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ABSTRACT. Gamow’s simple liquid drop model of
an atomic nucleus recently captured the attention of
mathematicians and has inspired numerous advances
and open questions in geometric and variational
analysis.

“A mathematician friend of mine, the late S. Banach,
once told me, ‘The good mathematicians see analogies
between theorems or theories; the very best see analogies
between analogies.’ This ability to see analogies between
models for physical theories Gamow possessed to an
almost uncanny degree.”

—Stanislaw Ulam
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Gamow’s Liquid Drop Model
The 1920s may arguably be called the Golden Age of
quantum mechanics. An explosive development of this
emerging field of physics drew scores of aspiring re-
searchers, one of whomwas the young Russian theoretical
physicist George Gamow (see Figure 1, page 1276 and
sidebar on page 1278.) His name shot to fame when in
1928, at the age of twenty-four, he published a paper in
which he explained the phenomenon of alpha-decay as
a quantum tunneling effect. In the words of Hans Bethe,
the results of this paper constituted “the first successful
application of quantum theory to nuclear phenomena.” In
the paper, Gamow also acknowledged a little help from
Russian mathematician N. Kochin, admitting himself that
he was “not good in mathematics.”

In 1928 Gamow [1] made another important discovery
that has become forever linked with his name. During his
stay in Copenhagen with Niels Bohr in the fall of that year,
Gamow conceived of what is now known as the liquid drop
model of the atomic nucleus. This simple model, which
was soon refined and further developed by Heisenberg,
von Weizsäcker, and Bohr after the discovery of neutrons
in 1932, treats the collection of protons and neutrons
inside an atomic nucleus as an incompressible, uniformly
charged fluid. With only a few fitting parameters and an
assumption that the nuclei are spherical, this model was
able to accurately predict the mass defect curve—the loss
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Figure 1. George Gamow (portrait, 1932). At the age
of twenty-four, George Gamow introduced the liquid
drop model that successfully explained the basic
characteristics of the atomic nuclei and predicted
nuclear fission as a result of an instability of large
spherical nuclei with respect to nonspherical
distortions.

ofmass or energy when nucleons come together to bind in
the nucleus as a function of the number of nucleons. Thus,
indirectly, the model also predicted the spherical shape
of most nuclei. The model’s ultimate triumph came from
explaining the phenomenon of nuclear fission in terms
of an instability of large spherical nuclei with respect to
nonspherical distortions (Bohr and Wheeler, 1939). The
model has also been extensively used in astrophysics
to describe exotic phases of nuclear matter at ultrahigh
densities found in neutron stars (Baym, Bethe, and Pethick,
1971).

In the modern rendition of Gamow’s liquid drop model
the attractive short-range nuclear force gives rise to
excess surface energy due to lower nucleon density near
the nucleus boundary, while the presence of positively
charged protons gives rise to a repulsive Coulombic force.
Since the Coulomb energy of a proton in a nucleus is
much smaller than its average kinetic energy determined
by strong nuclear forces, to a good approximation the
spatial distribution of charge in a nucleus is uniform.
Therefore, mathematically the energy of a nucleus within
the model may be written (up to shape-independent bulk
terms and after a suitable nondimensionalization) as

(1) 𝐸(Ω) ∶= Per(Ω) + 1
8𝜋 ∫

Ω
∫
Ω

1
|𝑥 − 𝑦| 𝑑𝑥𝑑𝑦,

where the nucleus Ω ⊂ ℝ3 is a measurable set with fixed
volume |Ω| = 𝑚. We refer to 𝑚 as “mass,” which is a
parameter proportional to the number of nucleons in
a nucleus. Per(Ω) is the perimeter of the set Ω, i.e., a
suitably generalized notion of the surface measure of
𝜕Ω.1 The ground state of a nucleus with a given number
of nucleons is then the minimizer of 𝐸, i.e., the set Ω that
achieves the least energy,
(2) 𝑒(𝑚) ∶= inf {𝐸(Ω)∶ |Ω| = 𝑚},
for a given mass 𝑚.

a marriage (or
rather divorce)
of two older
geometric
problems

Ultimately, the purpose of
this liquid drop model is to
predict 1) the shape of nu-
clei, 2) the nonexistence of
arbitrarily large nuclei, and
3) the existence of a nucleus
with the least energy per nu-
cleon (the element having
the greatest nuclear bind-
ing energy). It is precisely
the competition between the
forces which try tominimize

the surface area of the nucleus and those which try to
spread the nuclear charges apart that makes answering
these questions nontrivial.

Gamow’s liquid drop problem is a marriage (or rather
divorce) of two older geometric problems:
(1) the Classical Isoperimetric Problem of minimizing

the perimeter of a body with fixed mass 𝑚; and
(2) the Problem of the Equilibrium Figure of a self-

gravitating fluid body of mass 𝑚.
For the first problem, whose roots go back to antiquity,
Schwarz demonstrated the minimizing property of balls
in 1884 for piecewise-smooth sets in three dimensions.
The complete solution was given in 1958 by De Giorgi,
who showed that the unique minimizer of the perimeter
functional among all measurable sets with fixed mass
is given by a ball. Starting with Newton (1687), the sec-
ond problem attracted the attention of many celebrated
mathematicians. Assuming zero angular momentum, the
total potential energy of a self-gravitating fluid body,
represented by a measurable set Ω ⊂ ℝ3, is given, up to a
constant, by

(3) −∫
Ω
∫
Ω

1
|𝑥 − 𝑦| 𝑑𝑥𝑑𝑦, |Ω| = 𝑚,

where −|𝑥−𝑦|−1 is the potential resulting from the gravi-
tational attraction between two point masses at positions
𝑥 and 𝑦 in the fluid. Lyapunov (1886) made the first
mathematical breakthrough by establishing that every
regular minimizer of (3) is a ball. Poincaré commented
on Lyapunov’s proof in 1887 and went on to make the
problem famous in his 1902 treatise Figures d’Equilibre
d’une Masse Fluide. Almost twenty years later, Carleman
(1919) showed that balls are indeed minimizers. Yet it
was not until the work of Lieb (1977) that a complete
solution based on strict Riesz rearrangement inequality

1See “WHAT IS…Perimeter?” in the October 2017 Notices.
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became available. Steiner symmetrization plays a central
role in the analysis of both problems.

Figure 2. In Gamow’s liquid drop problem, the
two terms in the energy are in direct competition:
the perimeter term favors a single ball, while the
Coulomb term favors splitting. For small values of
𝑚 the perimeter wins completely, whereas for large
values of 𝑚 the Coulomb term dominates, resulting
in fission.

Thus, up to translations, the ball of mass 𝑚 is the
unique minimizer in the two problems above. Gamow’s
liquid drop model, on the other hand, puts them in direct
opposition, with balls being best for the perimeter term
but worst for the Coulomb term. The relative strength of
the two terms is controlled by the magnitude of 𝑚. One
can readily see the effect of the size of 𝑚 as to which
term dominates from a simple scaling argument. Namely,
by looking at 𝜆Ω for any 𝜆 > 0 we see that

𝜆−3𝐸(𝜆Ω) = 𝜆−1 Per(Ω) + 𝜆2

8𝜋 ∫
Ω
∫
Ω

1
|𝑥 − 𝑦| 𝑑𝑥𝑑𝑦.

Thus the energy per nucleon 𝜆−3𝐸(𝜆Ω) is dominated by
the perimeter term for small values of 𝜆 > 0 and by the
Coulomb term for large values of 𝜆 > 0 (see Figure 2).
Therefore, we would be led to expect that the unique
solution (up to translations) of problem (2) is given by
a ball when 𝑚 is small, whereas this problem does not
have a solution when 𝑚 is large. Also, for fixed Ω there is
a unique value of 𝜆 at which the energy per nucleon (the
negative of the binding energy) is minimum.

If one is to believe that Gamow’s liquid drop model
correctly captures the ground state configurations of the
atomic nuclei, then nature tells us that the solution of
the liquid drop problem is always given by a ball. In
this case an explicit calculation gives the value of 𝑚 =
40𝜋
3 (21/3 + 2−1/3 − 1) ≈ 44.1, beyond which minimizers

no longer exist. This critical value is such that one ball
of mass 𝑚 has exactly the same energy as two balls with
mass 1

2𝑚 infinitely far apart (Frank and Lieb, 2015). Under
the same assumption, the minimum energy per unit mass
is attained for 𝑚 = 10𝜋 ≈ 31.4.

Although Gamow’s liquid drop model has been very
well known among physicists, it is surprising that it did
not receivemuchattention in themathematics community
until recently. In 2010 the liquid drop problem resurfaced
in an asymptotic study by Choksi and Peletier [2], [3]
of the Ohta-Kawasaki functional arising in a completely
unrelated field of polymer physics. In fact, it is clear that
the liquid drop problem represents a prime example of
a problem of pattern formation from energetic compe-
titions, which is an area driving much work in modern
calculus of variations.

Global Minimizers of the Liquid Drop Problem
Global existence for minimizers of 𝐸(Ω) with |Ω| = 𝑚
on unbounded domains is nontrivial because of the
lack of compactness of minimizing sequences. What we
know so far regarding the problem associated with 𝑒(𝑚)
can be summarized by the following theorem. Here we
consider the minimization problem (2) over all sets of
finite perimeter (Caccioppoli sets).

Theorem 1. There exist constants 0 < 𝑚0 ≤ 𝑚1 ≤ 𝑚2
such that:
(1) If 𝑚 ≤ 𝑚1, then there exists a minimizer.
(2) If 𝑚 ≤ 𝑚0, then the unique minimizer is a ball.
(3) If 𝑚 > 𝑚2, then there is no minimizer.

The result in this theorem, in this form, was first
provided by Knüpfer and Muratov [6] in 2014. The exis-
tence of solutions for certain values of 𝑚 was already
noted by Choksi and Peletier [2] in 2010 where the
strict concavity of 𝑒(𝑚) for small values of 𝑚 was also
established. Knüpfer and Muratov took a more direct
approach and proved that for sufficiently small mass
every minimizing sequence can be replaced by another
minimizing sequence consisting of sets with uniformly
bounded diameter. This uniform bound provided the
necessary compactness for the minimizing sequence, and
with the lower semicontinuity of 𝐸(Ω) with respect to
the 𝐿1-topology the existence of minimizers follows from
the direct method of the calculus of variations. They also
showed that minimizers of 𝐸(Ω) are so-called “quasi-
minimizers” of the perimeter functional and hence have
smooth boundaries. Implementing the sharp quantitative
isoperimetric inequality, proved by Fusco, Maggi, and
Pratelli (2008), combined with the regularity, Knüpfer and
Muratov proved that balls are, up to translations, unique
minimizers of 𝐸(Ω) for sufficiently small mass. In order
to prove that the problem does not have a solution for
large masses, the authors first showed that minimizers
are connected. However, they also showed that any con-
nected set with sufficiently large mass can be divided into
two large pieces by a suitable plane. Moving these pieces
far apart from each other, they compared the energy of
the transformed disconnected set with the original con-
figuration and concluded the proof via a contradiction
argument.
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George Gamow
George Gamow (1904–1968) was a Russian-American theoretical physicist who
introduced some of the most influential ideas to twentieth-century science. Born in
1904 in Odessa, Ukraine, Gamow graduated from Leningrad University in 1926, where
together with fellow students L. Landau and D. Ivanenko he founded the group of the
Three Musketeers to discuss the latest topics in theoretical physics, in addition to
fooling around with friends and generally having a good time.

In the summer of 1928, Gamow undertook his first trip abroad on a four-month
fellowship to the University of Göttingen, where he met many of the pioneers of
quantum theory. Importantly, the trip also gave Gamow an opportunity to visit
N. Bohr in Copenhagen and E. Rutherford at Cambridge, which was instrumental
for the development of his quantum mechanical ideas in connection with nuclear
phenomena.

I shall never forget the first time he appeared in Göttingen—how could
anyone who has ever met Gamow forget his first meeting with him—
a Slav giant, fair-haired and speaking a very picturesque German; in
fact he was picturesque in everything, even in his physics.

—L. Rosenfeld
Gamow returned to the Soviet Union as a sort of celebrity. Yet the political atmosphere
in the country had been rapidly changing, and Gamow felt it personally when in 1931
he was denied an exit visa to go to an international nuclear physics congress in Rome.
From that time on, Gamow became obsessed with the desire to escape the confines of
the Soviet Union, which in his mind had begun to interfere with the free movement

of people and ideas across state borders. After an unsuccessful attempt to cross the Black Sea from Crimea into
Turkey with his wife on a kayak, Gamow finally managed to obtain permission to leave the Soviet Union in 1933 for
a conference, a trip from which he never returned.2 In 1934, Gamow settled at George Washington University in the
United States, where he spent the next twenty-two years, the most productive period of his scientific career. He
then moved to the University of Colorado, Boulder, where he worked until his death in 1968.

Gamow never received a Nobel Prize in physics, although his greatest achievements included the Big Bang theory,
the theory of stellar structure and evolution, and a key insight into the nature of the genetic code. To the general
public, however, Gamow is best known as the author of a popular science series, The Adventures of Mr. Tompkins,
explaining the fundamental concepts of modern physics to millions of readers.a

aThis issue’s BookShelf (page 1327) features Gamow’s popular text, One Two Three…Infinity: Facts and Speculations of Science.

Julin (2014) independently proved that for 𝑚 suffi-
ciently small the ball of mass 𝑚 is the unique minimizer
for 𝑒(𝑚), up to translations. His approach is to use
a stronger version of the quantitative isoperimetric in-
equality. This version measures the difference between
perimeters of a set and a ball of the same mass in terms
of the oscillations of the boundary quantified by the
𝐿2-norm of the difference of generalized outward normal
vectors.

Independently, Lu and Otto (2014) also proved that for
sufficiently large 𝑚, the energy 𝐸(Ω) does not admit a
minimizer. By the subadditivity of 𝑒(𝑚),

𝑒(𝑚) ≤ 𝑒(𝑚′) + 𝑒(𝑚−𝑚′), 0 < 𝑚′ < 𝑚,
2The other members of the Three Musketeers group did not fare
so well: L. Landau was arrested in 1938 and nearly died after
one year in detention; D. Ivanenko was sentenced in 1935 to a
three-year term in labor camps, substituted with a two-year exile
in Tomsk after serving one year in Gulag; M. Bronshtein, another
key member of the Leningrad group, was executed by NKVD in
1938.

they obtain an upper bound of the form

𝑒(𝑚) ≤ 𝐶𝑚, 𝑚 > 𝑚0.

In order to refine the lower bound of this scaling estimate,
Lu and Otto prove a density estimate which states that a
minimizer of 𝐸(Ω) cannot be thinner than order 1 in 𝑚,
and combining this with the connectedness ofminimizers,
they obtain that for large values of 𝑚,

∫
Ω
∫
Ω

1
|𝑥 − 𝑦| 𝑑𝑥𝑑𝑦 ≥ 𝐶𝑚 log𝑚.

Together with the upper bound this estimate yields a
contradiction when 𝑚 is sufficiently large. More recently,
via a very simple averaging technique applied to a cutting
argument, Frank, Killip, and Nam (2016) proved that if
𝑚 > 32𝜋 ≈ 100.53, then the problem does not admit a
minimizer.
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The Liquid Drop Model on the Torus and the Ohta-Kawasaki Functional
In the astrophysics context, one often considers the liquid drop model on the three-dimensional flat torus 𝕋3

ℓ of
sidelength ℓ. Specifically, for Ω ⊂ 𝕋3

ℓ with |Ω| = 𝑚 one considers the energy

(4) 𝐸ℓ(Ω) ∶= Per(Ω,𝕋3
ℓ) +

1
2 ∫

𝕋3
ℓ

(𝜒Ω −𝜌)(−Δ)−1(𝜒Ω −𝜌)𝑑𝑥,

where Per(Ω,𝕋3
ℓ) denotes the perimeter of Ω relative to 𝕋3

ℓ, 𝜒Ω is the characteristic function of Ω, and 𝜌 = 𝑚/ℓ3 is
the density of the neutralizing background charge supplied by electrons. While this problem is well known in the
studies of the structure of nuclear matter in neutron stars, it only recently received attention in the mathematics
literature as the sharp interface version of the Ohta-Kawasaki functional

(5) ℰℓ(𝑢) ∶= ∫
𝕋3
ℓ

(𝜀
2|∇𝑢|2 + 1

4𝜀(1 − 𝑢2)2 + 1
2(𝑢 − �̄�)(−Δ)−1(𝑢 − �̄�)) 𝑑𝑥, 1

ℓ3 ∫
𝕋3
ℓ

𝑢𝑑𝑥 = �̄�,

which is a diffuse interface version of the energy in (4) with the asymmetry parameter �̄� ∈ (−1, 1) fixed and
𝜀 ≪ 1. The energy in (5) was introduced in 1986 by Ohta and Kawasaki as a simple model for self-assembly of
diblock copolymer melts, even if its nuclear physics analog goes back all the way to the classical 1935 paper of von
Weizsäcker. It can also be considered as a tool for numerical studies of (4).

Unlike the liquid drop problem posed on all space, the energy 𝐸ℓ always admits a minimizer, and a question
closely related to the liquid drop problem is what happens to those minimizers when ℓ → ∞ and/or𝑚 → 0. Here the
finiteness of the domain forces minimizers to always balance the effects of the perimeter and the Coulomb terms.
In fact, numerically the putative global minimizers of the Ohta-Kawasaki functional appear to be periodic, with the
interfaces within each intrinsic periodic cell resembling a constant mean curvature surface; e.g., a lamella, sphere,
cylinder, double-gyroid, etc., as in Figure 3. Thus numerics suggest a separation of the effects of the perimeter and
the nonlocal term: the latter sets an intrinsic periodicity, while the former dictates the interface structure within
the period cell. This separation has been exploited in a number of papers by Ren and Wei (2007, 2008, 2009) and
by Cristoferi (2016) for constructing critical points of variants of (4) perturbatively. To gain further insights into
this separation, an asymptotic analysis was presented by Choksi and Peletier [2], [3] and by Knüpfer, Muratov, and
Novaga [4] for the droplet regimes wherein 𝜌 → 0. Here, Gamow’s liquid drop model (on all ℝ3) emerged as the
leading-order energy describing the shape of a single droplet, ignoring the next-order effects of the neighboring
droplets.

Figure 3. Level sets of the computed local minimizers of Ohta-Kawasaki energy ℰℓ in (5) as the value of �̄� is
varied.

While one may conjecture that it is possible to choose
𝑚0 = 𝑚1 = 𝑚2, based on physical evidence, to date it
remains open to prove or disprove whether any (or all) of
the constants 𝑚𝑖, 𝑖 = 0, 1, 2, may be pairwise equal. One
result in that direction was obtained by Knüpfer, Muratov,
and Novaga [4] in 2016, who show that the set

ℐ = {𝑚 > 0∶ 𝑒(𝑚) is attained}
is a closed (hence compact) subset of (0,∞).

They establish this by proving Lipschitz continuity of
𝑒(𝑚) on compact subsets of (0,∞) combined with the
𝐵𝑉-compactness of sequences of generalized minimizers.
Here a generalized minimizer of 𝐸(Ω) refers to a finite
collection of sets of masses 𝑚𝑗 adding up to 𝑚, where
each set is a minimizer for 𝑒(𝑚𝑗). Around the same time,
Frank and Lieb (2015) obtained the same result, using a
diameter bound of the form diamΩ ≤ 𝐶𝑚 for minimizers
of 𝐸(Ω), along with a concentration-compactness lemma,
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Figure 4. Dumbbell-shaped critical points of the
liquid drop model for several values of the fissility
parameter 𝛼 = 𝑚/(40𝜋) obtained from the numerical
solution of (6) by Strutinsky, Lyashchenko, and Popov
(1963): a three-dimensional schematic (a), profile
cross-sections in the first quadrant (b).

particularly well-suited to the liquid drop problem, for
a sequence of sets of uniformly bounded perimeter.
Together with strict concavity of 𝑒(𝑚) for 𝑚 ≤ 4𝜋, these
results also yield the existence of a minimizer in this
range of masses.

Finally, referring back to the third purpose of the liquid
drop model, existence of the tightest bound nucleus was
established in 2016 by Knüpfer, Muratov, and Novaga [4],
who show that there exists 𝑚∗ ∈ ℐ such that

𝑓∗ ∶= inf
𝑚∈ℐ

𝑓(𝑚) = 𝑓(𝑚∗), 𝑓(𝑚) ∶= 𝑒(𝑚)
𝑚 .

The proof of this fact follows from Lipschitz continuity of
the energy-per-particle 𝑓(𝑚) on the set [𝑚0,∞) combined
with compactness of the set ℐ. In fact, the analysis further
shows that the quantity 𝑓∗ appears as the leading order
term in the asymptotic behavior of uniformenergy density
of minimizers of 𝐸ℓ(Ω) as mass 𝑚 → 0 and domain size
ℓ → ∞. Frank and Lieb (2015) also prove the same
existence result for 𝑓(𝑚) by relaxing the mass constraint
|Ω| = 𝑚 and considering inf0<|Ω|≤𝑚(𝐸(Ω)/|Ω|).

Critical Points and Local Minimizers of the Liquid
Drop Problem
One of the main physical motivations in the studies of
Gamow’s liquid drop model was to compute the minimal
energy required for nuclear fission. Bohr and Wheeler
(1939), following the suggestion of Meitner and Frisch
(1939), were the first to analyze the critical points of the
energy in (1). In particular, theywrote down the associated
Euler-Lagrange equation

(6) 2ℋ(𝑥) + 1
4𝜋 ∫

Ω

1
|𝑥 − 𝑦| 𝑑𝑦 = 𝜆,

where ℋ(𝑥) denotes the mean curvature of 𝜕Ω (positive
if Ω is convex) and 𝜆 is a Lagrange multiplier. Clearly, a
ball of mass𝑚 is always a solution of (6). However, as was
shown numerically in a series of papers from the 1940s
through the 1970s, many types of nonspherical solutions
to (6) are possible, including ovoid, dumbbell, pear-
shaped, and toroid nuclei. In fact, when the ball of mass
𝑚 passes the stability threshold of 𝑚 = 40𝜋 ≈ 125.66, it
bifurcates into a family of spheroids, first identified by
BohrandWheeler (1939), using formalbifurcationanalysis
near the distortion instability. Numerical continuation
studies of those solutions into the subcritical mass region

were carried out by several authors, but, surprisingly,
only one well-converged numerical study, by Strutinsky,
Lyashchenko, and Popov (1963), appears to exist to date;
see Figure 4.

Although mathematically it is not in the literature
whether suitable nonspherical distortions of balls are
critical points, using Lyapunov-Schmidt type reduction
methods Ren and Wei (2011, 2014) obtained existence
of solutions to the Euler-Lagrange equation which are
almost of the shape of single and double tori. However,
these more exotic patterns, as shown by Ren and Wei
(2017), are highly unstable in the sense of the second
variation of the energy. Earlier, oval-shaped solutions in
a two-dimensional version of the problem and spherical
shell solutions in three dimensions were constructed by
Ren and Wei (2009), with some numerical studies of
spherical shell and toroidal solutions previously carried
out by Wong (1973).

Obtaining quantitative information about (local) mini-
mizers through stability is the approach taken by Bonacini
and Cristoferi (2014), based on the explicit calculations of
the second variation of 𝐸(Ω) obtained by Muratov (2002)
and Choksi and Sternberg (2007). They generalize the
result of Acerbi, Fusco, and Morini (2013) for bounded
domains to the unbounded setting of the liquid drop
problem and prove that strictly stable critical points, i.e.,
sets for which the first variation of 𝐸(Ω) vanishes and
the second variation of 𝐸(Ω) is strictly positive-definite,
are local minimizers. That is, these patterns minimize
𝐸(Ω)with respect to competitors close in the 𝐿1-topology.
Applying this result to the ball of mass 𝑚, they conclude
that the ball is an isolated local minimizer if 𝑚 < 40𝜋.
Finally, very recently Julin (2016) proved that every local
minimizer with sufficiently small mass and perimeter
is a ball, using the characterization of compact almost
constant mean curvature surfaces by Ciraolo and Maggi
(2015).

At the heart of these criticality and stability re-
sults lies the regularity of the boundaries of local
minimizers. As was first proved by Sternberg and
Topaloglu (2011), local minimizers of 𝐸ℓ(Ω) have
𝐶3,𝛼 boundaries by using classical geometric measure

The simplicity
of Gamow’s
liquid drop

model
conceals the
true richness.

theoretic arguments from reg-
ularity of minimal surfaces.
More recently, Julin andPisante
(2015) demonstrated that the
boundaries of local minimiz-
ers are in fact of class 𝐶∞,
and Julin (2016) established an-
alyticity of the boundary of
regular critical points. Since
the regularity arguments are
local arguments, they immedi-
ately apply to local (and global)
minimizers of the liquid drop

problem on the whole of ℝ𝑛. Furthermore, any critical
point of the energy in the 𝐿1-topology is what is known as
a Λ-minimizer of the perimeter and hence is also regular.
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Figure 5. Examples of critical points of the liquid
drop model on the sphere. In the first two panels,
axisymmetric configurations with three and four
interfaces are shown. The third panel is the result of
a hybrid numerical simulation by Shahriari, Ruuth,
and Choksi, where a spiraling pattern achieves a
stable low energy state.

Extensions and Related Problems
The simplicity of Gamow’s liquid drop model conceals
the true richness of behaviors exhibited by the solutions
of this geometric variational problem. At the same time,
it is clear that the main ingredients of Gamow’s model,
namely, the competition between the short-range attrac-
tive and long-range repulsive forces, are not unique to
that model and should be expected to produce interesting
behaviors in a variety of contexts, both mathematically
and physically.

The simplest natural mathematical generalization of
Gamow’s liquid drop model is to extend it to other space
dimensions. Considering Ω ⊂ ℝ𝑛 with 𝑛 > 3 amounts
to replacing the Newtonian kernel in (1) with a Riesz
kernel |𝑥 − 𝑦|−𝛼, where 𝛼 = 𝑛 − 2. For this problem,
it was shown by Knüpfer and Muratov [5], [6] that
minimizers still exist for all sufficiently small masses
and that minimizers for yet smaller masses are balls
when 𝑛 ≤ 7. Julin (2014) extended this result to all
dimensions by removing the reliance on the classical
regularity ofminimal surfaces. Yet, the arguments leading
to nonexistence no longer apply, and it is an open problem
whether or not minimizers to the liquid drop problems,
which must then be nonspherical as it is always better
to split one ball into two identical balls far apart for
𝑚 ≫ 1, exist for arbitrarily large masses when 𝑛 ≥ 4.
The absence of such a nonexistence result also prevents
proving existence of minimizers with optimal energy per
unit mass.

On the other hand, Gamow’s liquid drop problem be-
comes trivial for 𝑛 < 3, since in that case the fundamental
solution of Laplace’s equation is no longer positive, and
minimizers of the liquid drop problem do not exist for
any value of 𝑚 > 0. The problem is still meaningful
if posed instead on a compact Riemannian manifold,
and results for global minimizers on a two-dimensional
flat torus or a two-dimensional sphere are available; see
Sternberg and Topaloglu (2011) and Topaloglu (2013).
Locally minimizing axisymmetric critical patterns on the
sphere as those in Figure 5 have also been investigated
by Choksi, Topaloglu, and Tsogtgerel (2015). The one-
dimensional periodic case is considerably simpler and
was solved completely by Ren and Wei (2003). Another
alternative is to consider the problem on the whole of

ℝ𝑛 but replace the Newtonian potential with a general
Riesz kernel with 0 < 𝛼 < 𝑛. In fact, the case 𝑛 = 2 and
𝛼 = 1 arises in the physical modeling of charge conden-
sation in high-𝑇𝑐 superconductors. In this case existence
of minimizers with small masses was again obtained by
Knüpfer and Muratov [5], [6], where minimality of balls of
small masses was shown for 𝑛 = 2 and for all 3 ≤ 𝑛 ≤ 7
and 𝛼 < 𝑛 − 1. The latter result was extended to 𝑛 ≥ 8
by Bonacini and Cristoferi (2014). The case of 𝑛 ≥ 3
and 𝑛 − 1 ≤ 𝛼 < 𝑛 was settled by Figalli, Fusco, Maggi,
Millot, and Morini (2015), who also considered a nonlocal
generalization of the perimeter functional to fractional
perimeter. We note that the latter has been the subject of
considerable attention recently, starting with the work of
Caffarelli, Roquejoffre, and Savin (2010), and gives rise
to nonlocal minimal surfaces. In contrast with Gamow’s
model, however, the fractional perimeter represents a
nonlocal generalization of the attractive potential that
keeps the “liquid drop” together, and, therefore, it alone
does not produce the phenomenology of Gamow’s liquid
drop problem. Back to the liquid drop problem with a
Riesz kernel, a nonexistence result for large masses is
available for 𝛼 < 2 (Knüpfer and Muratov [5], [6]). Again,
it is an open problem whether or not large nonspherical
minimizers could exist for 𝑛 ≥ 3 and 𝛼 ≥ 2. Lastly, in the
special case 𝑛 = 2 and 𝛼 sufficiently small, a complete
solution of the liquid drop problem with a Riesz potential
was given by Knüpfer and Muratov [5] in 2013. The ob-
tained solution agrees with the physical conjecture about
the structure of the minimizers of the classical Gamow’s
liquid drop problem mentioned earlier.

Moving on to further extensions, we note that Coulom-
bic repulsive forces naturally arise in a number of other
physical contexts. Perhaps the best known example goes
back to Lord Rayleigh (1882), who considered equilibrium
shapes of charged liquid drops that are perfect conduc-
tors. The associated energy functional may be written in
a nondimensional form as

(7) 𝐸(Ω) ∶= Per(Ω) + 𝜆
8𝜋 inf

𝜇∈𝒫(Ω)
∫
Ω
∫
Ω

𝑑𝜇(𝑥)𝑑𝜇(𝑦)
|𝑥 − 𝑦| ,

whereΩ ⊂ ℝ3 with |Ω| = 𝑚, as before, and the infimum is
taken over all probability measures supported on Ω. One
would naturally be led to believe that the minimization
problem for (7) would behave quite similarly to the
Gamow liquid drop problem. Yet, Goldman, Novaga, and
Ruffini (2015) showed that, surprisingly, theminimization
problem for (7) does not admit minimizers for any 𝑚 > 0
and 𝜆 > 0. Even worse, the problem does not exhibit
local minimizers in any reasonable sense, indicating that
the energy in (7) does not provide a complete physical
picture as a model of charged liquid drops, as shown by
Muratov and Novaga (2016). The reason for this behavior
is a kind of incompatibility between the sets seen by the
perimeter, which have finite two-dimensional Hausdorff
measure of the measure theoretic boundary, and sets
of positive capacity, which may have positive Hausdorff
measure of dimension 1 < 𝑑 < 2. This phenomenon also
gives rise to singular solutions of the associated Euler–
Lagrange equation, such as the famous Taylor cone with
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Figure 6. A sequence of snapshots of a levitating charged liquid drop reaching the threshold of the
charge-driven instability as the liquid in the drop evaporates.

an opening half-angle of ≈ 49.3∘, obtained by Taylor
(1962). Further regularity assumptions on the set, such as
convexity ofΩ, yield existence, as was shown by Goldman,
Novaga, and Ruffini (2016). It is also clear that the model
in (7) is quite sensitive to the space dimensionality. In
fact, a complete solution of a variant of the minimization
problem for (7) in which the set Ω is flat, i.e., Ω = 𝐷×{0},
where 𝐷 ⊂ ℝ2, with |𝐷| = 𝑚, is a closed set and the
perimeter is replaced by the one-dimensional Hausdorff
measure of 𝜕𝐷, has been obtained by Muratov, Novaga,
and Ruffini (2017), who prove that the minimizer with
“mass” 𝑚 and “charge” √𝜆 exists if and only if 𝜆 ≤ 4𝑚/𝜋
and is given by a disk. Note that here a single disk remains
a minimizer against splitting into two equal disks for all
𝜆 < 4𝑚√2/𝜋. Thus, the scenario of existence failure is
different from the one hypothesized for Gamow’s liquid
drop model: instead of splitting into two disks, a single
disk breaks into one big disk with a certain amount
of charge and many tiny disks that carry the excess
charge to infinity to reduce energy for 𝜆 > 4𝑚/𝜋. We
note that in physical experiments the failure of existence
of minimizers in the three-dimensional charged liquid
drop model manifests itself spectacularly via thin jets
of electrified liquid emitted from the droplet as its
smoothness is lost, as in Figure 6. Smoothness is then
restored as a significant portion of charge escapes the
drop via the jet.

Conclusion
Gamow’s liquid drop model is indeed a very simple
model for a highly complex system. However, its beauty
is really in tune with the famous quote attributed to
Albert Einstein: Everything should be made as simple as
possible, but not simpler. While it was initially posed to
describe nuclear structures, the fact that it encapsulates
a rather ubiquitous competition of short- and long-range
effects is behind a universality, with the liquid drop

model’s phenomenology shared by many other systems
operating at very different length scales: from femtometer
nuclear scale to nanoscale in condensed matter systems,
to centimeter scale for fluids and autocatalytic reaction-
diffusion systems, all the way to cosmological scales. It
has generated much recent attention by mathematicians
and continues to this day to entice and challenge us with
its beguilingly simple yet rich structure.
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