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GEOMETRIC SELF-ASSEMBLY OF RIGID SHAPES: A SIMPLE
VORONOI APPROACH∗

LISA J. LARSSON† , RUSTUM CHOKSI‡ , AND JEAN-CHRISTOPHE NAVE‡

Abstract. Self-assembly of shapes from spheres to nonsmooth and possibly nonconvex shapes
is pervasive throughout the sciences. These arrangements arise in biology for animal flocking and
herding, in condensed matter physics with molecular and nano self-assembly, and in control theory
for coordinated motion problems. While idealizing these often nonconvex objects as points or spheres
aids in analysis, the effects of shape curvature and convexity are often dramatic, especially for short-
range interactions. In this paper, we develop a general-purpose model for arranging rigid shapes in
Euclidean domains and on flat tori. The shapes are arranged optimally with respect to minimization
of a geometric Voronoi-based cost function which generalizes the notion of a centroidal Voronoi
tessellation from point sources to general rigid shapes. Building upon our previous work in [L. J.
Larsson, R. Choksi, and J.-C. Nave, SIAM J. Sci. Comput., 36 (2014), pp. A792–A827], we present an
efficient and fast algorithm for the minimization of this nonlocal, albeit finite-dimensional variational
problem. The algorithm applies in any space dimension and can be used to generate self-assemblies
of any collection of nonconvex, piecewise smooth shapes. We also provide a result which supports
the intuition that self-assembled shapes should be centered in and aligned with their Voronoi regions.
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lation (CVT), distance functions, energy minimization, L-BFGS quasi-Newton method, Wasserstein
distance, generalized Lloyd’s method
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1. Introduction. Self-assembly, a process whereby a disordered system of com-
ponents forms an organized, structured pattern solely as a consequence of particle
interactions, is both ubiquitous in nature and important for the synthesis of designer
materials. Self-assembly of structures is observed across the entire spectrum of length
scales [67], from the microscopic to the macroscopic. Examples include molecular self-
assembly [68], self-assemblies of nano particles [31, 32] (in particular, block copolymers
[5, 28]), animal flocking, swarming, and herding [16, 17], and problems concerning the
control of coordinated motion [2]. Models for such self-assemblies can be based on
molecular dynamics [63], statistical physics [37], or variational problems with com-
peting interactions [6, 56].

Many of these models are based upon short- and long-range interactions among
the particle elements, and these interactions result in a propensity for structures to
rearrange themselves subject to the confinements of the physical domain. The precise
nature of the rearrangement is dictated by both the form of the interactions (e.g.,
Coulombic) and the geometric characteristics of the physical domain. Regardless
of whether the interactions are modeled variationally or dynamically, the associated
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nonlocal problems are analytically and computationally challenging and range from
classical and quantum N -body problems to variational aspects of crystallization [7].

In this article we consider a simplified, finite-dimensional model for self-assembly
of a finite number of rigid shapes. The interactions in our nonlocal model are all
implicitly described via the distance functions and Voronoi regions of the shapes.
If the shapes were points, then a standard, geometric approach would be to arrange
them so that they form a centroidal Voronoi tessellation (cf. [23, 24]). Such centroidal
Voronoi tessellations (CVTs) have a variational framework, and our model can be
viewed as the generalization to rigid shapes. As with the CVT functional for points,
our model favors a certain “centering” of the rigid shape within its Voronoi region.
Specifically, we consider a given finite collection of shapes Si in a convex, bounded
domain Ω ⊂ RN . These shapes, which can be thought of as compact submanifolds
of codimension 1, . . . , N , can be moved by translation or rotation. The model is
based on minimization of a geometric cost functional (energy), defined in (2.1), with
respect to translation and rotation parameters. We refer to any critical point of the
functional as an optimal arrangement (cf. Figure 1.1) and associate our notion of
“self-assembly” with gradient descent. While the model can naturally be viewed as
the generalization of CVT for shapes, it can also be directly motivated (cf. section 7)
via shape interactions involving the 2-Wasserstein metric. Wasserstein metrics are
widely used in the active field of optimal transport [66] and have recently appeared
in models for pattern formation [8, 9].
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Fig. 1.1. Left: Initial configuration of circles. Right: An optimal arrangement where the circles
are arranged according to the cost functional (2.1). The distance to the closest circle is shown in
gray.

The primary goal of this paper is to study this finite-dimensional, nonlocal vari-
ational model by designing an efficient algorithm for its minimization. We also show
how the model lends itself to a generalization of the celebrated Lloyd’s method for
point CVTs. As mentioned above, our model is a natural extension of the standard
variational approach to CVT for points and is valid in any space dimension. Previous
work has extended the CVT problem for line segments and other simple shapes with
explicit distance functions [48, 57]. Our work is the first to consider the variational
problem for general shapes in arbitrary dimensions and to show how its nonlocal
structure is amenable to a flexible, fast algorithm for direct energy minimization.

2. The model. Consider arranging n shapes in a bounded, N -dimensional con-
vex domain Ω. We assume that there is some continuous probability density function
over our domain, ρ ∈ L1(Ω). Areas of high density will cause shapes to cluster. We
will denote the shapes by S1, . . . , Sn. Although many of the concepts presented here
are well-defined for general subsets of Ω, we will assume throughout that the shapes
Si are piecewise-smooth compact manifolds embedded in Ω of codimension between 1
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and N , inclusive. For instance, in R2, the shapes can be points and curves, and in R3,
they can be points, curves, and surfaces. The Voronoi (or generalized Voronoi) region
corresponding to shape Si is the region of Ω that is closer to shape Si than to any other
shape. In order to achieve disjoint regions which partition Ω, we need a tie-breaking
rule for points which are equidistant to two or more generators. Hence define

Vi :=

{
x ∈ Ω

∣∣∣∣ d(x, Si) < d(x, Sj) ∀j 6= i

} ⋃ {
x ∈ Ω

∣∣∣∣ d(x, Si) = d(x, Sj) i < j

}
,

where d(x, Si) := infy∈Si |x− y|, the Euclidean distance from x to the closest point
in the set Si.

To model the rigid motion of the shapes, we parameterize each shape by its
centroid and angles of rotation. We can then define our cost function in terms of
this parametrization and study how it behaves under translations and rotations. Let
xi be the N × 1-dimensional vector describing the centroid of shape Si, and αi the(
N
2

)
×1-dimensional vector of angles that describe the rotation of Si about its center of

mass. Moreover, let X denote the vector of stacked center locations for all n shapes,

and α the vector of stacked angles, while x
(k)
i denotes the kth component of the

translation vector for Si, and similarly for α
(k)
i . We denote the associated placement

of shape Si in space as given by Si(xi,αi). We define the cost function that returns
low values when the shapes are “well centered” within their Voronoi regions: Given
a fixed integer p ≥ 1 and letting (X,α) = (x1, . . . ,xn,α1, . . . ,αn) be such that each
Si(xi,αi) ⊂ Ω, we define the arrangement energy (or cost) of S1, . . . , Sn by

(2.1) F (X,α) :=

n∑
i=1

∫
Vi

dp
(
y, Si(xi,αi)

)
ρ(y) dy.

Note here that each Vi depends not only on the the parameters xi and αi, but also
on the parameters of all neighboring Voronoi regions, xj and αj . This energy can be
written without explicit mention of the Voronoi regions as

F (X,α) =

∫
Ω

dp
(
y,

n⋃
i=1

Si(xi,αi)
)
ρ(y) dy.

We choose the form (2.1), as it both provides the right motivation and interpretation
of the energy and, moreover, is directly linked to the analysis and computation of the
associated variational problem (2.2).

When the shapes Si are points and p is taken to be 2, criticality of the energy with
respect to perturbations of X leads to the following geometric criterion: The points
should be at the centroids of the Voronoi regions they generate [23]. Such a critical
collection of points gives rise to what is known as a centroidal Voronoi tessellation
(CVT) of the domain Ω (illustrated in Figure 2.1). This geometric characterization
of critical points of the energy leads to a simple iterative algorithm for computing
minimizers known as Lloyd’s method [47, 23]. It is based upon an iterated step:
project each point to the center of mass of its Voronoi region and then recompute the
Voronoi regions for the new point set. The optimal arrangement is obtained at a fixed
point of this projection. The globally optimal point configuration in R2 gives rise to
regular hexagonal Voronoi regions [27, 53]; in R3, the dual of the body-centered cubic
lattice has been shown numerically to give the lowest arrangement cost [25].

We now postulate a self-assembly of shapes Si in Ω by minimizing F over all
(X,α) such that Si(xi,αi) ⊂ Ω, i = 1, . . . , n. We call S1(x1,α1), . . . , Sn(xn,αn) an
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Fig. 2.1. Left: The Voronoi diagram (or Voronoi tessellation) associated with a collection of
points. Right: An arrangement of points which generated a centroidal Voronoi tessellation.

optimal assembly (or arrangement) if the parameterization (X,α) lies at a critical
point of the arrangement cost F . It is a ground state assembly (or arrangement) if
the arrangement cost F is at its global minimum. Such a minimizer exists due to the
continuity of the cost function F (cf. the supplementary material).

For any fixed collection of shapes Si, the variational problem

(2.2) min
(X,α)

F (X,α)

is finite-dimensional. Two central issues prevail:
First, to treat this energy either analytically or numerically, we must integrate

over the a priori unknown Voronoi regions Vi. Unlike with the case of point generators,
the Voronoi regions Vi and the associated generalized Voronoi diagram

∪i 6=j
(
Vi ∩ Vj

)
= ∪i 6=j (∂Vi ∩ ∂Vj)

are not simple polygons. Here Vi and ∂Vi denote the closure and boundary of the
set Vi, respectively. These regions do not have to be convex or simply connected.
Numerically finding these regions explicitly, and then integrating over them, is com-
putationally costly (cf. [44]). On the other hand, simple geometric algorithms like
Lloyd’s method for points [23] do not directly carry over for general shapes.

Second, even with the simple case of points, and after modding out symmetries,
the energy landscape of F is highly nonconvex with many local minimizers. This leads
to the important question of how one accesses low-energy self-assemblies, bypassing
energy barriers.

To address the first point, we make the key observation that in order to pursue gra-
dient descent or quasi-Newton iteration for the minimization of F , one does not need
to find (resolve) the Voronoi regions Vi explicitly but rather simply evaluate integrals
of certain functions over the Vi. In our previous paper [44], we presented an indirect
fast iterative integration algorithm to evaluate such integrals over the Voronoi regions,
which bypasses the explicit calculation of the Voronoi regions. Rather, it relied on
the iteration of a Markov kernel operator until the input density is accumulated in a
neighborhood of the generators. This approach transforms the problem completely:
instead of integrating a density over a priori unknown regions, we evolve the input
density to be able to integrate over known regions. As we show in section 4, this cru-
cial step will enable us to produce an efficient and fast algorithm to simulate optimal
arrangements via the minimization of F . Although algorithms exist for certain shape
ansatzes, for example, [35], as far as we know this is the first work to present and
implement an efficient algorithm to generate optimal arrangements of general shapes
in two and three space dimensions.
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In section 6, we use the model to address the analogue of Lloyd’s method for
shapes by incorporating higher order moments of the generalized Voronoi regions.
In section 7, we note how the model can be conveniently rephrased in terms of the
Wasserstein distance from optimal transport. We discuss some applications of the
model and our algorithm in section 8.

3. The arrangement energy and its derivatives. When the shape Si un-
dergoes a translation or rotation, its Voronoi region will change. In this way, the
arrangement cost function is a nonlinear function of the parametrization, as both the
integrand and the domain of integration depend on (X,α). Rigidly perturbing Si will
not only change the Voronoi region Vi, but will in fact change all neighboring Voronoi
regions as well.

First we note that the energy F is a continuous function of its arguments (X,α) ∈
RNn × RN∗n, where N∗ =

(
N
2

)
= N(N−1)

2 (cf. the supplementary material). Hence a
minimum of F must exist. Specifically, the continuity of F immediately implies the
following.

Theorem 3.1. Suppose Ω ⊂ RN is either a bounded convex domain or a flat com-
pact torus, and ρ ∈ L1(Ω). Let the generators S1, . . . , Sn, n < ∞, be parameterized
by X and α. Then a minimizer (X∗,α∗) of the energy F over all (X,α) such that
Si(xi,αi) ⊂ Ω, i = 1, . . . , n, exists.

Our approach to the minimization of F will be based upon gradient descent.
In this section, we compute the necessary partial derivatives of the energy. It is
convenient here to make some assumptions on the generating shapes Si. Let us assume
that the Si are boundaries of simply connected domains in Ω which are Lipschitz and
in fact piecewise C1. It is not hard to see the boundaries of the Voronoi regions Vi will
then also be Lipschitz and piecewise C1. Indeed, the boundary of each Vi consists
of a finite number of pieces which are the zero level set of the difference of two
distance functions: φi, the distance to Si, and φj , the distance to some neighboring
generator Sj .

To compute partial derivatives of the energy,

F (X,α) =

n∑
i=1

∫
Vi

dp
(
y, Si(X,α)

)
ρ(y) dy,

let us focus on the partial derivative with respect to x
(k)
i , where k = 1, . . . , N denotes

the kth component of xi. Note that with the other xj (j 6= i) fixed, the only de-

pendence of F on x
(k)
i comes from the integrals over Vi and the neighboring Voronoi

regions. Let Ni denote the indices of the shapes that are neighbors to Si. Note that

the dependence on x
(k)
i in the integral over Vi comes in the integrand and the region

of integration, while for the neighboring Vj , j ∈ Ni, it is only through the regions of
integration. In the appendix (cf. the supplementary material), we show that we have
sufficient regularity to invoke the Reynolds’ transport theorem. In doing so, we find

∂F

∂x
(k)
i

=

∫
∂Vi

dp(y, Si)

(
∂y

∂x
(k)
i

· n

)
ρ(y) dS(3.1)

+

∫
Vi

∂

∂x
(k)
i

dp(y, Si) ρ(y) dy

+
∑
j∈Ni

∫
∂Vi∩∂Vj

dp(y, Sj)

(
∂y

∂x
(k)
i

· (−n)

)
ρ(y) dS,(3.2)
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where n denotes the outer normal to Vi and dS denotes the surface measure. By
definition, d(y, Si) = d(y, Sj) for y ∈ ∂Vi ∩ ∂Vj , and ∪j∈Ni

(∂Vi ∩ ∂Vj) = ∂Vi, so the
boundary terms (3.1) and (3.2) are equal and opposite. Thus we have

(3.3)
∂F

∂x
(k)
i

=

∫
Vi

∂

∂x
(k)
i

dp(y, Si) ρ(y) dy.

On the other hand, it is useful to have expressions for both n and the derivatives
∂y

∂x
(k)
i

. To this end, note that any point along ∂Vi ∩ ∂Vj belongs to the set

{y
∣∣ d(y, Si)− d(y, Sj) = 0},

and hence the unit outward normal to Vi for y ∈ ∂Vi ∩ ∂Vj can be expressed as

n =
∇d(y, Si)−∇d(y, Sj)

|∇d(y, Si)−∇d(y, Sj)|
.

For any y ∈ ∂Vi ∩ ∂Vj , direct calculation shows that

∂y

∂x
(k)
i

=
1

∇d(y, Si)−∇d(y, Sj)

∂

∂y(k)
d(y, Si).

The derivative of F with respect to α
(l)
i is computed as

(3.4)
∂F

∂α
(l)
i

=

∫
Vi

∂

∂α
(l)
i

dp(y, Si)ρ(y) dy.

In these first derivative calculations the flux (boundary) terms vanished. Hence they
consist only of bulk integrals over the Voronoi regions which can be efficiently com-
puted via an indirect kernel iteration method, which was presented in [44] and is
discussed here in section 4.2. However, the second derivative calculations do involve
nonvanishing flux integrals which are not taken over the full boundary of the Voronoi
regions. Indeed, we have

∂2F

∂x
(k)
i ∂x

(l)
i

=

∫
∂Vi

∂

∂x
(k)
i

dp(y, Si)

(
∂y

∂x
(l)
i

· n

)
ρ(y) dS+

∫
Vi

∂2

∂x
(k)
i ∂x

(l)
i

dp(y, Si) ρ(y) dy,

and for j ∈ Ni,

(3.5)
∂2F

∂x
(k)
i ∂x

(l)
j

= −
∫
∂Vi∩∂Vj

∂

∂x
(k)
i

dp(y, Si)

(
∂y

∂x
(l)
j

· n

)
ρ(y) dS.

All other entries of the Hessian are zero. By replacing xi with αi and xj with αj
above, the Hessian entries for α can be computed. Simplified formulas in the case
where the Si are points can be found in [36, 46].

To finish calculating the energy derivatives (3.3)–(3.4), it only remains to calculate
the derivatives of the function dp(y, Si). In some cases, this distance function can be
written down and the derivatives explicitly computed. This is the case, for example,
when dealing with lines, spheres, ellipsoids, and points. For all other shapes, however,
the distance function d(y, Si) is not explicitly available. We next describe how the
derivative of the squared distance can be computed in terms of the solution of an
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Eikonal equation. The Eikonal equation is a nonlinear boundary value problem that
solves for the distance from a given zero level set. In particular, given a shape Si, we
solve for φ:

(3.6)

{
|∇φ| = 1 in Ω \ Si,
φ(Si) = 0.

The solution of this boundary value problem gives the minimum distance1 to Si from
any point in Ω, that is, d(y, Si) = φ(y). Using this equality, and noting that rotations
and translations are isometries, we are able to finish calculating the gradient of the cost
function. In RN , the derivatives of the squared distance with respect to translation
can be formulated in terms of the eikonal solution as follows:

(3.7)
∂dp(y, Si)

∂x
(k)
i

= −p φ(y)p−1
( ∂

∂y(k)
φ(y)

)
.

To evaluate the Hessian, the following second derivatives would be necessary:

∂2

∂x
(k)
i ∂x

(l)
i

dp(y, Si) = p (p−1) φp−2(y)

(
∂φ(y)

∂y(k)

)(
∂φ(y)

∂y(l)

)
+ p φp−1(y)

(
∂2φ(y)

∂y(k)∂y(l)

)
.

In R2, the derivative with respect to rotation is

(3.8)
∂dp(y, Si)

∂αi
= p φ(y)p−1

(
∇φ(y) ·

(
y(2)

−y(1)

))
.

Similarly, the derivatives of the squared distance with respect to rotations in R3 are
given by

(3.9)
∂dp(y, Si)

∂αi
= p φ(y)p−1

 0 −y(3) y(2)

y(3) 0 −y(1)

−y(2) y(1) 0

∇φ(y).

4. Direct energy minimization. For the case of points, there is a simple geo-
metric consequence of criticality of the energy, which leads to Lloyd’s method. For
general shapes, such a characterization is not so straightforward (cf. section 6). More-
over, Lloyd-type algorithms converge only linearly. Hence, in this section we proceed
with direct energy minimization via a quasi-Newton method. While at first sight this
might seem straightforward for this finite-dimensional problem, it presents certain
challenges, which we now summarize.

First, we must compute the level set (distance) function for the generators if an
explicit formula does not exist.

Next, the integrals associated with these gradients are defined over a priori un-
known sets (Voronoi regions). Regardless of an explicit or numerically generated
computation of the integrands in the first-order gradients, these integrals are defined
over a priori unknown sets. To first resolve these regions at every step and then
integrate is computationally intensive. Luckily, these a priori unknown sets do not
need to be computed explicitly: rather, one only needs a quick and efficient way of

1In the literature, often the signed distance function is considered. Note that the solution to
(3.6) gives the unsigned distance function.
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computing integrals over the Voronoi regions, and such a method is the centerpiece of
our earlier work [44]. For completeness, we describe this method below in section 4.2.

Finally, while our indirect integration algorithm will allow us to quickly com-
pute gradients, the second derivatives include flux integrals over certain parts of the
boundary of the Voronoi regions. Hessian calculations are thus costly, and quasi-
Newton methods are preferable over direct Newton methods. To this end, we invoke
the limited memory BFGS method (L-BFGS) described below in section 4.3.

4.1. Computation of the distance function. The integrands of the arrange-

ment cost derivatives ∂F/∂x
(k)
i and ∂F/∂α

(l)
i are given in terms of the distance func-

tion d(y, Si) and its derivatives (see (3.3)–(3.4) and (3.7)–(3.9)). The minimal distance
function to a shape is only given explicitly in very special cases. Computationally, the
function d(y, Si) can be obtained as the solution of the eikonal equation (3.6). To ob-
tain d(y,∪ni=1Si), the distance from any point y in the domain Ω to the closest point
on any shape, one can simply solve the eikonal equation with boundary condition
φ(∪ni=1Si) = 0.

To solve the eikonal equation numerically, a fast marching method (FMM) [61, 58]
or a fast sweeping method (FSM) [69, 64] can be used. Whereas the FMM uses the
characteristics of the nonlinear eikonal equation explicitly, the FSM leverages the fact
that the upwind finite difference scheme ensures information propagates correctly
along characteristics to obtain a slightly better overall complexity. An FSM iterates
through all the grid points in alternating directions, updating the solution at each
point as the minimum of the current and previous solution values. After a number of
these “sweeps,” a stable solution is obtained. The complexity of this algorithm given
m grid points is O(m). For the numerical results generated in this paper, a first-order
FSM was used.

The gradient of the solution to the eikonal equation can be computed using upwind
finite differences, and one-sided finite differences at the boundary of the domain. To
ensure the correct derivative is taken near the shocks (the nonsmooth points of the
distance function), we take the largest of the two possible one-sided differences (in
absolute value).

4.2. Integration over Voronoi regions: The indirect iterative approach.
Obtaining an optimal placement of shapes reduces to efficient and accurate integration
over generalized Voronoi regions. As we mentioned in [44], this problem is nontrivial,
and a direct approach whereby one first computes the Voronoi regions is computation-
ally costly. Rather, in [44] we present and analyze an algorithm to integrate directly,
without explicitly calculating the generalized Voronoi diagram. Let us recap the es-
sential features and order of our algorithm. Given a collection of shapes Si which are
distributed in Ω (we suppress here the argument (xi,αi) for Si) and some function
f(y) defined on Ω, our goal is to compute the integral

(4.1)

∫
Vi

f(y) dy

without first computing Vi, the Voronoi region of Si. The algorithm is based upon
the following four steps:

(i) Using an FSM [69], solve the eikonal equation for φ : Ω → R, with boundary
condition φ(∪ni=1Si) = 0 (see (3.6)).

(ii) With the eikonal solution φ, construct a kernel k(x,y) and an operator:

P [f ](x) =

∫
Ω

k(x,y)f(y) dy.
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The operator P moves “mass” (given by f) toward the closest shape. To obtain the
kernel k, first compute

k̃(x,y) :=

{
(φ(x)− φ(y))+ if |x− y| ≤ h,
0 otherwise.

Then k is the normalization of k̃ such that k integrates to one in x. This normalization
preserves the L1 norm of f :

∫
Ω
P [f ](x) dx =

∫
Ω
f(y) dy. See [44] for details.

(iii) Then iterate the operator until the support of Pm[f ](x) is concentrated in
an h-neighborhood of each shape, and integrate over these (a priori known) regions
to obtain solutions to (4.1) for i = 1, . . . , n.

(iv) Numerically, a finite volume method is used to discretize the operator P
based upon a spatial discretization of size h, and a summation along the grid points
closest to each shape Si will yield the solution to (4.1).
This algorithm is a discrete-space analogue of evolving f in the direction of the neg-
ative eikonal gradient. In [44], we analyzed the theoretical and numerical properties
of this algorithm: in particular, we proved the algorithm was first order in h and
presented several convergence results.

4.3. Quasi-Newton methods for CVT energy minimization. To compute
the critical points of the arrangement cost (2.1), we will use nonlinear solvers that

find (X∗,α∗) where the energy gradients are zero. For simplicity, we will use X̃ to
denote the parameter vector (which contains X and α, stacked) in this section. Three
natural algorithms used to find these critical points are gradient descent, Newton’s
method, and quasi-Newton algorithms. Starting at some initial condition X̃(0), gradi-
ent descent takes steps in the direction of the negative gradient and terminates when
the norm of the gradient is sufficiently small. The descent step is

X̃(k+1) = X̃(k) − γ∇F (X̃(k)),

where γ > 0 is a step length chosen using line search algorithms such as the one
proposed in [52]. The advantage of using this method is that it is straightforward to
implement, the disadvantage being that it converges linearly to a critical point.

To achieve quadratic convergence to a critical point, Newton’s method is used.
This method requires not only gradient information but also Hessian information, as
it relies on a locally quadratic approximation to the objective function to find a search
direction. The Newton update is

X̃(k+1) = X̃(k) − γ
(
∇2F (X̃(k))

)−1

∇F (X̃(k)),

where γ ∈ (0, 1) is a step length parameter chosen via a line search algorithm. In the
current optimization problem, we can efficiently compute the cost gradient, but not
the Hessian. The Hessian terms contain surface integrals over the generalized Voronoi
regions, which are costly to compute. Moreover, the Hessian has many nonzero ele-
ments, which can be inefficient to populate.

To obtain superlinear convergence to a critical point while using only gradient
information, quasi-Newton methods have been developed. Quasi-Newton methods use
a secant approximation of the Hessian, which requires only gradient information at

each step. Under the original BFGS method, an initial guess, H(0) ≈
(
∇2F (X̃(0))

)−1
,

of the inverse Hessian of the objective function is specified, and subsequent iterations
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update the inverse Hessian using the inverse BFGS formula [54, 55]. The BFGS
formula for the inverse Hessian is

H(k) =
(
U(k−1)

)>
H(k−1)U(k−1) + ρ(k−1)s(k−1)

(
s(k−1)

)>
,

where

s(k−1) := X̃(k) − X̃(k−1), y(k−1) := G(k) −G(k−1),

ρ(k−1) := 1/

((
y(k−1)

)>
s(k−1)

)
, U(k−1) := I− ρ(k−1)y(k−1)

(
s(k−1)

)>
such that G = ∇F (X̃) is the gradient of the arrangement cost, k is the index the
iteration of the algorithm, and I denotes the identity matrix of dimension n(N +N∗).

A limited memory version of BFGS (L-BFGS) [55] was developed for large-scale
problems that uses only gradient information from M previous steps to calculate the
approximate inverse Hessian. Typically, M is set between 3 and 20 [45]. In the
supplementary videos, gradient descent with a small step size was used to illustrate
the gradient flow of the arrangement energy. To obtain efficient optimal arrangements,
the L-BFGS algorithm was used with the Moré–Thuente line search algorithm [52].

4.4. The full algorithm. To conclude, the energy derivatives from section 3
can be computed using a combination of the FSM [69] and a generalized Voronoi
integration algorithm [44]. These derivatives are used by L-BFGS to iteratively com-
pute search directions that efficiently locate optimal arrangements. We summarize
the full algorithm in the supplementary material, where we also present some results
on convergence and CPU times.

5. Results for shapes in two and three dimensions. Here we present some
results of our algorithm for certain rigid shapes in two and three dimensions. In
all cases the density ρ is taken to be constant (see the supplementary material for
examples with nonuniform densities). We choose to focus on the case p = 2 for direct
comparison with existing results on CVTs. L-BFGS was run with parameter M = 6,
stopping criterion |∇F | ≤ 5 × 10−4, and the Moré–Thuente line search [52]. As we
shall see, this stopping criterion is readily achieved with only a few quasi-Newton
iterations, typically anywhere between 10 and 30. In each iteration, the energy and
energy derivatives were calculated using the integration algorithm in section 4.2 with
uniform grid size, typically h = 1

151 for two dimensions. We present examples for
shapes with explicit distance functions (line segments, circles, spheres). Then we
present examples of general shapes for which a distance function must be computed
via the solution to the eikonal equation (3.6). In all the two-dimensional depictions,
the minimum distance function to the shapes is shown in grayscale in the background
to illustrate the Voronoi regions. We start with a simple test simulation for points.

5.1. A test case: CVT of points. For point generators, an optimal self-
assembly corresponds to a CVT. In this case, it is straightforward to generate the
polygonal Voronoi regions (the Voronoi tessellation), and there are many algorithms2

to compute CVTs. Whereas the computational framework (the eikonal solver of sec-
tion 4.1 and the integration algorithm of section 4.2) is not needed for point generators,

2These range from direct quasi-Newton minimization of the arrangement energy (there called the
CVT energy), the elegant Lloyd’s method (discussed and generalized in section 6), to probabilistic
algorithms, such as MacQueen’s sampling method [49], and later accelerated and parallel versions
[38]. See also [19, 21, 26, 40, 41, 46, 60, 65].
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this setting provides a good test case for our method. In Figure 5.1, we run our algo-
rithm on an initial configuration of points in the unit square and present our resulting
self-assembled configuration together with the centroids of their associated Voronoi
regions. The average distance of these points from the actual Voronoi centroids is
6.50× 10−4 with a standard deviation of 2.73× 10−4.
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Fig. 5.1. Left: Initial configuration of points. Right: Comparison of the final converged self-
assembly of point generators after 16 L-BFGS iterations ( black dots) with the centroids of the
associated Voronoi regions ( gray crosses).

5.2. Circles, lines, and spheres. In this section, results for generators that
have explicit distance functions are presented in R2 and R3. These include lines,
circles, ellipses, spheres, and ellipsoids. See [43] for exact forms of the respective
distance functions and their partial derivatives with respect to position and rotation.
Circles of different size in a square were previously presented in Figure 1.1 with the
initial and the final converged configuration subject to a stopping criterion. It is
natural to ask about the stability of the final configuration in order to verify that
it does indeed represent a local minimizer. Whereas the Hessian involves boundary
integrals over parts of the Voronoi diagram which our method does not seek to resolve,
one can approximate it with finite differences of gradients (the basis for the BFGS
method). To this end, we computed the smallest and largest eigenvalues of the Hessian
to be 0.0028 and 0.0871, respectively. In principle this computation can be done for
any self-assembled arrangement of any shapes to gain numerical support that one has
achieved a local minimizer of (2.1).

Figures 5.2 and 5.3 show a self-assembly for an initial configuration of line seg-
ments and spheres (see the captions for details).

5.3. General shapes. We present the results of several runs using leaves and
animal cartoons of different sizes in two dimensions followed by two three-dimensional
examples. These shapes were chosen as simple and readily available examples—
in terms of their level sets—of nonconvex shapes. Our first example in Figure 5.4
shows an initial configuration of 18 leaves of various sizes and the final converged self-
assembly. A plot of the energy and the energy gradient per iteration is included. Note
here that energy minimization does not prevent shapes from overlapping, and con-
verged assemblies can include nested shapes. Our second example in Figure 5.5 shows
initial configurations for 60 mixed shapes and the final converged self-assemblies. A
three-dimensional example is presented in Figure 5.6, showing nine rabbit-shaped ob-
jects in the unit cube. A video of these initializations and assemblies are provided in
the supplementary material to visualize these assemblies from various angles.
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Fig. 5.2. Left two: Initialization of line segments in R3 and its resulting optimal self-assembly.
Right two: Initialization of 18 spheres in R3 and its resulting optimal self-assembly.

Fig. 5.3. Left: The initialization of spheres in R3. Middle: A constrained optimal self-assembly
wherein the large center sphere is fixed at (0.5, 0.5, 0.5). Right: The unconstrained optimal self-
assembly.
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Fig. 5.4. Top: The initial configuration and the third, fifth, and seventh iterations. Bottom:
The ninth and twelfth iterations, the energy per iteration, and |∇Energy| per iteration (note the
vertical axis has been appropriately scaled).

We make a few concluding remarks concerning these and many other simulations
which were performed using our algorithm (cf. the thesis of Larsson [43]). The al-
gorithm converges quickly (with respect to the number of quasi-Newton iterations)
for any collection of shapes. Initial configurations can include overlapping shapes.
Self-assembled configurations can include nested shapes when sufficient empty space
in Ω is lacking. There is strong evidence that the converged configuration is close to
an optimal arrangement and in fact a local minimizer of the energy. See section 8.1
for a discussion of the energy landscape. Not surprisingly there are many optimal
arrangements depending on the initial configuration of the shapes, and energy barri-
ers are abundant, particularly with respect to rotations. The closer the shapes are,
the less they tend to rotate with each quasi-Newton iteration. Optimal arrangements
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Fig. 5.5. A mixture of 60 shapes. Left: Initialization. Right: Converged self-assembly after
40 L-BFGS iterations.

Fig. 5.6. Left: Initialization of 9 bunnies of various sizes in three dimensions. Right: Assembly
of bunnies.
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Fig. 5.7. Periodic boundary conditions. Left: An initial configuration of ellipses on the torus.
Right: The self-assembled arrangement.

tend to lead to shapes which are both well centered and well oriented in their Voronoi
regions. We explore this tendency in section 6.

We also remark that the model and numerical method can readily accommodate
periodic boundary conditions. To generate results with periodic boundary conditions,
one generator is fixed to break symmetry. To compute the energy gradient, a distance
function with periodic boundary conditions was also obtained using the FSM. This
can be done by updating boundary points in a periodic way and does not increase
the complexity of the algorithm. Then the same first derivatives and optimization
algorithms presented in section 4 can be applied. See Figure 5.7 for one example of a
periodic optimal arrangement.

6. A generalized Lloyd’s approach. Lloyd’s method for point generators
gives a simple geometric characterization of critical points of the energy for the case
of p = 2, and leads to an elegant and simple fixed point algorithm to compute optimal
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arrangements of points. Recall that the generators X give rise to a CVT when they
are at the centers of mass of the Voronoi regions they generate, and for the case of
p = 2, this is equivalent to being a critical point of the energy F . Lloyd’s method is a
fixed point iteration used to arrive at a CVT that successively projects the generators
to the centers of mass of the Voronoi cells, then recomputes the Voronoi regions. More
precisely, Lloyd’s method is a simple iterative method to compute a fixed point of the
following map:

(6.1) Tik

(
x

(k)
i

)
=

∫
Vi
y(k) ρ(y) dy∫
Vi
ρ(y) dy

for k = 1, . . . , N, i = 1, . . . , n.

So in the case p = 2 where the shapes are all points, the energy F is minimized when
the points are at the centroids of their Voronoi regions. Moreover, this is the geometric
criterion that inspired us to use this notion of arrangement energy as the basis for
self-assembly of shapes. Hence it is interesting to ask whether a similar geometric
intuition holds for optimal self-assemblies of shapes. The answer is yes.

Because the distance to a general shape is not a polynomial expression, the ar-
rangement cost function does not immediately lead to a geometric characterization
of the minimizer, as was the case for points. However, one can approximate the
squared geometric distance to a shape with an appropriate second-order polynomial
function which takes into account rotations of the generators. In principle, a whole
family of methods can be derived using higher-order polynomials. For second-order
polynomials the natural geometric object to work with is an ellipsoid. To this end,
let ri, bi, ci be positive constants for i = 1, . . . , n. Define Ai = diag(1, ribi ) in R2 and

Ai = diag(1, ribi ,
ri
ci

) in R3. In RN , Ai is an N × N diagonal matrix, with positive
diagonal entries. The equation of an ellipsoid centered at the origin and aligned with
the axes is {

y ∈ RN
∣∣E(y) = 0

}
, where E(y) := (Aiy)>(Aiy)− r2

i .

So, for example, if N = 2, ri = 2, bi = 1, then E(y) = y2
1 + 4y2

2 − 4. These ellipses
approximate the shapes Si. Given a placement (X,α) =

(
x1, . . . , xn, α1, . . . , αn

)
of

the Si, the approximating ellipsoids are given by{
y ∈ RN

∣∣E(R−1
i (y − xi)) = 0

}
,

where Ri denotes the rotation matrix parameterized by αi. Let the algebraic distance,
da(y, Si), be defined by

(6.2) d2
a(y, Si) := |E(R−1

i (y − xi))|.

Note that the algebraic distance is defined explicitly in terms of the parameters xi
and αi of the shape Si and is different from the geometric distance. Indeed, even
in the case where the shapes Si are ellipses, the algebraic distance differs from the
geometric.

The algebraic distance leads to the following approximating cost function:

(6.3) G(X,α) :=

n∑
i=1

∫
Va,i

d2
a(y, Si)ρ(y) dy.

As the ellipsoid tends to a point, d2
a(y, Si)→ |y−xi|2, and the arrangement cost func-

tion is recovered. Note that the Voronoi regions Va,i in (6.3) are computed based on
the algebraic distance (6.2). For the approximate energy (6.3), we have the following
result.
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Proposition 6.1. Assume that the ellipsoidal approximations to the shapes S1,
. . . , Sn are disjoint. Let X be in Ω ⊂ RN and, for simplicity, let ρ(y) be constant. Let
R be a d-dimensional rotation matrix parameterized by α. If the following conditions
hold at (X,α):

x
(k)
i =

∫
Va,i

y(k)ρ(y) dy∫
Va,i

ρ(y) dy
and Ri = U>i for k = 1, . . . , N,

where Ui is the matrix of eigenvectors of the moment matrix Mi = (mj,k)Nj,k=1,
given by

(6.4) mj,k =

∫
Va,i

(y(j) − x(j)
i )(y(k) − x(k)

i )ρ(y) dy,

then (X,α) is a critical point of (6.3).

The first condition on the centroids is also a necessary condition for criticality.
Our proof shows that the second moment condition is also necessary for criticality in
N = 2. We expect that it is also a necessary condition for higher space dimensions as
well, but our proof yields only the sufficiency.

Proof. Define Ei :=
{
y
∣∣E(R−1

i (y − xi)) < 0
}

, which are simply the interiors of
the ellipsoids that, by assumption, are nonoverlapping. Hence we note that

G̃(X,α) =

n∑
i=1

∫
Va,i

E(R−1
i (y − xi))ρ(y) dy,

= G(X,α)− 2

n∑
i=1

∫
Ei

E(R−1
i (y − xi))ρ(y) dy︸ ︷︷ ︸
=:K0

.

Since by assumption, ρ is constant, the interior integrals over Ei are independent of
(X,α), and hence G̃(X,α) and G(X,α) differ by a constant K0. Therefore, it is

sufficient to consider the minimizers of G̃.
For the proof, we will relax the slaving of the tessellation {Va,i}ni=1 to (X,α) and

consider the criticality conditions with respect to X and α at an arbitrary tessellation
V = {V̂i}ni=1 of Ω into n regions. These will suffice, as fixing (X,α) and minimizing
with respect to all tessellations will yield the criticality condition V = {Va,i}ni=1. This
step is identical to the case of point generators and was proven in [23]. Thus we
consider the energy

H(X,α,V) =

n∑
i=1

∫
V̂i

E(R−1
i (y − xi))ρ(y) dy,

which coincides with G̃(X,α) when V = {Va,i}ni=1.
First fix α and V, and for simplicity denote H(X,α,V)|α,V = H(X). Let ε > 0,

and choose v = (v(1), . . . , v(N))> such that xi+εv remains in the interior of Ω. Denote
by ek the vector in RNn that is all zeros except in the kth entry. The first variation
is then

lim
ε→0

H(X + ε
∑N−1
k=0 eN−k v

(N−k))−H(X)

ε
=

N∑
k=1

v(k) ∂H(X)

∂x
(k)
i

= 0.



1116 L. J. LARSSON, R. CHOKSI, AND J.-C. NAVE

The first variation is zero if all partial derivatives are zero, which in matrix form
means

∂H(X)

∂xi
= 2

∫
V̂i

RiA
>
i AiR

>
i (xi − y)ρ(y) dy = 0.

To show that
∫
V̂i

(xi − y)ρ(y) dy = 0, it suffices to show that the matrix R>i A
>
i AiRi

is invertible. Observe:

det(RiA
>
i AiR

>
i ) = det(Ri)︸ ︷︷ ︸

=1

det(A>i )︸ ︷︷ ︸
>0

det(Ai)︸ ︷︷ ︸
>0

det(R>)︸ ︷︷ ︸
=1

> 0.

Therefore the kernel of RiA
>
i AiR

>
i is empty, and the location vectors are minimized

when placed at the center of mass of the regions V̂i.
Now fix each xi at the centroids of the region V̂i for i = 1, . . . , n; keep the

tessellation V fixed as well. For ease of notation denote H(X,α,V)|X,V = H(α). The

first variation with respect to the angle constrains that for all l, ∂H(α)

∂α
(l)
i

= 0. Each
partial derivative is

∂H(α)

∂α
(l)
i

=

∫
V̂i

(
(y − xi)

>RiA
>
i Ai

∂R>

∂α
(l)
i

(y − xi) + (y − xi)
> ∂Ri

∂α
(l)
i

A>i AiR
>
i (y − xi)

)
ρ(y) dy,

= 2

∫
V̂i

(y − xi)
>RiA

>
i Ai

∂R>i

∂α
(l)
i

(y − xi)ρ(y) dy.

The expression
∂R>i
∂α

(l)
i

denotes the componentwise partial derivative of the matrix R>i .

The trace function can be applied to the scalar ∂H(α)

∂α
(l)
i

, and the cyclic property of the
trace can be applied to find

∂H(α)

∂α
(l)
i

= tr

(
2

∫
V̂i

(y − xi)
>RiA

>
i Ai

∂R>i

∂α
(l)
i

(y − xi)ρ(y) dy

)

= 2

∫
V̂i

tr

(
(y − xi)

>RiA
>
i Ai

∂R>i

∂α
(l)
i

(y − xi)

)
ρ(y) dy(6.5)

= 2

∫
V̂i

tr

(
RiA

>
i Ai

∂R>i

∂α
(l)
i

(y − xi)(y − xi)
>
)
ρ(y) dy(6.6)

= 2 tr

(
RiA

>
i Ai

∂R>i

∂α
(l)
i

∫
V̂i

(y − xi)(y − xi)
>ρ(y) dy

)
(6.7)

= 2 tr

(
RiA

>
i Ai

∂R>i

∂α
(l)
i

Mi

)
(6.8)

= 2 tr

(
A>i Ai

∂R>i

∂α
(l)
i

RiR
>
i Mi︸︷︷︸

=U>i ΛUi

Ri

)
(6.9)

= 2 tr

((
∂R>i

∂α
(l)
i

Ri

)
︸ ︷︷ ︸

=:S

R>i U>i ΛUi Ri A
>
i Ai︸ ︷︷ ︸

=:B

)
.(6.10)

In (6.5), the linearity of the trace and the integral are used to take the trace inside. In
(6.6), the cyclic property of the trace is used to move the first vector to the end. Then,
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in (6.7), the linearity of the trace and integral are used again to take the integral
inside. In (6.8), the integral is denoted by Mi. As this second moment matrix is
positive semidefinite, it is diagonalized as U>i ΛUi, for Ui orthogonal and Λ diagonal.
This decomposition is used in (6.10). In (6.9), the cyclic property of the trace is
used to move the first matrix Ri to the end of the expression, and the term RiR

>
i is

added, as this is just the identity (rotation matrices are orthogonal). In the last line,

(6.10), S =
∂R>i
∂α

(l)
i

Ri is a skew-symmetric matrix. Observe: Because rotation matrices

are orthogonal, R>i Ri = I. Then, by the product rule, ∂R>

∂α
(l)
i

Ri +R>i
∂Ri

∂α
(l)
i

= 0, and

rearranging, S = −S>. Since the trace of the product of a skew-symmetric matrix
(S) and a symmetric matrix (B) is zero, setting Ri = U>i implies that (6.10) is 0.

Proposition 6.1 recovers the geometric intuition that in order to form an optimal
arrangement, the shapes should be both “well centered” and “well oriented” within
their Voronoi regions. For example, in R2 the condition on the rotation matrix Ri
reduces to the following formula for the shape rotation angle:

αi =
1

2
arctan

(
2m1,2

m2,2 −m1,1

)
.

This angle is known as the moment of inertia of the algebraic Voronoi region. This
means that the principal axis of the shape should be aligned with the principal axis
of its algebraic Voronoi region. In higher dimensions, the principal axis of the shape
should always be aligned with the eigenvector corresponding to the largest eigenvalue
of U>i . Thus assuming we can compute the parameters of the approximating ellip-
soids needed for the approximate energy (6.3), we can formulate a generalized Lloyd’s
method in RN as follows: First, project xi to the center of mass of Va,i, i = 1, . . . , n.
Then project Ri, the N -dimensional rotation matrix to U>i , the transpose of the
eigenvector matrix of the second moments Mi, i = 1, . . . , n. Repeat until a fixed
point is obtained.

However, note that the parameters of the approximating ellipsoids (for example,
ri, bi, ci in R3) do not appear in these moment conditions but are required to compute
the algebraic Voronoi regions. This suggest a simplified generalized Lloyd’s method
for which these parameters need not be estimated: use the original geometric Voronoi
region Vi instead of the algebraic Voronoi region Va,i to compute these moments.
Specifically, given a collection of shapes Si and an initial placement (X,α), with R
being the d-dimensional rotation matrix parameterized by α,

(i) compute the centroids of Vi, i = 1, . . . , n, and project xi to the respective
centroids;

(ii) compute U>i , the transpose of the eigenvector matrix of the second moments
Mi, i = 1, . . . , n, given by (6.4) (based on geometric Vi), and project Ri to
U>i ;

(iii) recompute the Voronoi regions and repeat until a fixed point is obtained.
In R2 this algorithm was already proposed by [35], and results were presented with
application to nonphotorealistic rendering. The present work extends that algorithm
to RN and gives an energetic interpretation of the results. It is important to note
that the only basis for presenting these two generalized Lloyd’s algorithms was the
motivation provided by Proposition 6.1. These algorithms warrant both numerical
experimentation and a contraction/convergence study. Indeed, convergence of the
regular Lloyd’s algorithm is nontrivial (see, for example, [22]), and hence convergence
of these more complicated geometric integration schemes is far from obvious.
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7. A relation to optimal transport. Many readers will have noticed the simi-
larity between the structure of our arrangement cost (2.1) and notions from the active
mathematical field of optimal transport [66]. Here we make the simple remark that
the energy for p = 2 can be written in terms of the Wasserstein-2 distance. In doing
so we provide an elementary illustration of aspects of Brenier’s theorem [10].

The field of optimal transport arose as a way to solve the problem of minimizing
the transport cost to haul ore from a set of mines to a collection of factories [66].
This engineering problem was later reformulated and rediscovered in many contexts.
Let µ be a probability measure on Ω ⊂ RN that is absolutely continuous with respect
to Lebesgue measure; where applicable, denote its density by ρ. Let ν be any Borel
probability measure. Define measures on the product space Ω× Ω as follows:

M(µ, ν) =
{

All Borel measures π : Ω×Ω→ [0, 1]
∣∣ π(y,Ω) = µ(y) and π(Ω, z) = ν(z)

}
.

That is, we consider product measures whose projections in each component are the
respective given marginal.

Kantorovich’s formulation of optimal transportation for Euclidean cost is given
as

(7.1) W 2
2 (µ, ν) = inf

π

{∫
Ω×Ω

|y − z|2dπ(y, z)

∣∣∣∣ π ∈M(µ, ν)

}
,

where W2(µ, ν) is called the Wasserstein-2 distance between the measures µ and ν.
This modern formulation of the problem is useful because M is always nonempty; it
contains the product measure µ × ν [66]. In particular, this guarantees a minimizer
always exists. The minimizing measure on the product space, π, is called a transport
plan. A more classical formulation of the problem, going back to Monge, is via a
transport map q : supp(µ) → supp(ν). Given a Borel probability measure µ and a
Borel map q : RN → RN , we define the push forward probability measure q# µ by

(q# µ)(A) = µ
(
q−1(A)

)
∀ Borel-measurable subsets A ⊂ RN .

Denoting ψ(y) = (y, q(y)), the transport plan π can be recovered as π = µ ◦ ψ−1

[42]. In these cases, one can formulate the Wasserstein-2 distance (7.1) in the more
classical way:

(7.2) W 2
2 (µ, ν) = inf

q

{∫
Ω

|y − q(y)|2dµ(y)

∣∣∣∣ ν = q# µ

}
.

Brenier’s theorem and its extensions [50, 10] prove that the formulations (7.1) and
(7.2) are equivalent, and in fact a unique transport map q exists that minimizes (7.2),
and is, up to sets of measure zero, the gradient of a convex function.

Now let us make a simple connection with the arrangement energy (2.1). For
simplicity of notation, let us assume |Ω| = 1 and take the density ρ ≡ 1. Let µ be
given by N -dimensional Lebesgue measure dy. To define the singular measure ν, let
Si be a fixed collection of shapes which are compact subsets of Ω of codimension
in {1, 2, . . . , N}. For any set T = {Ti}, i = 1, . . . , n, of affine isometries such that
Ti(Si) ⊂ Ω, we define the singular measure νT supported on

⋃n
i=1 Ti(Si) as follows:3

For any Borel-measurable set A ⊂ Ω,

(7.3) νT (A) =

∣∣∣{z ∈ Ω
∣∣ d (z,

⋃n
i=1 Ti(Si)) = |z− y| for some y ∈ A

⋂
Ti(Si)

}∣∣∣
|Ω|

.

3For nonconvex generators S1, . . . , Sn, the definition of ν requires a tie-breaking rule for points
that are equidistant to two or more points along some Si.
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In other words, νT (A) is the percent of volume of the Voronoi regions which are
associated with the part of the generators

⋃n
i=1 Ti(Si) which lie in A. For example,

if the Si were points and T was represented by their positions x = {xi}, then νT =∑n
i=1miδxi

where mi = |Vi| with
∑n
i=1mi = |Ω| = 1. This point case has been

studied within the framework of optimal transport in [51, 8, 9].
For target measures given by (7.3), Monge’s formulation (7.2) is rather simple as

the unique optimal push forward is, up to a set of measure 0, simply a projection onto
the closest point in

⋃n
i=1 Ti(Si), that is,

q∗(y) = y − d
(
y,

n⋃
i=1

Ti(Si)

)
∇d
(
y,

n⋃
i=1

Ti(Si)

)
.

Moreover in this case, if we parameterize the family of isometries T by the respective
position and angle vectors (X,α), we find

W 2
2 (µ, νT ) = inf

q

{∫
Ω

|y − q(y)|2dy, µ ◦ q−1 = νT

}
=

∫
Ω

|y − q∗(y)|2dy

=

∫
Ω

d2

(
y,

n⋃
i=1

Ti(Si)

)
dy =

n∑
i=1

∫
Vi

d2(y, Ti(Si))dy = F (X,α).

Thus our optimal arrangement problem of finding (X,α) that minimizes the ar-
rangement energy F (X,α) given by (2.1) is equivalent to finding T that minimizes
W 2

2 (µ, νT ).

8. A few applications.

8.1. Empirical explorations of ground states and the energy landscape.
We have defined an optimal assembly as a critical point of the arrangement cost func-
tion (2.1) and presented an algorithm which arrives at a critical point of F . However,
even after modding out by domain symmetry effects, the energy landscape of the
arrangement function F is highly nonconvex with many local minimizers. Questions
as to the nature of ground state arrangements, a global minimum for (2.1), and char-
acterizations of the stability of optimal arrangements are most natural but, from a
purely analytical point of view, very difficult.

Even for the cases of points, where optimal arrangements directly correspond to
CVTs, questions as to the nature of the ground state remain open. Gersho’s conjec-
ture [29] was originally stated for optimal vector quantizers used in data compression
and transmission. In essence, the conjecture asserts that asymptotically as the num-
ber of generators gets larger, the ground state CVT is a periodic tessellation based
upon a single polytope (cell) dictated by the space dimension. The basic Voronoi cell
of the ground state CVT was shown to be the regular hexagon in two dimensions
[27] (see also [53] for a simple proof). For the three-dimensional space with a con-
stant density function, it was proved that among all lattice-based CVTs, the CVT
corresponding to the body-centered cubic lattice (BCC) is the optimal one [4]. While
numerical simulations suggest the optimality of BCC with respect to general CVTs,
the conjecture remains open [25].

While the case of general shapes will naturally be far more complex, our method
does allow for empirical study of ground states and the overall energy landscape of
(2.1). We present two illustrations.
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Fig. 8.1. Two critical points for the arrangement energy (2.1) with five circles of equal radius;
r = 0, 0.05, 0.09, and 0.14 from left to right. The top geometry has the lowest energy until r = 0.134,
after which the bottom geometry is optimal.

A phase transition with circles of equal radii. We consider five circles of
the same radius. This case is particularly simple since as long as the circles do not
overlap, the Voronoi regions generated by the circles coincide with the Voronoi regions
generated by the center points of the circles. Here we show that as the radii increase
there is a critical value at which there is a phase transition in the morphology of
the global minimizer. To this end, we let Ω = [0, 1]2 with uniform density, and Si,
i = 1, . . . , 5, be circular generators of radius r. The gradient flow for the centers is
given by the following 10-dimensional coupled dynamical system: For i = 1, . . . , 5,

∂xi
∂t

= −∇xi
F = −2

∫
Vi

(xi − y)

(
1− r

|xi − y|

)
ρ(y) dy, xi(0) = xi.

Many runs (3,000) were performed with the initial condition xi(0) taken from a uni-
form distribution, and the converged state with the lowest energy is recorded. We
loosely refer to this as the “global minimizer.” For r = 0, the global minimizer of the
CVT energy is a 4 + 1 configuration, with four points in each corner, and one point in
the center of the unit square. This configuration is displayed in the first configuration
of the top of Figure 8.1. Another critical point for the r = 0 case is shown4 in the
first configuration of the bottom of Figure 8.1. Figure 8.1 also displays the analogous
critical points for r = 0.05, 0.09, and 0.14. Because the Voronoi regions are polygonal,
one can compute the critical centers and corresponding energies analytically and to
machine precision (cf. [43]). In doing so, one finds a phase transition wherein the
bottom configuration represents the global minimizer at around r = 0.134.

Energy histogram. Another application is to generate energy histograms by
uniformly sampling initial centers and rotation angles; applying our algorithm to
convergence; recording the final arrangement energy; and plotting the histogram. We
give one such example in Figure 8.2. Here we also plot a sample of the lowest energy
arrangement—a good candidate for a ground state. Note that the smaller oscillations
(bumps) in the energy distribution of Figure 8.2 (right) should be ignored as they are

4Because of the symmetries of the domain, there are three other critical points with the same
energy under the rotations θ = π/2, π, and 3π/2.
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Fig. 8.2. Energy distribution for 1,000 runs of 18 shapes with M = 6 in L-BFGS. Left: An
example with the lowest energy. Right: Approximate energy histogram.

most probably numerical effects: the energies differences are sufficiently small with
respect to the tolerance of the method.

8.2. Packing of shapes. The self-assembly algorithm we have outlined here
offers a natural way to spread shapes out in a domain. Then it is natural to ask,
whether by shrinking the domain or growing the shapes, if a packing can be obtained
whereby the volume outside the shapes is minimized. Obtaining optimal packing
densities for circles has been well studied (see, for example, the monograph [15]). In
R2, the optimal packing lattice for circles is the hexagonal lattice. In R3, the optimal
packing lattice for spheres is the body-centered cubic. Few theoretical results are
known for packing spheres in high dimensions [14]. For ellipsoids, it has been shown
numerically that nonlattice packings lead to better packing densities [20]. Recently,
algorithms for tetrahedral packings have been considered [33]. Algorithms for packing
shapes typically use hard constraints for enforcing no overlap: at each iteration, it
must be checked whether any shape intersects another shape.

To obtain a packing using our self-assembly algorithm, a natural approach is to
begin with small particles and grow them until a packing is obtained. Then there
are two things to consider: first, an appropriate rate of growth must be chosen, and
second, a stopping criterion must be set so that the algorithm terminates when a
packing is obtained. Here, we sketch these two steps.

Starting with a collection of small shapes (relative to the domain volume), obtain
a self-assembly. Then alternate between growing the shapes and translating and
rotating the shapes as to minimize the assembly energy. If the rate of growth is too
fast, the shapes may not be able to spread out quickly enough, leading to suboptimal
results. We propose to grow the generators at a rate that is based on the assembly
energy. Previously, energy derivatives were calculated for rotations and translations
of the shapes; to choose the growth rate, we will use the derivative of the energy with
respect to scaling the shapes. For example, in the case of spherical generators, the
scale of the shape is given by the radius parameter, and so

∂F

∂ri
=

∂

∂ri

(
n∑
i=1

∫
Vi

(
d(y,xi)− ri

)2

ρ(y) dy

)
= −2

∫
Vi

(
d(y,xi)− ri

)
ρ(y) dy.

For points y ∈ Vi outside the sphere, the integrand d(y,xi) − ri is the distance to
the sphere. For points y ∈ Vi interior to the sphere, the integrand is the negative
distance. Therefore, when the energy inside and outside of the sphere is equal, this
partial derivative will be zero. If this derivative is negative, there is a surplus of space
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around the sphere, and the radius should increase. If the derivative is positive, then
there is more energy inside the sphere, and the radius should shrink. To consider only
the energy outside of the spheres, one can use

∂F̃

∂ri
:= −2

∫
Vi\Γi

(
d(y,xi)− ri

)
ρ(y) dy,

where Γi is the disk with boundary Si. We then calculate ∂F
∂ri

for each i and choose
the smallest derivative as the growth rate. As the shapes get closer together, the
growth rate will naturally slow, allowing for more translation and rotation so that the
shapes can pack well.

The second consideration is the stopping criterion. Whereas previous methods use
hard constraints to avoid overlap, we propose a soft constraint. Instead of directly as-
sessing whether shapes are overlapping, we suggest adjusting the arrangement energy
directly to penalize overlap. This involves changing the energy interior to each shape.
Currently, powers of the distance function are used. However, the signed distance
function would assign negative energy to the interior of the shape (for odd powers).
Then overlap would increase the energy, so minimizing the energy would promote
nonoverlapping shapes. Phase transitions, such as highlighted in section 8.1, could
occur during the growth of the shapes. The interesting question of which optima can
be accessed using a growth-based algorithm is very relevant to the packing applica-
tion. In fact, the ground state may only be accessible by starting from a suboptimal
local minimum for the small, initialized shapes. Assessing the complex nature of the
energy landscape for packing problems is a rich area for future research. The novelty
of trying to adapt the current algorithm to packing is that the class of shapes it can
accommodate is large.

8.3. Energy-driven pattern formation. Pattern formation of modulated
phases can often be explained via minimization of energy functionals involving com-
peting short- and long-range interactions [62]. The subject has proven to be a driving
force for much research in the modern calculus of variations [39]. A good case in point
is the Ohta–Kawasaki functional [56, 13], which provides one of the simplest models
for self-assembly of diblock copolymers. Here the ubiquitous Ginzburg–Landau free
energy is augmented with long-range interactions of Coulombic type, presenting a rich
set of mathematical problems as to the nature of global and local minimizers (see, for
example, [11, 59] and the references therein). In the regime of small volume fraction,
wherein small spherical phases are present, there are two temporal regimes in the
gradient flow dynamics [34, 30]: the formation of the spherical structures and their
coarsening until an intrinsic length scale is reached, followed by pattern formation
of the spheres dictated by the long-range interactions. These dynamic regimes are
directly connected to the first few terms in the Gamma-limit expansion of the free
energy [12]. The problem considered in this article addresses the later stage of pattern
formation. While for Ohta–Kawasaki these interactions are of Coulombic type, here
the interactions involve Wasserstein distances (cf. section 7). Recently Bourne et al.
[8, 9] considered a simplified model in the dilute phase limit based upon Wasserstein
norms. This results in a variational problem defined over sums of weighted delta
functions with support in Ω ⊂ RN , ν =

∑n
i=1miδxi

with
∑n
i=1mi = |Ω| = 1, which

takes the form

E(ν) = λ

n∑
i=1

(mi)
N−1
N + W 2

2 (dy, ν),
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where dy denotes N -dimensional Lebesgue measure on Ω, and W2 is the Wasserstein
distance defined in section 7. Minimization is made computationally tractable by
setting the problem in the framework of CVT and adopting the simple approach of
Lloyd’s algorithm [8]. It would be interesting to adopt the methods contained here
to explore shape and orientation effects in, for example, related simplified models for
hard ellipses/ellipsoids.

8.4. Constrained optimal transport. For the rigid CVT problem, the op-
timal transportation problem becomes computationally tractable by relying on the
tools of computational geometry: generalized Voronoi regions and eikonal distances.
However, there is a large body of work for point generators on the constrained CVT
problem: how can one minimize the average squared distance to the closest post of-
fice while ensuring the number of people serviced by each post office is equal? The
constraint is that the measure of each Voronoi region with respect to a density, ρ, is
equal. Some work on efficient algorithms to compute constrained CVTs is contained
in [1, 3, 18, 51, 70]. Efficient computation in the constrained case relies on a charac-
terization of the optimal transport plan in terms of power Voronoi diagrams [1, 51].
Accommodating constraints could also be pursued in the case of general shapes.
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