in (12), eµ̄(x) must indeed be the MES. The uniqueness follows
from the strict convexity of the entropy (see, for example, [3]).

In the following sections we complement Corollary 1 and Theorem 2 by giving an
explicit characterization of the (CQ) for our problem (P), and by computing the dual
function D explicitly in a form with no integrals.
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4. The CQ. In Proposition 2 below, we give an explicit form of the CQ for
problem (P), first for I = [0,∞) and then for I = [0,K]. We shall need the following
simply lemma, whose proof is left as an exercise.

Lemma 1. Let I = [0,∞) and ϕ(x) := [ATλ](x) = λ0+λ1c1(x)+ · · ·+λmcm(x).
The following conditions are equivalent:

(a) for all p s.t. Ih(p) is finite and Ap ∈ R
m+1, we have 〈λ,Ap〉 ≥ 0;

(b) ϕ(x) ≥ 0 for all x ∈ R+;
(c) Mλ ≥ 0 (componentwise), where

M :=




1
1 k2 − k1

...
...

. . .

1 km − k1 · · · km − km−1

0 1 · · · 1 1


 .

If A is an (m×n)-matrix and KA is the convex cone defined by KA := {x ∈ R
n |

Ax ≥ 0}, one may easily verify that for the dual cone K+
A , we have

K+
A :=

{
y ∈ R

n
∣∣ 〈y , x

〉 ≥ 0 ∀x ∈ KA

}
= AT

R
m
+ ,

where AT denotes the adjoint of A (for example, see [3]).
Proposition 2. Let I = [0,∞) and m > 2. Then (1, d1, . . . , dm) satisfies the

CQ (11) for (P) if and only if (d1, . . . , dm)
T satisfies

dm > 0, N−1B(d1, . . . , dm)
T > 0, and 〈N−1B(d1, . . . , dm)

T ,u〉 < 1,

in which u is the vector of appropriate dimension whose components are all equal to 1,
and N and B are, respectively, the (m−1)× (m−1)- and (m−1)×m-matrices given
by

N :=



k2 − k1 · · · km − k1

. . .
...

km − km−1


 , B :=



1 −1

. . .
...

1 −1


 .

Proof. We denote by cl the closure of a subset of R
n. A classical separation

argument shows that the vector d′ ∈ R
1+m does not belong to the closed convex set

clA if and only if there exists λ ∈ R
1+m such that

(α) 〈λ,d′〉 < 0, and
(β) 〈λ, ξ〉 ≥ 0 for all ξ ∈ clA.

Clearly, clA can be replaced by A in condition (β), which can thus be rewritten as
(β′) 〈ATλ, p〉 ≥ 0 for all p s.t. Ih(p) is finite and Ap ∈ R

m+1.
But from Lemma 1, the latter condition is equivalent to Mλ ≥ 0. In other words,
we have shown that d′ ∈ clA if and only if for all λ ∈ R

1+m, either 〈λ,d′〉 ≥ 0 or
Mλ �≥ 0.

Let us define CM =
{
λ ∈ R

1+m|Mλ ≥ 0
}
. We have

clA =
{
d′ ∣∣ ∀λ, Mλ �≥ 0 or

〈
λ , d′ 〉 ≥ 0

}
=
{
d′ ∣∣ ∀λ, λ �∈ CM or

〈
λ , d′ 〉 ≥ 0

}
=
{
d′ ∣∣ ∀λ ∈ CM ,

〈
λ , d′ 〉 ≥ 0

}
= C+

M .
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By the previously mentioned characterization of C+
M as well as by standard properties

of the relative interior of convex sets (see [17], section 6), we obtain

riA = ri clA = riMT
R

1+m
+ =MT riR1+m

+ =MT (0,∞)1+m.

Consequently, (1, d1, . . . , dm) belongs to riA if and only if


1 = ξ0 + ξ1 + · · · + ξm−1

d1 = (k2 − k1)ξ1 + · · · + (km − k1)ξm−1 + ξm

...

dm−1 = (km − km−1)ξm−1 + ξm

dm = ξm

for some ξ > 0. By subtracting the last line from lines 2, . . . ,m − 1 in the above
system, we see that (1, d1, . . . , dm) ∈ riA dom Ih if and only if

dm > 0, N−1B(d1, . . . , dm)
T > 0, and 〈N−1B(d1, . . . , dm)

T ,u〉 < 1.

Notice that N is invertible since km > · · · > k1 by assumption.
For the case of bounded I = [0,K], one can show Proposition 2 holds with the

one modification of replacing B by

BK :=



1 − K − k1

K − km
. . .

...

1 −K − km−1

K − km


 .

The proof of this is similar to that of Proposition 2.

5. Maximizing the dual function. Recall from Corollary 1 that under the
CQ (8), the optimal value of (P) is equal to the optimal value of the dual problem

(D) max

{
D(λ0,λ) := λ0 +

m∑
i=1

λidi − I
h

(
A

T (λ0,λ
)
)

∣∣∣∣∣ (λ0,λ) ∈ R
1+m

}
.

The formal adjoint A
T of A is readily computed as

A
T ((λ0,λ)) =

〈
(λ0,λ) , (1, c(·))

〉
.

By Proposition 1, we have

I
h

(
A

T (λ0,λ)
)
=

∫
I

h
(
λ0 + 〈λ, c(x)〉) dx

= expλ0 ×
∫ K

0

exp

[
m∑
i=1

λi(x− ki)
+

]
dx

= expλ0 ×
m∑
j=1

∫ kj+1

kj

exp

[(
j∑

i=1

λi

)
x−

j∑
i=1

λiki

]
dt

= expλ0 ×
m∑
j=1

(
exp(−νj)

expµjkj+1 − expµjkj
µj

)
,(16)
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in which km+1 := K, νj :=
∑j

i=1 λiki, and µj :=
∑j

i=1 λi. The expression
µ−1
j (expµjkj+1 − expµjkj) is understood to be kj+1 − kj when µj = 0.
For the case I = [0,∞), Theorem 2 directly gave rise to the same dual function

(with the integration carried out over the entire half line). In this case we have∫∞
0

eµ(x) equal to (16) with km+1 := +∞ and the understanding that exp(−∞) is
equal to zero.

We remark that e−λ0 can be taken to be

Z(λ) :=

∫ ∞

0

exp

[
m∑
i=1

λi(x− ki)
+

]
dx,

and hence the dual function to be maximized can be written in terms of λ = (λ1, . . . , λm)
as

logZ(λ)−
m∑
i=1

λidi.(17)

In particular, the MES is indeed a probability distribution and has the form

1

Z(λ)
e
∑m

i=1 λici(x),

with λi maximizing (17).

6. The value function. The value (or objective) function associated with prob-
lem (P) is defined for d = (1, d1, . . . , dm) by

V(d) := inf {Ih(p) ∣∣ d = Ap
}
.

While it is known that the value function is continuous on the interior of the CQ set,
it is not in general on its closure. It turns out that if V is lower semicontinuous on its
domain (the set of all feasible data), then there is no duality gap, i.e., (9) and (12)
hold whenever the left-hand side is finite.

We will prove V is lower semicontinuous on its domain for the case I = [0,∞).
The proof for bounded I follows verbatim from the first part of the proof. Our proof
of lower semicontinuity only requires the entropy functional (over a bounded domain)
to have weakly compact level sets. The following result from [7] (Theorem 3.8) implies
that our proof holds not just for h but also for any entropy whose convex conjugate
is everywhere finite and differentiable.

Lemma 2. Let I be bounded and let φ : R → R̄ be such that φ∗ is everywhere
finite and differentiable; then

Iφ(p) =

∫
I

φ(p(x)) dx

(i) is strictly convex, (ii) has weakly compact level sets in L1(I), and (iii) pn → p in
L1(I) whenever Iφ(pn)→ Iφ(p) and pn → p weakly in L1(I).

We will also need the following useful lemma, which explicitly gives the MES for
the case of two constraints.
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Lemma 3. The two-constraint problem,2 i.e.,∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize Ih(p) :=
∫ ∞

0

h
(
p(x)

)
dx

s.t. d0 =

∫ ∞

0

p(x) dx,

d1 =

∫ ∞

0

x p(x) dx,

has the explicit solution

p̂(x) =
d2
0

d1
e−(d0/d1)x.

Proof of Lemma 3. Let λ0 = log
d2
0

d1
and λ1 = −d0

d1
. One readily checks that p̂(x)

is feasible (satisfies the two constraints), and Ih(p̂) = d0 log d
2
0/d1−2d0. On the other

hand,

D(λ0, λ1) = λ0d0 + λ1 d1 −
∫ ∞

0

eλ0+λ1x dx = d0 log d
2
0/d1 − 2d0.

The result follows by (12)—in fact, the result would follow simply from weak duality,
i.e., (12) with equality replaced by ≥, which always holds true.

Theorem 3. The value function V is lower semicontinuous on its domain.
Proof. The basis for our proof lies in the fact that the particular structure of the

constraint functions allows us to rewrite all but the first two constraints as integrals
over a finite domain. To this end, observe that for j = 2, . . . ,m, we have

dj =

∫ ∞

kj

(x− kj)p(x) dx

=

∫ ∞

0

xp(x) dx− kj

∫ ∞

0

p(x) dx+

∫ kj

0

(kj − x)p(x) dx(18)

= d1 − kj +

∫ kj

0

(kj − x)p(x) dx.

Consequently, all constraints corresponding to j > 1 can be rewritten as∫ M

0

(kj − x)+p(x) dx = δj := dj − d1 + kj ,

where M is any constant greater than or equal to km.

With this in hand, suppose d,d(n) ∈ domV (d0 = d
(n)
0 = 1) with d(n) → d and

for some constant C, V(d(n)) ≤ C for all n. We prove that V(d) ≤ C. To this end,
pick a sequence p(n) such that Ap(n) = d(n) and Ih(p(n)) ≤ C + 2−n. Fix M > km
and define

d
(n)
M,0 =

∫ M

0

p(n)(x) dx and d
(n)
M,1 =

∫ M

0

x p(n)(x) dx.

2This constrained problem is used as a tool in our analysis. In the context of options, not only
would d0 = 1, but d1 would also be predetermined by the risk-free interest rate.
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Then 1 = d
(n)
M,0 + ε

(n)
M,0 and d

(n)
1 = d

(n)
M,1 + ε

(n)
M,1, where

ε
(n)
M,0 =

∫ ∞

M

p(n)(x) dx and ε
(n)
M,1 =

∫ ∞

M

x p(n)(x) dx.

Clearly, 0 ≤ d
(n)
M,0 ≤ 1 and 0 ≤ d

(n)
M,1 ≤ d

(n)
1 → d1, so we have, up to taking a

subsequence (not relabeled), that d
(n)
M,0 tends to some dM,0 and d

(n)
M,1 tends to some

dM,1. Then ε
(n)
M,0 → εM,0 := 1− dM,0 and ε

(n)
M,1 → εM,1 := d1 − dM,1.

Assume for the moment that for some constant c,∫ M

0

h(p(n)(x)) dx < c.(19)

Since h is everywhere finite and differentiable, Lemma 2 implies that there exists a
subsequence (not relabeled) such that p(n) weakly converges to some pM on [0,M ].
Furthermore, pM satisfies∫ M

0

(kj − x)+ pM (x) dx = δj , j > 1,

∫ M

0

pM (x) dx = dM,0 ≤ 1,

∫ M

0

x pM (x) dx = dM,1 ≤ d1.

We note that either
(a) dM,0 < 1 and dM,1 < d1, or
(b) dM,0 = 1 and dM,1 = d1.
For case (a), we consider the two-constraint problem∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize Ih(p̃) :=
∫ ∞

M

h
(
p̃(x)

)
dx

s.t. ε
(n)
M,0 =

∫ ∞

M

p̃(x) dx,

ε
(n)
M,1 =

∫ ∞

M

x p̃(x) dx.

By Lemma 3, this has an explicit solution

p̃(n)(x) =
(ε

(n)
M,0)

2

ε
(n)
M,1 −Mε

(n)
M,0

e
− ε

(n)
M,0

ε
(n)
M,1−Mε

(n)
M,0

(x−M)

.

Note that on [M,∞) the entropy of p̃(n) is

ε
(n)
M,0 log

(
(ε

(n)
M,0)

2

ε
(n)
M,1 −Mε

(n)
M,0

)
− 2ε

(n)
M,0,(20)

which, since ε
(n)
M,0, ε

(n)
M,1 are bounded, is bounded below. Moreover, p̃

(n)(x) converges
pointwise to
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p̃(x) :=
ε2
M,0

εM,1 −MεM,0
e
− εM,0

εM,1−MεM,0
(x−M)

.

Note that for case (a), εM,1 − MεM,0 > 0. Define p̂ to be pM on [0,M ] and p̃ on
[M,∞). Then p̂ is feasible for d, and by taking a subsequence (not relabeled) of p(n),
we have

Ih(p̂) =
∫ M

0

h(pM )dx+

∫ ∞

M

h(p̃)dx

≤
∫ M

0

h(p(n))dx+

∫ ∞

M

h(p̃(n))dx+ 2−n

≤
∫ ∞

0

h(p(n)) + 2−n ≤ C + 2−n + 2−n.

Above we used the weak lower semicontinuity of Ih on [0,M ] in the first inequality,
and the fact that p̃(n) was optimal with respect to its constraints on [M,∞) in the
second inequality. Letting n → ∞ gives V(d) ≤ C.

In case (b), pM (extended to be 0 on [M,∞)) is feasible for d. We have p(n) → 0 in
L1 on [M,∞), but since we do not know that Ih is lower semicontinuous on the infinite
domain, we cannot immediately conclude anything about the limit of

∫∞
M

h(p(n)). It

suffices to prove that the liminf
∫∞
M

h(p(n)) = A, with A for some finite A ≥ 0. Then,
by weak lower semicontinuity of Ih on [0,M ], we may pick a subsequence to find

V(d) ≤ Ih(pM ) ≤
∫ M

0

h(pM ) dx + A ≤
∫ ∞

0

h(p(n))dx + 2−n ≤ C + 2−n+1.

To this end, we note that since Ih(p(n)) < C+2−n and
∫M

0
h(p(n)) is bounded below,

liminf
∫∞
M

h(p(n)) cannot be +∞. Moreover, since both ε
(n)
M,0 and ε

(n)
M,1 tend to 0, the

liminf of the entropies of the optimal p̃(n) (i.e., (20)) is greater than or equal to zero.
Since p(n) restricted to [M,∞) always has greater entropy than p̃(n), liminf

∫∞
M

h(p(n))
is some finite number A ≥ 0.

Finally we address assumption (19). Suppose this did not hold; then (up to taking
a subsequence) the entropy of p(n) on [M,∞) would have to approach −∞. But this is
impossible since we have shown above that the optimal (lowest entropy) distribution
on [M,∞), over constraints for which p(n) restricted to [M,∞) is admissible, has
entropy bounded below.

Corollary 2. Equality holds in (9) and (12) whenever the left-hand side is
finite.

Proof. See [18].

7. Remark. We briefly comment on the presence of a prior distribution. For a
fixed distribution q (i.e., q ∈ L1(I),

∫
I
q(x) dx = 1), consider

(Pq)

∣∣∣∣∣∣∣∣∣
minimize

∫
I

p(x) log

(
p(x)

q(x)

)
dx

s.t. 1 =

∫
I

p(x) dx and dj =

∫
I

cj(x)p(x) dx.

Here we minimize the “entropic” distance to a prior distribution q(x). This gives a
more realistic approach to recovering the price distribution, as our previous model
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is based upon the assumption that the only a priori guess for p(x) is uniform. In
practice, one may have a priori information that the unknown distribution could be,
say, log-normal.

For the analysis to carry over, we require q to be bounded away from zero at
x = 0. Particularly, we would require

e−ax < q(x) < ebx a.e. for some positive constants a, b.

This assumption may seem rather odd but it is simply a consequence of the structure
of MESs. Note, for example, that the MES is never zero when x = 0 regardless of the
moment constraints.

The main modification in the results would be that the measure dx in the dual
function D is replaced with q(x)dx, with the corresponding adjustment in the closed
form of the primal solution. Note that this would prevent one from carrying out the
integration performed in (16) for an explicit representation. In this way, the uniform
prior is rather special.
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