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ABSTRACT: Discontinuous solutions with shocks for a family of almost incompress-
ible hyperelastic materials are studied. An almost incompressible material is one whose
deformations are not a priori constrained but whose stress response reacts strongly (of or-
der ε−1) to deformations which change volume. The material class considered is isotropic
and admits motions which are self similar, exhibit cavitation, and are energy minimizing.
For the initial value problem when considering the entire material, the solutions converge
(as the parameter tends to zero) to an isochoric solution of the limit (incompressible)
system with the corresponding arbitrary hydrostatic pressure being the singular limit of
the pressures in the almost incompressible materials. The shocks, if they exist, disappear:
their speed tends to infinity and their strength tends to zero.

1. INTRODUCTION TO THE PROBLEM

In this article we give support for the following conjecture in mechanics: An incom-
pressible nonlinear elastic material can be regarded as the limit of a family of almost
incompressible materials; materials whose deformations are not a priori constrained but
whose stress response reacts strongly to deformations which change volume. This family
will consist of compressible materials all sharing a basic constitutive relation for the stress
modulo an extra pressure term of order 1

ε . The arbitrary hydrostatic pressure resulting in
the incompressible case is actually a singular limit of the almost incompressible pressures
which depend exclusively on the motion. Such almost incompressible materials were orig-
inally discussed by Spencer [11] and such a limiting relationship was noted in Truesdell
and Noll [12 p.122].

The idea of an incompressible limit has been well-studied for fluids using relevant solu-
tions in smooth (Sobolev) spaces: Ebin [5] and Klainerman and Majda [7], [8]. Hence, very
general results can be obtained using a priori estimates. For elastic solids, the arguments
for fluids have been extended by Schochet [10] again working with solutions (motions)
with Lp derivatives; the idea being that the equations of motion can be written as a sym-
metric hyperbolic system to which one can apply the machinery of functional analysis.
More recently Charrier et al [3] have considered static solutions for almost incompressible
materials and passed to the limit. Their work was based on calculus of variations argu-
ments of Ball and also dealt with solutions in Sobolev spaces. It is however very common
in nonlinear elasticity to encounter jumps in velocity and deformation gradient (so called
shocks) and hence the Sobolev space setting in not applicable for solutions of the equations
of motion and their derivatives. In general, if one wishes to work with solutions (motions)
with shocks, the natural space is the set of functions whose first derivatives are of the class
BV, the space consisting of L1 functions whose distributional derivatives are finite Borel
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measures. As yet there has been no analytical demonstration of the incompressible limit
when shocks are present. In order to provide evidence of the previously stated conjecture
one should demonstrate the incompressible limit in a situation where shocks are needed
to establish local existence, and in a situation where there is some numerical or physical
experiments verifying that shocks do indeed exist. Our task is made possible by consider-
ing an isotropic material class which admits radially symmetric motions. These motions
depend only on the ratio of the Euclidean spatial norm to time and exhibit cavitation: a
spherical cavity forms at the origin and propagates with a fixed speed. This enables us to
study the behavior of the solutions via ordinary differential equations. These motions were
introduced by the Spectors [9] who were in turn motivated by the paper of Ball [1] pertain-
ing to statics. They are very natural motions to consider. In statics, Ball [1] considered
these materials and reached the startling conclusion that the trivial static deformation
was not stable but rather radially symmetric deformations with cavities were energy min-
imizers and stable. The motions which appear in this article are dynamic versions of the
deformations of Ball. In [9] it was shown that these motions have no greater energy than
the trivial static motion. Moreover, if a shock exists (there is numerical evidence that it
does), the energy is less than that of the trivial motion.

2. CONSTITUTIVE ASSUMPTIONS

Working in material (Lagrangian) coordinates, we deal with materials occupying Ω :=
R3. The motion of such a body is described by a function u : R3 × R+ → R3 where
u(x, t) is the position of the material point x at time t. The gradient ∇u(·, t) of u with
respect to x is called the deformation gradient and will frequently be denoted by F .

The materials in consideration are hyperelastic, isotropic, and homogeneous. Namely,
the Piola-Kirchhoff stress tensor produced in response to a given motion with deformation
gradient F is given by

S(F ) =
∂W

∂F
,

where W (F ) is the stored energy function of the material. A hyperelastic material is
isotropic if W is a symmetric function of the eigenvalues of (FFT )

1
2 .

Here we consider the following stored energy function,

W = Φ(λ1, λ2, λ3) =
1
2

Σλi2 + h(λ1λ2λ3), (2.1)

where λi are the eigenvalues of (FFT )
1
2 . We assume h ∈ C3(R+,R+) has the following

properties

h′′(v) > 0, h′′′(v) < 0, lim
v→0+

h′(v) = −∞, lim
v→+∞

h′(v) = +∞, h′(H) = 0, (2.2)

for some H > 0. The function h depends exclusively on the determinant of the deformation
gradient and thus responds to changes in volume. As will be noted later, the condition
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h′′ > 0 implies that the equations of motion are hyperbolic or equivalently the stored
energy function is rank one convex. The condition, h′′′ < 0 was used by the Spectors. We
observe that it implies the failure of a growth condition which would force deformations
with finite energy to be continuous and hence, u(·, t) as a map from any bounded subset
of R3 to R3 would be continuous and cavitation, which as we shall see is essential in
obtaining non trivial solutions, would be ruled out. Following Ball [1], a material is strong
if

W (F ) ≥ C(|F |p + 1) for some p > 3.

By the Sobolev Embedding theorem, any deformation of a bounded region with finite
energy would be continuous. A weaker condition is

W (F )
|F |3

→∞ as |F | → ∞. (2.3)

By L’Hopital’s rule, we see that

lim
det→∞

h(det)
det3 = lim

det→∞

h′′(det)
det

is not infinite, hence, (2.3) can not be satisfied and the material is not strong.

Now suppose the material was incompressible, that is, the volume of any part of the
material remains unchanged by deformations and hence the deformation gradient must
have constant determinant (not necessarily 1!). In such materials, (cf. Gurtin [6]) the
constitutive relation gives the stress modulo a hydrostatic pressure which does no work
during the motion. This arbitrary hydrostatic pressure is found by solving the equations
of motion which will include the kinematic constraint of incompressibility. We note that
in general this pressure function is not uniquely determined by the equation of motion (see
Gurtin p.117 [6]). The full Piola-Kirchhoff stress for the incompressible material is

SI(x, t) =
∂Φ
∂F

+ p(x, t)F−T .

In (2.1) the h(det) will only contribute a constant hydrostatic pressure of magnitude h′(det)
and thus could be absorbed into the arbitrary pressure term.

For materials which are not incompressible the constitutive relation gives the full
stress. We create the family of almost incompressible materials by augmenting Φ with Ψε

where

Ψε =
(λ1λ2λ3 − C)2

2ε
, C ∈ R, C > 0 (2.4)

and considering
Φε = Wε(F ) = Φ + Ψε. (2.5)

The specific form of Ψε is chosen because firstly it does not change the material type in
question and secondly for small ε it produces a large penalty in the stress response for
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deformations which change volume. The possibility of the addition of other such terms
in forcing out the incompressible limit is discussed in Remark 2 of Section 6. The Piola-
Kirchhoff stress for such a material is given by

Sε(F ) =
∂Φ
∂F

+
∂Ψε

∂ detF
∂ detF
∂F

(2.6)

=
∂Φ
∂F

+
detF − C

ε
(detF )F−T .

In this paper, we prove that the arbitrary pressure in the incompressible case is a
singular limit of the ‘constitutive pressures’ in the compressible materials. We consider
the stress in our material family and investigate the limit as ε tends to zero. The arbitrary
pressure will actually be the singular limit of

detF −H
ε

(detF ) (C = H),

where in the limit, the dependence on detF is lost. Specifically we show

p(x, t) = H ·
(
d

dε

∣∣∣∣
ε=0

det∇uε(x, t)
)
.

In Section 3, we derive the equations describing motions of the materials in question.
We also give some discussion to function spaces and weak solutions. In Section 4, the
ordinary differential equations which our special type of solutions must satisfy are derived
together with the jump conditions for a radial shock. We then use the work of the Spectors
to prove existence for both the almost incompressible and incompressible systems. We
discuss convergence matters in Sections 5 and 6.

3. EQUATIONS OF MOTION AND ADMISSIBLE SOLUTIONS

For an elastic material with Piola-Kirchhoff stress tensor S the equation of motion,
which describes conservation of linear momentum, is

utt(x, t) = div S (∇u(x, t))1
. (3.1)

Thus for an almost incompressible material

uεtt(x, t) = div
(
S1(∇uε(x, t)) +

det∇uε − C
ε

(adj∇uε)T
)
, (3.2)

1 System (3.1) is hyperbolic (cf. Dafermos [4]) if the acoustic tensor is positive defi-
nite. The acoustic tensor Q(F, v) is given in terms of the stored energy function, W , by
Qij(F, v) =

∑
α,β

∂2W
∂Fiα∂Fjβ

vαvβ . For the stored energy function, Wε, a direct computation
gives Q(F, v) = I + (detF )2(h′′(detF ) + 1

ε )F−T v ⊗ F−T v, which is positive definite for
each v ∈ R3.
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where
S1(∇uε) =

∂Φ
∂∇uε

.

On the other hand, for the incompressible material with basic constitutive relation (2.1),
the equations of motion are

utt = div
(
S1(∇u) + p(x, t)(∇u)−T

)
and ∂t det∇u = 0.

To relate the two sets of equations, we note that we can naturally write (3.2) as a system
with pε(x, t) = det∇uε−C

ε also treated as a dependent variable: i.e. consider

uεtt = div
(
S1(∇uε) + pε(x, t) det∇uε(∇uε)−T

)
∂t(εpε(x, t)− det∇uε) = 0.

(3.3)

Informally, we think of the second equation as a ‘forcing’ equation or a balance equation
between time rates of change in large pressure deviations and small volume deviations.
The second equation implies

pε =
det∇uε − Cε(x)

ε
.

For our special type of solutions, that is, solutions which depend only on the ratio of
spatial norm to time (cf. (3.8)), Cε(x) will be forced to be a constant Cε. In fact physical
considerations will imply that it is independent of ε and equals H; thus for our class of
solutions, (3.2) and (3.3) become equivalent.

Formally letting ε = 0 in (3.3), we obtain

utt = div
(
S1(∇u) + p(x, t) det∇u(∇u)−T

)
∂t det∇u = 0.

These are the equations of motion for an incompressible material with basic con-
stitutive relation (2.1) modulo the det∇u term in the first equation; thus the pressure
convergence is modulo a constant (cf. Theorem 3.3). The second equation together with
appropriate initial conditions will imply det∇u is constant (independent of space and
time). We consider the following problems for some fixed T > 0.

uεtt(x, t) = div
(
S1(∇uε) + pε(x, t) det∇uε(∇uε)−T

)
∂t(εpε − det∇uε) = 0 (3.4)

u(x, 0) = λε ut(x, 0) = 0

on Ω(:= R3)× [0, T ],
and,

utt(x, t) = div
(
S1(∇u) + p(x, t)(∇u)−T

)
5



∂t det∇u = 0 (3.5)

u(x, 0) = λ ut(x, 0) = 0

on Ω× [0, T ]. The natural question arises as to whether solutions of (3.4) are close to those
of (3.5) for small ε and λε close to λ. For the solutions we construct, we show that the
answer is affirmative.

Following [1] and [9], we give some discussion to what we mean by a solution. Since
we deal with the material occupying all of R3, we adjust as follows. Define

Dp(R3) = {Y ∈W 1,p
loc (R3,R3)|det∇Y (x) > 0 for a.e. x ∈ R3 }

to be the set of admissible deformations of the material. For T > 0, u : [0, T ]→ Dp(R3)
is called a motion if

(i)u ∈ C0([0, T ],W 1,p
loc (R3,R3)) and (ii)u ∈ C1([0, T ], Lploc(R

3,R3)).

We look for weak solutions to (3.4) and (3.5) in which uε(x, t) (resp. u(x, t)) is a motion.
For example, for (3.4) this amounts to requiring that for every t ∈ [0, T ], Sε(∇uε(·, t)) ∈
L1
loc(R

3) , and for every ψ ∈ C∞0 (R3 × (0, T ),R3), θ ∈ C∞0 (R3 × (0, T ),R), we have

T∫
0

∫
R3

[∇ψ · Sε(∇uε)− ψt · uεt] dx dt = 0

T∫
0

∫
R3

θt · (εpε − det∇uε) dx dt = 0,

where Sε(∇uε) = S1 + pε(x, t) det∇uε(∇uε)−T . N ·M = trace
(
NM−T

)
is the standard

scalar product of n× n matrices N and M .
We work within the class of radially symmetric solutions:

u(x, t) =
r(R, t)
R

x, (3.6)

where R = |x|, the standard Euclidean norm. We state the following lemmas of Ball [1]
and the Spectors [9], noting that in their cases, Ω is a ball of fixed radius. However working
in the natural spaces of W 1,p

loc and Lploc make their results pertinent.

Lemma 3.1. Consider a radial deformation f(x) = r(R)
R x then f ∈ Dp iff for every

ρ > 0, r is absolutely continuous on (0, ρ), r′( rR )2 > 0 almost everywhere, and

ρ∫
0

[
|r′(R)|p +

∣∣∣∣r(R)
R

∣∣∣∣p]R2 dR <∞.
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In this case, the weak derivatives of f are given by

∇f(x) =
r(R)
R

I +
[
r′(R)− r(R)

R

]
x

R
⊗ x

R
a.e. x ∈ R3. (3.7)

We look for solutions having the following form

uε(x, t) =
{
φε(s)
s x if t > 0

λεx if t = 0,
(3.8)

where

s =
|x|
t
,

and φε(s) ∈ PC1, the space of piecewise C1 functions.

Lemma 3.2. Let p < 3. Let uε be as above and assume there exists some σε > 0, such

that φε(s) = λεs for s > σε. If φε ∈ PC1([0,∞), [0,∞)) and φ̇ε > 0 a.e. then u is a motion.

We note that Lemma 3.2 also holds if for some constant λ, φ̇ > 0, φ − λs → 0, and
d
dsφ→ λ. These hypotheses will pertain to our limit solution (cf. Theorem 4.5).

Our analysis of the motions will be based on analysis of the φε which will all satisfy
φε(0) = a for some fixed a > 0 (thus a will be a parameter for sets of converging solutions).
The resulting solution uε will be discontinuous; for t > 0, a cavity will form at x = 0 and
expand with speed a, i.e. limx→0 |uεt(x, t)| = a. Solutions with a = 0 would be forced to
be trivial static deformations. As previously discussed there is strong evidence to indicate
that motions with cavities have lower energy. In order to obtain existence of the uε via
the φε, we must allow for a possible jump discontinuity in φ̇ε(s)1. We will see that the
resulting ordinary differential equation which φε must comply with may not have solutions
for all s. Extending a solution for all s, which in view of (3.8) is essential, may require
a jump in the first derivative of φε. This will produce a discontinuity in uεt on a sphere
which propagates with speed equal to the the position of discontinuity in φ̇ε.

We now state the main result of this paper.

Theorem 3.3. For every ε > 0, there exists λε > 0 converging to H
1
3 and dynamic weak

solutions uε, pε of (3.4). The uε converge pointwise and uniformly on compact subsets of

R3 × [0, T ] to a solution of (3.5) for λ = H
1
3 with the associated arbitrary hydrostatic

pressure p(x, t) in (3.5) being the limit, modulo a constant, of the pε(det∇uε). That is,

pε(det∇uε)→ p(x, t)
H

pointwise on R3 × (0, T ] and uniformly on compact subsets.

An immediate consequence is the following.

1 In fact, there are numerical experiments verifying that φε is not C1 and hence shocks
do indeed exist.
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Corollary 3.4. For every (x, t) ∈ R3 × (0, T ], the specific volume vε(x, t) = det∇uε is

differentiable with respect to the parameter ε at ε = 0 and

d

dε

∣∣∣∣
ε=0

det∇uε(x, t) =
p(x, t)
H

.

4. SOLUTIONS TO THE COMPRESSIBLE AND INCOMPRESSIBLE
EQUATIONS

For u a radially symmetric motion, i.e. u(x, t) = r(R,t)
R x, and t ∈ [0, T ],

∇u(x, t) =
r(R, t)
R

I +
[
rR(R, t)− r(R, t)

R

]
x

R
⊗ x

R
for a.e. x ∈ R3.

We look for a solution to (3.4), for some appropriate λε, of the form

uε(x, t) =
{
φε(s)
s x if t > 0

λεx if t = 0

pε(x, t) = p̃ε(s) where s =
|x|
t
.

We first solve the second equation of (3.4) to obtain

p̃ε =
det∇uε − Cε

ε
=
φ̇ε(φεs )2 − Cε

ε
, (4.1).

where · denotes d
ds . Let vε(s)=det∇uε = φ̇ε(φεs )2, the specific volume.

To reduce the first equation of (3.4) to an ordinary differential equation for φε we
follow [9]. Our pressure creating function will have the form

h(v) +
(v − Cε)2

2ε
. (4.2)

We briefly describe the steps. For simplicity first consider a generic u, stored energy
function Φ, and related stress S (we leave out index ε). We then use the specific form of
Φε with (4.2) incorporated.

By (3.7), the eigenvalues of ∇u are rR(R, t), r(R,t)R , r(R,t)R . A direct calculation gives

(adj∇u)T =
[
rR

r

R
I−

(
rR

r

R
−
( r
R

)2
)
x

R
⊗ x

R

]
. (4.3)

Using the notation of [9], let

Φ̂i(R, t) = Φ,i

(
rR(R, t),

r(R, t)
R

,
r(R, t)
R

)
, (4.4)
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where, Φ,i is the derivative of Φ with respect to i th variable component. It follows that
(cf. Ball [1, p.568]),

S(∇u) = Φ̂2I + (Φ̂1 − Φ̂2)
x

R
⊗ x

R
. (4.5)

Equation (3.1) reduces to
∂

∂R
(R2Φ̂1)− 2RΦ̂2 = R2rtt. (4.6)

If r(R,t)
R = φ(s)

s for s = R
t then (4.6) reduces to

d

ds
(s2Φ̂1)− 2sΦ̂2 = s4φ̈.

Here we have used Φ̂i(s) to denote Φ,i (φ̇(s), φ(s)
s , φ(s)

s ). Carrying out the differentiation
and using the specific form of Φε for each ε, we obtain

φ̈ε =
2
s (φ̇ε − φε

s )(1 + φ̇ε(φεs )3(h′′(vε(s)) + 1
ε ))

s2 − 1− (φεs )4(h′′(vε(s)) + 1
ε )

. (4.7)

As previously discussed, our solutions will exhibit a jump in uεt on a propagating
spherical surface Σ(t), namely a radial shock. In order for the motion uε, pε to be an
integral (weak) solution to (3.4) the jump and speed of the radial shock, s must comply
with the Rankine Hugoniot jump conditions. For (3.4) these are (cf. [12])

[[S0 · n]] + [[pεadj∇uε · n]] + s[[uεt]] = 0 on Σ(t)

[[εpε − det∇uε]] = 0,

where [[uεt]] denotes the jump in uεt across Σ(t). Using the fact that u has radial form (3.6),
(4.3), and (4.5) we obtain

[[Φ̂ε1]] +

[[
pε
(
rε(R)
R

)2
]]

+ s[[rεt ]] = 0 on Σ(t).

Writing Σ(t) as stΣ where Σ denotes the unit sphere in R3 and using (3.8) we have

[[Φ̂ε1(s)]] +

[[
1
ε
φ̇ε(s)

(
φε(s)

s

)4
]]

= s2[[φ̇ε]].

More precisely,(
s2 − 1− 1

ε

(
φε(s)
s

)4
)(

φ̇ε+(s)− φ̇ε−(s)
)

=
(
φε(s)
s

)2

(h′(vε+)− h′(vε−)). (4.8)
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Note that because of the sole dependence of the u on |x|t , s takes on the dual role of speed
and position of the shock.

At this stage we should give some thought to what C is in (2.4) (or Cε is in (4.1)) and
why we choose it to be H. We will solve for φ (φε) with initial conditions φ(0) = a, for
some fixed a > 0. This has the effect, on the corresponding motion, of creating a cavity at
x = 0 which expands with speed a. We require the radial component of the Cauchy stress
on this cavity to be zero: that is, the cavity should consist of a traction free surface. We
assume that the extra constitutive pressure in the almost incompressible case has no effect
on the cavity. That is,

p̃ε(0) =
vε(0)− Cε

ε
= 0,

and hence vε(0) = Cε.
To compute the radial component of the Cauchy stress we proceed as follows. The

relation between the Cauchy stress Tε and the Piola-Kirchhoff stress Sε is

Tε(∇uε) = Sε(∇uε)(∇uε)T det∇uε.

We wish to compute Tε · xR ·
x
R . For uε satisfying (3.8) we find with the aid of (3.7) and

(4.5) that the radial component of the stress is

Tε(s) =
(
s

φε

)2

Φ̂ε1

(
φ̇ε,

φε
s
,
φε
s

)
. (4.9)

Using the specific form of Φ̂ε1,

Tε(s) = vε(s)
(
φε
s

)−4

+ h′(vε(s)) +
(
vε(s)− Cε

ε

)
. (4.10)

Taking into account the properties of h (cf. (2.2)) and that lims→0+ Tε(s) = 0, we have
Cε = H. If the assumption that p̃ε(0) = 0 seems unmotivated, we could simply use C = H

from the start and choose appropriate solutions of (3.4 - ii): that is, regard p̃ε(0) = 0 as a
boundary condition for pε on the cavity. In view of traction free cavity and the properties
of h (cf. (2.2)), we would then obtain vε(0) = H for every ε.

We now proceed towards a solution to (4.7). Equation (4.7) has a regular singular
point at s = 0. We wish to solve with initial conditions

φε(0) = a φ̇ε(0) = 0 Tε(0) = 0. (4.11)

The traction free cavity condition is responsible for the latter two conditions. All three
are necessary to establish existence and uniqueness to (4.7, 4.11) with it’s singularity at
s = 0. With these initial conditions, it is natural to write (4.7) as an equivalent first order
system with dependent variables Tε and φε. Thus consider

Ṫε(s) = Pε(Tε(s), φε(s), s)

φ̇ε(s) = Qε(Tε(s), φε(s), s),
(4.12)
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where

Pε(Tε(s), φε(s), s) =
s3

φ2
ε

Rε − 2
[
Q2
ε

s2

φε
3 −

1
φε

]

Rε(Tε(s), φε(s), s) = 2(sQε − φε)
s3 +Qεφε

3
[
h′′
(
v̂ε

(
Tε,

s
φε

))
+ 1

ε

]
s6 − s4 − φε4

[
h′′
(
v̂ε

(
Tε,

s
φε

))
+ 1

ε

]
Qε(Tε(s), φε(s), s) =

{
s

φε

}2

v̂ε

(
Tε,

s

φε

)
.

The system (4.12) is obtained by differentiating (4.10) and using (4.7) several times to-
gether with the following definition of v̂ε. The function v̂ε is a C2(R2,R+) function which
will play a crucial role in the passage to the limit. The idea is that, for any ε , given a
value of the Cauchy stress, φ , and s, we want to be able to recover the specific volume
v(s) and hence φ̇(s) which together with φ and s give that value of the stress. We manip-
ulate the particular algebraic structure of the equation which relates the Cauchy stress to
v, φ, s, and ε. Specifically, define Êε : R+ ×R→ R as follows

Êε(v, w) = vw4 + h′(v) +
1
ε

(v −H).

For each w ∈ R, Êε(·, w) is surjective (cf. (2.2)) and hence there exists v̂ε : R2 → R+ such
that for every E,w ∈ R,

Êε (v̂ε(E,w), w) = E.

Also, (2.2) implies Ê ∈ C2(R+×R,R) and the derivative of Êε with respect to v is greater
then 0. Thus by the Implicit Function Theorem, v̂ε ∈ C2(R2,R+). By construction we
note that if Tε(s), φε(s) are as in (4.10), then

v̂ε

(
Tε(s),

s

φε(s)

)
= vε(s) =

(
φε(s)
s

)2

φ̇ε(s).

The initial conditions corresponding to (4.12) are

φε(0) = a Tε(0) = 0. (4.13)

The proofs of the following propositions follow from the respective propositions in [9].
We make a few remarks for each proof.

Proposition 4.1. For every ε > 0 there exists a unique solution to (4.12) and (4.13) and

hence to (4.7, 4.11) on some interval [0, s0ε ]. Moreover on [0, s0ε ],

φ̇ε(s) > 0, φ̈ε(s) > 0, s2 − 1−
(
φε
s

)4(
h′′(vε(s)) +

1
ε

)
< 0, (4.14)

φ̇ε(s) <
φε(s)
s

, v̇ε(s) ≥ 0, vε(0) = H. (4.15)

Proof: The first part follows from the standard existence and uniqueness theorem in
ordinary differential equations. The second inequality of (4.15) follows from differentiating
vε(s) and using (4.7).

11



Proposition 4.2. Solution can be extended uniquely to a maximal interval of existence

[0, sMε
) where sMε

< ∞ is precisely where the denominator of (4.7) is 0. Moreover we

have,

φε(s) ∈ C1([0, sMε
],R) ∩ C2([0, sMε

),R),

and (4.14, 4.15) hold for all s ∈ [0, sMε).

Proof: Continuation of the solution is by the usual argument. Note that the inequali-
ties φ̇ε > 0 and φ̈ε > 0 imply that both φε and φ̇ε must tend to some limit as s approaches
sMε

. The first inequality of (4.15) follows by uniqueness and the fact that for any c > 0, cs
is a solution to (4.7). This inequality implies that φε and φ̇ε must tend to finite limits as s
approaches sMε

. Finally, sMε
< ∞ follows from assuming otherwise and concluding with

the aid of the first inequality of (4.15), that
(
φε
s

)4 (
h′′(vε(s)) + 1

ε

)
is bounded from below

and above on [s0ε ,∞). This contradicts the fact that (4.14 iii) holds on [0, sMε
).

Proposition 4.3. For every ε > 0, either

φ̇ε(sMε) =
φε(sMε)
sMε

,

or there exists sJε < sMε
s.t. φ̇ε(sJε) <

φε(sJε )
sJε

and the Rankine Hugoniot jump conditions

are satisfied at sJε for φ̇ε+ = φε(sJε )
sJε

and φ̇ε− = φ̇ε(sJε). That is,(
s2
Jε − 1− 1

ε

(
φε(sJε)
sJε

)4
)(

φ̇ε+(sJε)− φ̇ε−(sJε)
)

=
(
φε(sJε)
sJε

)2

(h′(vε+)− h′(vε−)).

Proof: Assume that equality fails and hence φ̇ε(sMε) <
φε(sMε )
sMε

. Let λMε = φε(sMε )
sMε

.
Define

F (s) := −

(
s2 − 1− 1

ε

(
φε(s)
s

)4
)(

φ̇ε(s)− φ̇ε(s)
)

(
φε(s)
s

)2
(
h′

((
φε(s)
s

)3
)
− h′

((
φε(s)
s

)3

φ̇ε(s)

))
.

We apply the Intermediate Value Theorem to F on the interval [0, sMε
]. Here it is crucial

that the third derivative of h is always negative.

Define λε = φε(sMε )
sMε

in the first case of Prop. 4.3 and λε = φε(sJε )
sJε

in the second.
Define

sε =
{
sMε

if φ̇ε(sMε
) = φε(sMε )

sMε
sJε otherwise.

(4.16)
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We use this λε to construct a φε defined and continuous for all s ≥ 0 and piecewise C2[0,∞]
as our candidate for a solution of (3.4) via (3.8). Precisely, define

φε(s) =
{

previous φε(s) if s < sε
λεs if s ≥ sε.

Note the abuse of notation regarding the definition of φε. Since

H ≤ vε(s) = φ̇ε(s)
(
φε(s)
s

)2

≤
(
φε(s)
s

)3

, we have λε ≥ H
1
3 . (4.17)

Applying the Mean Value Theorem to (4.8), we obtain

s2
Jε = 1 +

(
φε(sJε)
sJε

)4(
h′′(cε) +

1
ε

)
, (4.18)

where cε ∈ (vε(sJε), λ
3
ε). In view of (4.17), (4.18), and Proposition 4.2, we have

sε →∞ as ε→ 0.

Theorem 4.4. Let

uε(x, t) =
{
φε(s)
s x if t > 0

λεx if t = 0

pε(x, t) =

{
φ̇ε(

φε
s )2−H
ε if t > 0

λ3
ε−H
ε if t = 0,

then for each ε > 0, (uε(x, t), pε(x, t)) is a weak solution of (3.4).

Proof: It is clear that this choice of pε gives a weak solution to the second equation.
With this choice, we are in the situation of the Spectors so their proof applies. We make
a few points. By Lemma 3.2, uε is a motion. Let

Iδ =

T∫
α

∫
Bρ\Bδ

[∇ψ · Sε(∇uε)− ψt · uεt] dx dt = 0,

where the support of ψ is contained in Bρ × [α, T ] for some α > 0 and ρ > 0. We show
Sε(∇uε(·, t) ∈ L1

loc(R
3) by using (4.4), the condition of zero traction on the cavity, and

the fact that sΦ̂ε2 ∈ L1((0, sε),R). By Lebesgue dominated convergence, it suffices to show
Iδ → 0 as δ → 0. This is done by breaking up the region of integration into pre and post
shock regions and then integrating by parts and using a form of the divergence theorem.
We use the Rankine Hugoniot jump conditions to obtain no contribution on the shock
itself, and of course use the fact that in regions of smoothness, uε via φε, actually solves
the equations. It then turns out that the Iδ is equal to an integral whose integrand is

13



bounded by the radial component of the Cauchy stress at s = δ
t and it is thus the zero

traction on the cavity which allows us to conclude Iδ → 0 since the integrand tends to zero
uniformly on [α, T ].

Let us pause to note a few properties of the motion uε. After t = 0, a spherical cavity
and a spherical shock form at 0 and propagate with speeds a and sε respectively. At any
time t > 0, if |x| > sεt, uε(x, t) = λεx; that is, material points remain fixed in relation to
t = 0. Moreover, let ρε = sεT . If |x| > ρε, uε(x, t) = λεx (x is left fixed) for all t ∈ [0, T ].
As was mentioned in the introduction, these motions have been shown to minimize energy
in the occurrence of shocks. The cavitation occurs as a reaction to the fixed displacement
properties of the motion in order to dissipate as much energy as possible, see [1] and [9].

Finally, we consider the incompressible system (3.5). The second equation of (3.5)
implies

det∇u(x, t) = λ3 or φ̇

(
φ

s

)2

= λ3.

For the first equation, we note that

S1(∇u) = S0(∇u) + h′(det∇u)adj∇u,

where S0(∇u) = ∂Φ0

∂F , Φ0 = 1
2Σλ2

i . Since det∇u is constant for isochoric motions, the
second component of S1 is of the form (constant)(∇u)−T . We absorb this into the arbitrary
hydrostatic pressure and find the reduction of

utt = div
[
S0(∇u) + p(x, t)(∇u)−T

]
for a solution with form (3.8) and p(x, t) = p̃(s). Using the same method as before, and
noting that for a radial motion of the form (3.6),

(∇u)−T =
1
λ3

[
rR

r

R
I +

(( r
R

)2

− rR
r

R

)
x

R
⊗ x

R

]
, (4.19)

we obtain the following system for φ(s) and p̃(s)

φ̈(s) =
2
s

(
φ̇(s)− φ(s)

s

)
+

˙̃p(s)
λ3

(
φ(s)
s

)2

s2 − 1

φ̇

(
φ

s

)2

= λ3.

We choose λ = H
1
3 .

14



These equations are readily solved with initial conditions φ(0) = a, φ̇(0) = 0, and
TI(0) = 0, where TI(s) is the radial component of the Cauchy stress at s, i.e.,

TI(s) = v(s)
(
φ

s

)−4

+ p̃(s) = H

(
φ

s

)−4

+ p̃(s).

Note that TI(0) = 0 implies p̃(0) = 0. The solution is

φ(s) = (Hs3 + a3)
1
3

p̃(s) =

s∫
0

{
2a3H

τ4

} Hτ2 + a3

τ3(
H + a3

τ3

) 7
3

 dτ. (4.20)

Let
p∗ = lim

s→+∞
p̃(s).

Note that p∗ <∞ .

Theorem 4.5. Let

u(x, t) =
{
φ(s)
s x if t > 0

H
1
3x if t = 0

p(x, t) =
{
p̃(s) if t > 0
p∗ if t = 0.

Then (u(x, t), p(x, t)) is a weak solution of (3.5).

Proof: The proof is similar to that of Theorem 4.4 and in fact, given the absence of
shocks, considerably easier.

5. INCOMPRESSIBLE LIMIT

We now proceed with investigating the behavior of the uε, via the φε, as ε tends to 0.
We have the following:

Theorem 5.1. φε(s) converges to φ(s) pointwise on [0,∞], uniformly on compact subsets,

where

φ(s) = (Hs3 + a3)
1
3 ,

and p̃ε(s) converges to p̃(s)
H where p̃(s) is the associated hydrostatic pressure with the above

isochoric motion for the equations of incompressibility, i.e., p̃(s) is given by (4.20).

Corollary 5.2. λε converges to H
1
3 .

Corollary 5.3. The shock strength φ̇ε(sJε)−
φε(sJε )
sJε

approaches 0 as ε tends to 0 .

The proof of the following lemma is standard in the theory of ordinary differential
equations, for example see Birkhoff and Rota [2].
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Lemma 5.4. Suppose α, s0 > 0. Consider the systems

ẋε = Fε(xε, s) and ẏ = F (y, s), (5.1)

together with xε(0) = x0 = y(0). Assume existence and uniqueness to both initial value

problems on [0, s0]. Let

A =
{

(x, s) ∈ Rn ×R
∣∣ s ∈ [0, s0], |x− y(s)| ≤ α

}
.

Suppose Fε(x, s) is Lipchitz continuous on A and converges uniformly to F (x, s) on A,

then xε(s) converges uniformly to y(s) on [0, s0].

Proof of Theorem 5.1 . Recall the system involving Tε, φε which was the basis for
existence and uniqueness of (4.11, 4.12).

φ̇ε = Qε(Tε, φε, s) Ṫε = Pε(Tε, φε, s).

Now consider the system

φ̇ = Q(T, φ, s) =
(
s

φ

)2

H

Ṫ = P (T, φ, s) =
s3

φ2

(
2(sQ− φ)

(
−Q
φ

))
− 2

(
Q2s2

φ3
− 1
φ

)
,

together with initial conditions φ(0) = a and T (0) = 0. This has unique solution

φ(s) = (Hs3 + a3)
1
3

T (s) = H

(
φ

s

)−4

+

s∫
0

2a3(Hτ2 + a3

τ3 )

τ4
(
H + a3

τ3

) 7
3
dτ

= H

(
φ

s

)−4

+
p̃(s)
H

,

(5.3)

where p̃(s) is given by (4.20). Let s0 > 0. Choose ε sufficiently small such that sε > s0

and let
A =

{
(ψ,E, s)

∣∣ s ∈ [0, s0], |φ(s)− ψ|2 + |T (s)− E|2 ≤ a

2

}
.

For (ψ,E, s) ∈ A, we show v̂ε(E, sψ ) is bounded uniformly in ε. Recall v̂ε is the function
defined on p. 12 which satisfies

εE = εv̂ε

(
E,

s

ψ

)(
ψ

s

)−4

+ εh′
(
v̂ε

(
E,

s

ψ

))
+ v̂ε

(
E,

s

ψ

)
−H. (5.4)

The left hand side of (5.4) is uniformly bounded for ε small and (E,ψ, s) ∈ A. Suppose
v̂ε(E, sψ ) is not uniformly bounded on A. For every B > H, there would exist ε and
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(E,ψ, s) ∈ A such that v̂ε(E, sψ ) > B. However for v̂ε > H, h′(v̂ε) > 0 and the right hand
side of (5.4) can be made arbitrarily large. Contradiction. Similarly, one can show that
v̂ε(E, sψ ) is uniformly bounded away from zero on A. It follows that

v̂ε

(
E,

s

ψ

)
→ H

uniformly on A. Hence, Qε → Q and Pε → P uniformly on A. Applying Lemma 5.4 we
have φε(s) → φ(s) and Tε(s) → T (s) uniformly on [0, s0], and thus for ε small we have
(s, φε(s), Tε(s)) ∈ A for all s ∈ [0, s0]. Hence

vε(s) = v̂ε

(
Tε(s),

s

φε(s)

)
→ H

uniformly on [0, s0] and in view of (5.3) and (4.10) with Cε = H,

p̃ε(vε(s))→
p̃(s)
H

uniformly on [0, s0].

Proof of Corollary 5.2: φ(s)
s = (H + a3

s3 )
1
3 approaches H

1
3 as s → ∞. Let δ > 0.

Choose s0 s.t. φ(s0)
s0
−H 1

3 < δ
2 . Choose ε sufficiently small s.t. sε > s0 + 1. We have

φε(s)
s
→ φ(s)

s

point wise on (0, s0]. Choose ε further small such that∣∣∣∣φε(s0)
s0

− φ(s0)
s0

∣∣∣∣ < δ

2
,

and hence ∣∣∣∣φε(s0)
s0

−H 1
3

∣∣∣∣ < δ.

Since φε(s)
s ≥ λε and λε ≥ H

1
3 ,

H
1
3 ≤ λε ≤

φε(s0)
s0

and so λε −H
1
3 < δ.

Proof of Corollary 5.3: Suppose shock strength (SSε) does not approach zero as ε→ 0.
There exists a sequence εn → 0 s.t.

SSεn = φ̇εn(sJεn )−
φεn(sJεn )
sJεn

= φ̇εn(sJεn )− λεn → α < 0.
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By Corollary 5.2, there exists a constant b > 0 such that

H
1
3 − φ̇εn(sJεn ) > b or φ̇εn(sJεn ) < H

1
3 − b

for n sufficiently large. Choose such an n. Let β be the s coordinate of the intersection
of the line through (0, a) with slope H

1
3 − b and the line through (0, 0) with slope H

1
3 .

By (4.14 ii), φ̇εn(s) < H
1
3 − b for s < sJεn and by (4.17), λ3

εn > H
1
3 . Thus by the

construction of φεn and the Mean Value Theorem, sJεn ≤ β for all n sufficiently large.
Contradiction.

Theorem 5.1 and Corollary 5.2 imply that uε(x, t) converges pointwise to u(x, t) for
(x, t) ∈ R3 × [0, T ] and converges uniformly on compact subsets of R3 × (0, T ]. To prove
the uniform convergence on compact subsets of R3 × [0, T ], we need the following:

Proposition 5.5. φε(s)
s converges uniformly to φ(s)

s on [1,∞).

Proof: We note that as s tends to infinity, φ(s)
s tends to H

1
3 . Let δ > 0. Choose s0 > 1

s.t. φ(s)
s −H

1
3 < δ

2 for all s ≥ s0. There exists ε1 s.t.

φε(s0)
s0

− φ(s0)
s0

<
δ

2
for ε < ε1.

Thus φε(s0)
s0
−H 1

3 < δ for ε < ε1. The inequality φ̇ε <
φε(s)
s implies φε(s)

s is a decreasing
function of s. So for ε < ε1 and s > s0 we have

H
1
3 <

φε(s)
s

<
φε(s0)
s0

< δ +H
1
3 and H

1
3 <

φ(s)
s

< δ +H
1
3 ,

which inturn imply that ∣∣∣∣φε(s)s
− φ(s)

s

∣∣∣∣ < δ.

By Theorem 5.1, there exists ε2 such that if ε < ε2∣∣∣∣φε(s)s
− φ(s)

s

∣∣∣∣ < δ for s ∈ [1, s0].

Now choose ε < min(ε1, ε2). For s ∈ [1,∞], we have∣∣∣∣φε(s)s
− φ(s)

s

∣∣∣∣ < δ.

Finally, let Λ be a compact subset of R3 × [0, T ]. Without lose of generality assume
Λ = Bρ × [0, T ] where Bρ is the ball of radius ρ in R3. Λ = Λ1 ∪ Λ2 where

Λ1 = { (x, t) ∈ Λ
∣∣ |x| > t } and Λ2 = { (x, t) ∈ Λ

∣∣ |x| ≤ t }.
18



On Λ1, we have s = |x|
t > 1. If t = 0, |uε − u| = |λε −H

1
3 ||x| and hence Corollary 5.2

implies uniform convergence on {(x, t) ∈ Λ1 | t = 0}.
If t > 0, we have

|uε − u| =
∣∣∣∣φε(s)s

− φ(s)
s

∣∣∣∣ |x|,
and hence uniform convergence on {(x, t) ∈ Λ1 | t > 0} follows from Proposition 5.5. On
Λ2, we have s ≤ 1. For {(x, t) ∈ Λ2 | t > 0},

|uε − u| =
∣∣∣∣φε(s)s

− φ(s)
s

∣∣∣∣ |x| = t|φε(s)− φ(s)| < T |φε(s)− φ(s)|,

and uniform convergence on Λ2 follows from Theorem 5.1. The proof of Theorem 3.3 is
now complete.

6. REMARKS

1. One unresolved problem is the behavior of pε at t = 0. One expects

pε(x, 0)→ p(x, 0)
H

=
p∗
H
,

that is,
λ3
ε −H
ε

→ p∗
H
.

This is not clearly true or false from the analysis given so far. Our method of addressing
this problem is as follows. We are interested in the convergence of

vε(s)−H
ε

(6.1)

for large s. (6.1) is continuous everywhere except possibly at sε where it may encounter
a jump to its constant state λ3

ε−H
ε . By Corollary 5.3 this jump tends to zero. By Prop

4.2, (4.17),(4.18), and the definition of sε, we have sε = O
(

1√
ε

)
, and hence one should

examine the limiting behavior of the function in (6.1) evaluated at 1√
ε
. By (4.10) it

suffices to examine the convergence of Tε
(

1√
ε

)
and φε

(
1√
ε

)
. To prove convergence one

could rescale system (4.12) with τ =
√
εs and show that solutions for the resulting system

in τ converge on compact sets.
2. We now address the possibility of additional terms of the form

|detF −H|q

qε
. (6.2)
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The equation of motion becomes

uεtt(x, t) = div
(
S1(∇uε(x, t)) +

|det∇uε −H|q

qε
(adj∇uε)T

)
. (6.3)

If q 6= 2, we are not able, as we were for q = 2, to simply write (6.3) as an equivalent
system in terms of uε and the extra pressure term resulting from the addition of (6.2).
Note that even if the absolute values were not present in (6.2) and we considered an extra
equation for the additional pressure of the form

∂t[(εpε)
1
q − det∇uε] = 0,

we would find that the jump conditions for a piecewise smooth solution would be different.
Thus we abandon this somewhat formal route and consider the behavior of solutions to
(6.3) as ε tends to zero.

Suppose 0 < q ≤ 1. The radial component of the Cauchy stress for a solution of the
form (3.10) is

Tε(s) = vε(s)
(
φε
s

)−4

+ h′(vε(s)) +
(
|vε(s)−H|q−1

ε

)
HH ,

where HH is the Heavy side function with jump discontinuity at s = H. Since q − 1 ≤ 0,
we see that for any ε and choice of lims→0+ vε(s), lims→0+ Tε 6= 0. Thus the crucial
boundary requirement (traction free cavity) is not attainable.

Suppose q > 2. Recall that the joining of our solution φε to a line was possible
given that the third derivative of the extra forcing term had no positive contribution (cf.
Proposition 4.3). Thus the cases with q > 2 are left unexplored.

Suppose 1 < q < 2. In these cases, all of our analytical results hold. That is, by
adding terms of the form (6.2) with 1 < q < 2, we obtain solutions which converge to
(4.20) – the motion converges to u and(

|vε(s)−H|q−1

ε

)
HH converges to p̃(s).

We make the following comments on the important steps in the argument. In the ordinary
differential equation, (4.7), 1

ε is replaced with

q − 1
ε|vε(s)−H|2−q

.

Joining the solution to a shock is possible because the derivative of the above with respect
to vε is negative for vε > H (we are again able to show v̇ε > 0 and hence vε > H through
out the motion). The inequality(

φε
s

)4 1
(vε(s)−H)2−q >

(
φε
s

)
vε(s)

(vε(s)−H)2−q >

(
φε
s

)
vε(s)

1+q
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implies sMε , sJε tend to infinity as ε→ 0 and hence sε tends to infinity. In passing to the
limit, we again have v̂ε converging uniformly to H on a compact neighborhood of the limit
solution. Together with Lemma 5.4, this implies the convergence of solutions.

Finally we remark that if we deleted the absolute value signs and considered q = 1,
our solutions would compress so rapidly that in the limit we would obtain a solution with
vanishing determinant of the deformation gradient. That is, a solution of the form

u(x, t) =
(
a3

s3

)
x = a3t.

3. The shocks satisfy the Lax admissibility condition. This means that shock speed
must lie strictly between the characteristic speeds. For our system the characteristic speeds
are the positive square roots of the eigenvalues of the acoustic tensor (see page 5) where
the vector v is the normal to the radial shock, i.e. x

R (see [9] for more details).
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