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Abstract

Diblock copolymer melts, dubbed “designer materials”, have the remarkable ability to self-assemble
into various ordered structures. These structures are key to the many properties that make diblock
copolymers of great technological interest. The density functional theory of Ohta and Kawasaki leads to
a nonlocal variational problem, and presents an excellent setting for the analysis of microphases.

In this note we will first discuss the origins and derivation of this theory, presenting it in connection
with the self-consistent mean field theory. Then, focusing on what is know as the strong segregation
regime, we will discuss some analytical techniques which provide insight on the scales of minimizing
structures (phases). These techniques have the advantage that they are ansatz-free, that is they are not
based upon any preassigned bias for the phase geometry. In particular, we will derive a scaling law for the
minimum energy in three space dimensions, and will address properties of optimal structures achieving
this scaling law.

This note includes joint work with X. Ren (Utah State University) and work in progress with G.
Alberti (University of Pisa) and F. Otto (University of Bonn).

1 The Physical Problem

A diblock copolymer is a linear-chain molecule consisting of two subchains joined covalently to each other.
One of the subchains is made of monomers of type A and the other of type B. Below a critical temperature,
even a weak repulsion between unlike monomers A and B induces a strong repulsion between the subchains,
causing the subchains to segregate. A macroscopic segregation whereby the subchains detach from one
another can not occur because the chains are chemically bonded. Rather, in a system of many such macro-
molecules, the immisibility of these monomers drives the system to form structures which minimize contacts
between the unlike monomers and this tendency to separate the monomers into A and B-rich domains is
counter balanced by the entropy cost associated with chain stretching. Because of this energetic competi-
tion, a phase separation on a mesoscopic scale with A and B-rich domains emerges. The mesoscopic domains
which are observed are highly regular periodic structures; for example lamellar, bcc centered spheres, circular
tubes, and bicontinuous gyroids (see for example, [4], [11]). These ordered structures are key to the material
properties which make diblock copolymers of great technological importance.

Three dimensionless material parameters are needed for modeling the microphase separation: χ, the
Flory-Huggins interaction parameter measuring the incompatibility of the two monomers and is inversely
proportional to the temperature; N , the index of polymerization measuring the number of monomers per
macromolecule; and a, the relative length of the A-monomer chain compared with the length of the whole
macromolecule. In the mean field approximation, where thermal fluctuations are ignored, one finds that the
microphase separation depends only on the two quantities χN and a. The phase diagram (either theoretically
or experimentally constructed) indicates several regimes for the phase separation. In particular, for a fixed
value of a one finds with increasing χN ; a disordered regime wherein the melt exhibits no observable phase
separation, the weak segregation regime (WSR) where the size of the A and B-rich domains are of roughly of
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the same order as the interfacial (overlapping) regions around the bonding points, an intermediate segregation
regime, and the strong segregation regime (SSR) wherein the domain size is much larger than the interfacial
length. In the SSR, it has been observed (cf. [12, 13]) that the domain size scales like χ1/6 N2/3 where as
the interfacial length scales like χ−1/2.

2 Ohta-Kawasaki Density Functional Theory

In [22], Ohta and Kawasaki derived a density functional theory1 (DFT) which reduces to the minimization
of a Cahn-Hilliard-like free energy. Following [21, 8], we write the functional in a rescaled, nondimensional
form as a function of the relative (averaged) macroscopic monomer density u (i.e. the difference between the
averaged A and B monomer densities):

Eε,σ(u) : =
ε2

2

∫

D

|∇u|2 dx +

∫

D

W (u) dx +
σ

2

∫

D

∣

∣

∣
(−4)−

1

2 (u(x) − m)
∣

∣

∣

2

dx, (2.1)

where 4 is the Laplacian operator with Neumann boundary conditions; D is a subset of R3 with unit volume
(representing the rescaled physical space Ω upon which the melt exists); W has a double-well structure
preferring pure A and B phases (u = ±1); ε represents the interfacial thickness (suitably rescaled) at the A
and B monomer intersections; and σ is inversely proportional to N 2. More precisely, the parameters ε, σ
are related to the parameters χ, N, a, |Ω| via (cf. [8])

ε2 =
l2

3 a (1− a) χ |Ω|2/3
σ =

36 |Ω|2/3

a2(1 − a)2 l2 χ N2
, (2.2)

where l denotes the Kuhn statistical length which measures the average distance between two adjacent
monomers. Conservation of the order parameter u requires we maintain the constraint

∫

D

u dx = m = 2a − 1.

From this functional it is easy to see the incentive for pattern formation. The double-well term prefers
pure phases of A or B monomers, but for m 6= ±1, the conservation constraint dictates a mixture. Transitions
between phases are penalized by the gradient term but the nonlocal term prefers oscillations between phases.
The latter is best seen in one space dimension. Indeed, this functional can be regarded as a higher-dimensional
analogue of a functional introduced by Müller in [20] as a toy problem for capturing multiple-scales. Let
m = 0, σ/2 = 1. Setting u = vx, gives

∫ 1

0

ε2

2
|vxx|

2 + W (vx) + v2 dx. (2.3)

In particular, in one space dimension the nonlocal energy is in fact local: every function in L2 is itself a
derivative. In higher dimensions the analogue for the L2 norm of the primitive is the nonlocal term in (2.1),
which for periodic functions u on the cube is simply the H−1 norm squared. From (2.3), one can easily see
why the third term induces fine structure. If ε = 0 a saw-tooth function v(x) with slopes ±1 lowers its L2

norm with increasing oscillations. Hence the minimum energy is zero but is not attained. If ε > 0, such
oscillations are penalized and one expects the competition to result in oscillations on a fine but specific scale.

3 Derivation of the Ohta-Kawasaki DFT

In this section we give a summary of the main steps in deriving the free energy (2.1). The purpose is to give
the reader some idea of how one derives such a functional from the statistical physics of Gaussian chains.

1see related work in [3], [16], [20]
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We follow [8] but provide few details. The derivation is based on two steps. The first is what is commonly
referred to as the Self-Consistent Mean Field Theory (SCMFT) which has been developed and applied over
the years by many researchers, see for example [11], [17] and the references therein. The copolymer melt is
modeled with a phase space of n of continuous chains which prefer to be randomly coiled. Thus we consider
a phase space

Γ = {r = (r1, ..., rn) : ri ∈ C([0, N ],R3)}

equipped with a product measure dµ consisting essentially of n copies of Wiener measure. The A (B
respectively) monomers “occupy” the interval IA = (0, NA) (IB = (NA, N) respectively). Within this
space one introduces a monomer interaction Hamiltonian to reflect the immisibility of the different monomer
types. At this point one can write the associated partition function Z, the free energy −β−1 log Z, and Gibbs
canonical distribution D(r). Defining the microscopic densities as

ρk(x, r) =

n
∑

i=1

∫

Ik

δ(x − ri(τ)) dτ, k = A, B,

the desired macroscopic monomer densities should be given by

〈ρk(x)〉 =

∫

Γ

ρk(x, r)D(r) dµ. k = A, B (3.4)

None of these can actually be calculated because of the nonlocal character of the Hamiltonian. The Self-
Consistent Mean Field Theory is based upon a variational principle whereby the true free energy is approx-
imated by a minimization over a class of distributions generated by a single external field U = (U A, UB)
acting separately on the A and B monomers. More specifically, setting

HU (r) =
n

∑

i=1

∑

k

∫

Ik

Uk(ri(τ)) dτ.

with the resulting partition function and Gibbs canonical distribution

ZU =

∫

Γ

exp(−βHU (r)) dµ, DU (r) =
1

ZU
exp(−βHU (r)),

one approximates the true free energy by minimizing

F (U) =

∫

Ω

[

V km

2ρ0

〈ρk(x)〉U 〈ρm(x)〉U − Uk(x)〈ρk(x)〉U

]

dx −
1

β
log ZU . (3.5)

over all external fields U = (UA, UB). Here, 〈·〉U denotes the expectation with respect to DU (r) dµ; β is the
reciprocal of the absolute temperature measured in units of (energy)−1 (the Boltzmann constant has been
set to one); V km represents the interaction parameters with

χ = βV AB − (β/2)(V AA + V BB) > 0;

and ρ0 = nN/|Ω| (the average monomer density number). The explicit nature of the external field allows
one to compute all the variational integrals via Feynman-Kac integration theory.

The second step entails writing the free energy entirely in terms of the macroscopic monomer density.
The first term (i.e. the interaction term) in (3.5) is already written in terms of the monomer density and
naturally gives rise to the double-well energy in (2.1). The main step in turning the second and third term
in (3.5) to a functional of 〈ρ〉 involves the inversion of the relationship between the dependence of 〈ρ〉U on
βU via the linearization about β = 0 (i.e. at infinite temperature). This is done via the solutions to the
backward and forward modified heat equations which come from the Feynman-Kac integration theory. The
details are too cumbersome to summarize here but very briefly, this linearization entails convolution of βU
with a certain tensor whose Fourier transform can be computed explicitly. We keep only the short and long
range expansions. After some calculations and the introduction of the monomer difference order parameter,
we arrive at both the squared gradient and nonlocal term in (2.1), with the respective coefficients reflecting
(2.2).
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4 Scaling Laws

Accepting the free energy (2.1), the natural question arises as to what minimizers look like for small ε; or
worded slightly differently, what are necessary properties for configurations to be minimizing. One approach
could be via the associated gradient flow dynamic equations which for the conserved order parameter u
would be the Cahn-Hilliard dynamics, formally written as

ut = 4
δF

δu
.

More precisely, this is gradient flow with respect to the H−1 norm (see [10]). Here we take a different
approach, namely a direct method, and address the issue of scaling of the minimum energy and the resulting
consequences on minimizing structures. That is, we ask: In the material parameter regime of interest, how
does the minimum energy scale with respect to the material parameters, and which structures attain this
optimal scaling?

The simplest approach to this question is based upon setting an ansatz for possible structures with a few
degrees of freedom, and then minimizing the free energy amongst these structures alone. This approach,
often dubbed domain theory is ubiquitous; for example Landau used it in his study of ferromagnetism and
type-I superconductivity (cf. [15]). In the present context of copolymers, this has been done to to determine
the optimal period size ([22], [4]) which one can also infer via formal dimensional analysis ([3]). These
calculations all yield that the domain width (or periodicity) scales like (ε/σ)1/3, or in terms of N , like
N2/3. This scaling law has been experimentally confirmed in [12, 13]. While these calculations provide a
lot of physical insight they leave open the fundamental question of what exactly sets the optimal scale. Are
periodic structures truly minimizing or could a nonperiodic geometry yet to be observed and constructed by
an ingenious theorist result in even lower energy?

To address these questions rigorously, Ohnishi et al [23] worked in one space dimension with the extra
assumption that admissible structures were what they called “n-layered” solutions (see [23] for the definition).
They concluded2 that within this smaller class, the global minimizer had a period of order (ε/σ)1/3, and
an energy of order ε2/3 σ1/3. Ren and Wei ([24]) recently obtained the same result with no assumption
on admissible structures. In higher space dimensions it is unlikely that minimizing structures are exactly
periodic. What then can one prove? One approach, first used in solid-solid phase transformations (cf. [14]),
is via a geometry-independent lower bound on the total free energy. To motivate this, let us go back to an
ansatz driven calculation3. We consider an ansatz of lamellar structures with the periodicity d as the only
degree of freedom. One can then write the free energy entirely in terms of the material parameters and d:
Eε,σ(d). Factoring out (renormalizing) the conjectured scaling gives

Eε,σ(d) = ε
2

3 σ
1

3 F (d, ε, σ).

One then optimizes in d to find that, in the parameter regime of interest ( 0 < ε ≤ σ < C),

doptimal ∼ (ε/σ)
1

3 and F (doptimal, ε, σ) ∼ 1. (4.6)

For the lower bound, we make no assumption on the domain structure (essentially u ∈ H1) and after
renormalization

Eε,σ(u) = ε
2

3 σ
1

3 F (u, ε, σ), (4.7)

we find that, in the relevant parameter regime,

F (u, ε, σ) ≥ C, (4.8)

for some constant C independent of ε, σ, and u.

2They also deduced the dependence on m (= 2a − 1). Through out this note, we will fix m ∈ (−1, 1) and do not address
scaling issues pertinent to this parameter.

3For a detailed look at more complicated ansatz driven calculations see [7]
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To be more specific, we follow [5]. Let D be the unit cube, and since we are interested here in the scaling
with respect to ε and σ, let m = 0, and W (u) = 1− u2. Our approach would give the same scaling in ε and
σ for m ∈ (−1, 1) fixed. We work for convenience within the class of admissible states which satisfy the zero
flux (Neumann) boundary condition. That is, the class of admissible states A is,

A :=

{

u ∈ H1(D)

∣

∣

∣

∣

∂u

∂ν
|∂D = 0,

∫

D

u dx = 0

}

,

where ν denotes the outer normal to ∂D. Hence,

∫

Ω

∣

∣

∣

∣

(−4)
− 1

2 u

∣

∣

∣

∣

2

dx =
∑

n∈Z3

|un|
2

|n|2
,

where un (n ∈ Z
3,n 6= 0) are the appropriate Fourier coefficients. This is the H−1 norm squared on the

space of L2 functions with zero average. Within this formulation, steps (4.7) and (4.8) require us to bound
below the sum

1

M(ε, σ)

(
∫

Ω

ε |∇u|2 +
1

ε
(1 − u2) dx

)

+ M2(ε, σ)
∑

n∈Z3

|un|
2

|n|2
, (4.9)

where in the relevant parameter regime we have M(ε, σ) ≥ C, for some constant C > 0. As is well-known
from the work of Modica and Mortola (cf. [18]), the sum in the parentheses is bounded below by a BV
norm of u, and hence we seek an interpolation-like inequality between the spaces BV and H−1. Lemma 2.1
in [5] (following work in [6]) bounds below the sum in (4.9) by the L2 norm squared of u, and allows us to
conclude the desired lower bound (4.8). The upper bound is obtained by following (4.6). We arrive at:

Theorem 4.1 If 0 < ε . σ . 14,

ε
2

3 σ
1

3 . min
u∈A

Eε,σ . ε
2

3 σ
1

3 .

Here we have adopted the notation that for functions f and g of the parameters ε and σ, f . g means
for some constant C > 0 independent of ε and σ we have f < C g. In the present context, the constant may
in general depend on the structure of W and m.

While the approach of matching upper and lower energy bounds may not appear to say anything about
the minimizer’s domain size in the way the ansatz driven calculation (4.6) did, it does yield ansatz-free
matching upper and lower bounds for the minimizer’s average length scale - more precisely for the total
interfacial perimeter per unit volume (see [5, 6, 7]). However, we emphasize that Theorem 4.1 does not
imply that (for small ε) minimizers are periodic structures on the scale (ε/σ)1/3. It is suggestive that they
possess an inherent scale of (ε/σ)1/3 but certainly one would like a stronger result. In the next section, we
present such a result.

5 Uniform distribution of energy in a sharp-interface limit

Here we report on some work in progress with Alberti and Otto ([1]). We are interested in obtaining further
rigorous support for the following conjecture: For ε small, minimizers of (2.1) are nearly periodic structures
on the scale (ε/σ)1/3 (i.e. N2/3). Exactly what one means by nearly periodic has of course to be made clear.

One approach is via a sharp-interface limit whereby ε tends to zero. We pause to note that one can easily
obtain a sharp-interface limiting energy functional by considering (2.1) in terms of the original material
parameters (2.2); fixing χ; taking |Ω|1/3 ∼ N2/3l; and letting N tend to infinity: Thus we keep the sample
size of the melt on the same (conjectured) length scale of the domains. One can easily show (cf. [8, 25]) that

4In [5] this notation was not used but instead particular constants were chosen in the hypothesis 0 < ε . σ . 1 for
convenience in proving the upper and lower bounds. This is insignificant as it only effects the constants in the conclusion;
however, we remark that they were in fact incorrectly chosen for their purpose!
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as N → ∞, the functional (2.1) (suitably rescaled) Γ-converges (in the sense of De Giorgi (cf. [9, 18])) to a
nongenerate sharp-interface variational problem.

In this section, we follow the idea presented in [2] which will in the end result in studying (essentially)
the same sharp-interface variational problem. Consider a sequence uε(x) (ε → 0) of minimizers of Eε,σ and
fix a position s in the melt (we will take s = 0 for simplicity). We blow up at s = 0, sending the scale
(ε/σ)1/3 to 1 and removing all finer scales: That is, consider the functions of a microscopic variable t:

vε(t) := uε

(

( ε

σ

)
1

3

t

)

.

In terms of the blow-ups vε, the previous conjecture can be rephrased as follows: vε tends to periodic functions
with period O(1) taking on only the two values ±1 (corresponding to the pure A and B phases).

We very briefly present a partial result in support of this conjecture. Our approach is via the asymptotics
of the energy written in terms of vε(t); thereby capturing the asymptotics of the minimizers themselves. The
energy functional on vε(t) is defined over domains whose size becomes infinite. Thus we are forced to deal
with several issues. The first being that we should naturally be concerned with an appropriate notion of
a spatially local minimizer (see below). The second pertains to the nonlocal term defined over domains of
increasing size (i.e. boundary conditions, the conservation constraint, notion of a local minimizer, etc.).
These issues are dealt with by considering a natural relaxation of the nonlocal term. Here we will only be
concerned with the limiting sharp-interface problem, and hence let us describe this relaxation in that context.
Let A be a bounded, open set. For v ∈ BV (A,±1) we introduce a second dependent variable b coupled to
v by the constraint div b = v (interpreted in the sense of distributions), and replace the H−1 norm squared
of v by

min
b ∈ L2

div b = v

∫

A

|b|2.

One can then reduce the original variational problem (at least formally5) to the following sharp-interface
problem:

min E(v,b, A) :=

∫

A

|∇v| + |b|2 over div b = v, v ∈ BV (A,±1).

Now we say (ṽ, b̃) with div b̃ = ṽ is a local minimizer of E on Ω if for all open A ⊂⊂ Ω and (v,b), div b = v,
such that support(b̃ − b) ⊂⊂ A, we have E(ṽ, b̃, A) ≤ E(v,b, A). Within this framework one can prove an
uniform distribution of energy for local minimizers of E. That is, if (ṽ, b̃) is a local minimizer of E on Ω,
then for every r ≥ 1 and B(r) ⊂ Ω, we have

E(ṽ, b̃, B(r)) ∼ |B(r)|,

where B(r) is a ball of radius r and ∼ indicates both . and & with the respective constants independent
of ṽ, b̃, and r. The lower bound for this assertion follows from an interpolation-like argument similar to one
used in the previous section. The upper bound follows from direct construction of suitable comparison fields.
The details will be presented in [1].

6 Remarks

We have discussed issues and results pertaining to scales and the distribution of energy for minimizers of the
Ohta-Kawasaki energy in the SSR. Whereas these results seem encouraging in terms of building ansatz-free
tools for capturing properties of the microphases, one should be alerted to the fact that the derivation of
this functional was based upon the linearization about β = 0 (i.e. about infinite temperature). Thus the

5The connection via Γ-convergence is still formal as we do not as yet have a compactness result at the ε-level (cf. [9]) for
this type of local minimizers.
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physical validity of the density functional theory in regimes other than the WSR remains unclear. In the
SSR, it does seem to predict the basic scaling features of the domain size; however, one must be skeptical as
to whether or not it retains all the essential physics of the problem - as the pure SCMFT seems to [4, 17]. On
the other hand, some recent simulations of the bicontinuous gyroid phase of Teramoto and Nishiura ([26])
indicate that this theory does predict rather nonstandard structures (i.e. other than lamellar, cylindrical
and spherical) which have been observed at temperatures placing one in the intermediate segregation regime,
and have been previously predicted by the SCMFT ([17]).
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