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Summary. In this note, we study a nonlocal variational problem modeling microphase
separation of diblock copolymers ([22], [3], [21]). We apply certain new tools developed
in [5] to determine the principal part of the asymptotic expansion of the minimum free
energy. That is, we prove a scaling law for the minimum energy and confirm that it
is attained by a simple periodic lamellar structure. A previous result of Ohnishi et al.
[23] was for one space dimension. Here, we obtain a similar result for the full three-
dimensional problem.

1. Introduction

Pattern morphology dictated by the minimization of a free energy containing a nonlocal
term is well established in the context of micromagnetics and magnetic domains ([15]).
Recently, new mathematical tools have been applied to gain inference behind the mini-
mization process and properties of minimizing configurations (see [8] and the references
therein). Similar energy functionals arising in domain morphology for ferrofluids and
during the intermediate state of a type-1 superconductor have recently been analyzed in
[24] and [6], respectively. Nonlocal effects, however, are hardly confined to magnetic
behavior and the purpose of this note is to apply certain new tools, namely the use of
interpolation inequalities, to microphase separation of diblock copolymers.

A diblock copolymer is a linear-chain molecule consisting of two subchains joined
covalently to each other. One of the subchains is made of A monomers and the other
of B monomers (see the left side of Figure 1). Below a critical temperatureTc, even
a weak repulsion between unlike monomers A and B induces a strong repulsion be-
tween the subchains; thus the subchains segregate. Now consider a system of many
such macromolecules. The immisibility of these monomers drives the system to form
structures that minimize contacts between the unlike monomers. This tendency to
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Fig. 1. (left) A diblock copolymer; (center) aboveTc, the subchains mix to form a uniform
disordered state, (right) belowTc, subchains tend to segregate into A-rich and B-rich regions
which for the case of equal molecular weights is lamellar in structure. Here we have just shown
two layers of diblock copolymers.

separate the monomers into A-rich and B-rich domains is counterbalanced by the entropy
cost associated with stretching polymers so as to fill space (this is required due to the
incompressibility of copolymer melts). Because of this energetic competition, macro-
scopic separation does not occur but rather a phase separation on a mesoscopic scale
with A-rich and B-rich domains emerges. The mesoscopic domains that are observed
are highly regular periodic structures; for example, when the lengths of the A and B
subchains are roughly the same, a lamellar structure is observed (the right side of Figure
1). For nonequal molecular weights, a variety of periodic structures are observed from
small bcc-centred spheres and circular tubes, to bicontinuous gyroids (see for exam-
ple, [4], [9], [19]). These ordered structures are key to the mechanical properties that
make diblock copolymers of great technological importance. Moreover, block copoly-
mers provide simple and easily controlled materials for the study of self-assembly. Mean
field theories, with an associated free energy functional, have proven very useful in the
understanding and prediction of the pattern morphology ([4]). Such energy functionals
consist of competing terms and, as noted by Bates and Fredrickson [4] inPhysics Today,
“minimization of the free energy for a particular geometry (compared to all other can-
didate geometries) indicates the most likely configuration and scale length for a block
copolymer.”

In this article we analyze the microphase separation via minimization of a free energy
functional proposed in [22], [3] (see [21] for precise form):

Eε,σ (u) :=
∫
Ä

ε2|∇u|2+W(u)+ σ
∣∣∣(−4)− 1

2 (u−m)
∣∣∣2 dx, (1.1)

wherem denotes the average ofu overÄ, i.e.,

m :=
∫
Ä

u dx.

In this mean field approach to the separation,u represents the local density difference
of monomers A and B, i.e.,

u = ρA − ρB

ρtotal
,
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whereρA andρB denote the local density ofA andB monomers. Hence,u = 1 denotes
a pureA state,u = −1 denotes a pure B state, and an intermediate value ofu signifies a
mixture of the two monomers.W(u) represents a double-well energy which prefers the
segregated monomers (i.e.,W = 0 iff u = ±1) to a mixture. The termε2|∇u|2 is the
interfacial energy density representing energy at regions of bonding. The parameterε is
the length of this bonding region. The different subchains are all chemically bounded
and the entropic penalty due to chain stretching is responsible, via a statistical physics
derivation, for the nonlocal long-range interaction term (see [22], the references therein,
and Remark 3.4). In this derivation one finds that the parameterσ is inversely proportional
to the square of the total “chain length”N of the copolymer molecule measured in terms
of the total number of monomers per copolymer molecule. The parameterN is often
referred to as either thepolymerization indexor thedegree of polymerization, and in
practice is quite large, henceσ small. The setÄ ⊂ R3 represents the physical space
which, for convenience, is taken to be the unit cube [0,1]3. The averagem measures
the mass ratio of the two monomers and hence depends on the relative length of the
A subchain to the B subchain of the copolymer molecule. In this article we will deal
with the basic case where the lengths of the A and B subchains are equal; i.e., we use
a symmetric double well potential and takem = 0. The assumptions we make on the
material parameters are that

0< ε ≤ σ < 1. (1.2)

In particular, our results hold for both the regime 0< ε << σ << 1 studied by Nishiura
and Ohnishi in [21] appropriate for the strong segregation limit ([22]), as well as the
regime 0< ε ∼ σ << 1.

Turning to the nonlocal term, the operator−4 is the Laplace operator with Neumann
boundary conditions (zero flux). Its inverse, as an operator on the set of functions inL2

with zero average, is self-adjoint and positive. The operator(−4)− 1
2 denotes its unique

positive square root. This way of writing the nonlocal term was chosen by Nishiura
and Ohnishi because of their “Cahn-Hilliard approach” to the analysis of the variational
problem (cf. [21]). In terms of the Green’s functionG(x, y) for −4 with Neumann
boundary conditions, the nonlocal term can be written as

σ

∫
Ä

∫
Ä

G(x, y)u(x)u(y)dx dy. (1.3)

We refer the reader to Remark 3.4 for a discussion on alternate nonlocal expressions
with different kernels. In this article, we will use Fourier series, and hence will write the
nonlocal energy in terms of the Fourier coefficients. It will therefore be convenient, and
without loss of generality, to work within the class of admissible states which also satisfy
the zero flux (Neumann) boundary condition. That is, the class of admissible statesA is

A :=
{

u ∈ H1(Ä)

∣∣∣∣ ∂u

∂ν

∣∣∣∣
∂Ä
= 0,

∫
Ä

u dx = 0

}
,

whereν denotes the outer normal to∂Ä. We consider the Fourier series representation
of u defined onÄ with coefficientsun (n ∈ Z3), i.e., the Fourier cosine series. Then∫

Ä

∣∣∣(−4)− 1
2 (u)

∣∣∣2 dx =
∑
n∈Z3

|un|2
|n|2 . (1.4)
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Here and throughout the sequel, the sum overn ∈ Z3 excludes then = 0 term. Note
that the right-hand side of (1.4) is simply theH−1 norm ofu; that is, the nonlocal term
in the energy is simply a negative Sobolev norm. The resulting variational problem is

(P) min
u∈A

Eε,σ =
∫
Ä

ε2|∇u|2+W(u)+ σ
∑
n∈Z3

|un|2
|n|2 ,

within the parameter regime (1.2). The pattern morphology can now be explained from
the competition between the three terms in the free energy. Namely, the double well
potential prefers segregated monomers to a mixture. The interfacial energy penalizes
interfaces between such monomers and thus prefers large domains of a single monomer.
However, the nonlocal term due to molecular connectivity prefers small oscillations
between domains of each monomer. The effect of all three is to set a mesoscopic scale
for microseparation into metastable states (local minimizers ofEε,σ ).

Experimentally and numerically, it is well known that in the regimes of interest,
the final states prefer periodic structures such as lamellar, spherical, tubular, double-
diamond geometries, bicontinuous gyroids (see for example, [4], [3], [13], [11], and
[12]). For the case where the length of the A subchains is of the same order as the B
(i.e., m = 0), a lamellar structure is observed. The natural question arises as to the
scale of the optimum period and the extent to which it is determined via minimization
of the total free energy. Alternatively, one can approach this fundamental question by
asking: In the material parameter regime of interest, how does the minimum energy
scale with respect to the material parameters, and which structures attain this optimal
scaling? Once a specific ansatz is set for the periodic structure, it is straightforward to
optimize within this ansatz and determine the optimal period size ([22], [4]). One can
also infer such information via formal dimensional analysis ([3]). These calculations
all yield that the domain width (or periodicity) scales like(ε/σ)

1
3 , or in terms of the

polymerization indexN , likeN 2
3 . This scaling law has been experimentally confirmed

in [10]. While these calculations provide a lot of physical insight, they leave open the
fundamental question of what exactly sets the optimal scale. Are periodic structures truly
minimizing, or could a nonperiodic geometry yet to be observed and constructed by an
ingenious theorist result in even lower energy? As noted by Bates and Fredrickson [4]
in Physics Today, “A limitation of current theoretical techniques is that they proceed by
assuming a periodic structure, computing its free energy and then comparing that free
energy to the free energy of other candidate structures. Such calculations run the risk
of overlooking complex three-dimensional microphases that have not been previously
identified.” In order to address these questions, one needs to examine this variational
problem in its full generality from a mathematically more sophisticated point of view,
one which in particular allows for a fuller analysis of the competition between the terms
in the energy. While these questions have recently been addressed, first in solid-solid
phase transitions by Kohn and M¨uller [16], and then by Choksi, Kohn, and Otto in
micromagnetics [5] and superconductivity [6], it was Nishiura and Ohnishi [21] and
later, Ohnishi et al. [23] who first addressed them in the present context of diblock
copolymers.

To address these issues, Ohnishi et al. [23] considered(P) in one space dimension. In
order to determine the precise energy scaling law, they worked with the extra assumption
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that admissible structures were what they called “n-layered” solutions (see [23] for the
definition). They concluded that within this smaller class, the global minimizer had a
period of order(ε/σ)

1
3 and an energy of orderε

2
3σ

1
3 . That is, they determined the principal

part of the asymptotic expansion of both the energy and optimum period. Moreover, they
worked with a very general potentialW (possibly nonsymmetric) and determined exactly
the coefficients of the principal term—in particular, the dependence onm.

The goal here is to obtain a similar result in three dimensions with no a priori assump-
tions (bias) on admissible geometries. Our result, however, does not give the exact value
of the constant, nor the dependence onW. We take the simplest case of a symmetric
double-well energy andm= 0. We use an interpolation inequality (Lemma 2.1) to give
a lower bound on the energy for any admissibleu that is valid throughout the parameter
regime in question. It is straightforward to show that, within this parameter regime, a
simple periodic laminate with optimized period attains this optimal scaling, and thus up
to primary order cannot be improved upon. Thus we prove (Theorem 3.2) that in the
regime (1.2), the principal part of the asymptotic expansion ofEε,σ is

Eε,σ ∼ ε 2
3σ

1
3 .

With the aid of lower bounds, it is also possible to prove that the(ε/σ)
1
3 scaling for the

domain period size actually holdson averagefor anyabsolute minimizer (see Remark
3.3 for details).

It would also be of interest to determine the optimal scaling with respect tom for
the casem 6= 0. As one monomer becomes dominant on average, one would expect
that isoperimetric factors make energetically preferable spherical or tubular periodic
structures; indeed, this is experimentally observed (see [4], [22] and the references
therein). The methods of this article could also be applied to the nonsymmetric case to
give the optimal scalings inε andσ . However, the interpolation inequality here is not
sensitive enough to capture the optimal scaling with respect tom (see [6]). Moreover,
lower and upper bounds do not determine the exact numerical value of the constant for
the principal part of the asymptotic expansion for the minimum energy; they only give
bounds on its numerical value.

While these lower and upper bounds do provide a first step at an analysis which
is devoid of any preassigned bias for the separation geometry, it is important to not
overestimate their power in characterizing the ground state configurations. They give the
scaling of the ground state energy, providing one with a litmus test to which one can either
admit or rule out different patterns. They also give information on the average domain
scale of a ground state configuration. However, they do not characterize all configurations
in this minimum state, and they say nothing for example, about symmetries, degeneracies,
uniqueness. To gain a deeper insight into the energy landscape, analyze further properties
of ground state configurations, and also to determine the constant for the principal part
of the minimum energy, the natural approach would be to letε tend to zero and examine
the asymptotic limit of the problem.

De Giorgi’s notion ofGamma convergenceprovides an excellent framework for
analyzing the asymptotics of the energy functional directly. Current work [1] using
the new machinery of Alberti and M¨uller [2] is based upon fixing a points ∈ Ä, a value
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for σ , and blowing up a minimizeruε of Eε,σ on the scale(ε/σ)
1
3 . Specifically, for a

minimizing sequenceuε, one considers

Rεs u(t) := uε

(
s+ ε

1
3

σ
1
3

t

)
,

and examines the asymptotics inε of this new function oft (the microscopic variable)
either directly or via their new concept of aYoung measure on a micropattern. According
to the results of the present paper (Theorem 3.2 and Remark 3.4), this is the correct scale
to focus on, and hence the approach of [2] allows one to focus on this scale and eliminate
all finer scales. In one space dimension, this new machinery can easily be applied for our
problem(P) to obtain the scaling inm (derived in [23]) and, more importantly, to give
rigorous meaning to the statement that any minimizer to(P) is locally nearly periodic
with period(ε/σ)

1
3 . Work in higher space dimensions is in progress ([1]), and could shed

much more information about minimizing states than just upper and lower bounds. A
related approach by Otto for micromagnetics [26] is similar in spirit in that it looks at a
renormalization of the total energy where the rescaled limiting behavior of the associated
Green’s function is analyzed directly. This work could also prove to be a powerful new
tool for many nonlocal problems.

We should note that the Gamma limit for the appropriately scaled(P) has been
computed and analyzed within the regimeε ∼ σ << 1 in [28]. A similar result was
found independently in [7]. However, it is exactly in this regime that the asymptotics
do not involve any interactions between the first two terms of the energy and the third
nonlocal term. Specifically, this regime entails considering

Eε,σ (u)

ε
:=
∫
Ä

ε|∇u|2+ 1

ε
W(u)+

∣∣∣(−4)− 1
2 (u−m)

∣∣∣2 dx.

Since the nonlocal energy is a continuous perturbation of the standard Modica-Mortola
energy (the first two terms above), the Gamma limit calculation is essentially of the same
difficulty with or without the nonlocal term.

Finally, we must mention the relationship between the functional (1.1) and the func-
tional introduced by M¨uller in [20]. Consider as we do the case wherem= 0. As noted
by [23], their one-dimensional version of (1.1) bears striking resemblance to M¨uller’s
functional:

I ε(v) =
∫ 1

0
ε2|vxx|2+W(vx)+ v2 dx. (1.5)

Indeed, settingu = vx, one immediately sees the connection, and notes that in one space
dimension the nonlocal energy is in fact local: Every function inL2 is itself a derivative!
Of course this is not the case in higher dimensions, but the analogue for higher dimensions
of theL2 norm of the antiderivative is the nonlocal energy, or as seen by (1.4), theH−1

norm. Thus, the functional (1.1) can be viewed as M¨uller’s functional in higher space
dimensions. From (1.5), one can easily see why the third term prefers fine structure.
In fact, if ε = 0, a saw-tooth functionv(x) with slopes±1 lowers itsL2 norm with
more oscillations. Hence the minimum energy is zero but is not attained. Ifε > 0, such
oscillations are penalized and one expects a fine scale structure. In [23], they noted that
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the extension of M¨uller’s functional to a nonsymmetric double well potential presents
several difficulties, and their paper, which uses an entirely different machinery, can be
viewed as an extension of M¨uller’s result for a nonsymmetric double well potential (with
m 6= 0).

We remark that in some sense this is the simplest application of interpolation for a
rigorous scaling law. Indeed, the functional (1.1) is simpler than other nonlocal energy
functionals studied in [5] and [6]; for example, the well-known Landau-Lifshitz-Brown
micromagnetics functional ([15]). In [5] and [6], the vector-valued nature of the problems
gave rise to an “extra dimension” for the pattern formation. Indeed, periodic structures,
like those observed in diblock copolymer melts, were shown tonotbe energy minimizing.
Rather, energy minimization dictated a reduction in domain width, so-called branching,
in a set direction as one approached the sample boundary, the set direction being the
easy magnetization axis for uniaxial ferromagnets and the direction of the applied field
for type-I superconductors. Finally, we remark that a functional similar to (1.1) was
introduced by Ren and Truskinovsky in [27] to study phase mixtures in a 1-D elastic bar.

2. An Interpolation Inequality

Throughout this paper, we will not be specific about the values of constants (all positive).
We will frequently useC to denote a generic positive constant that may change from
place to place. We will use numerical indices (e.g.,c1,C1) for specific constants whose
value we wish to keep track of. We make the following assumptions on the double-well
potentialW. They all hold for the generic examples,

W(z) = (1− z2)2 or W(z) = 1− z2,

and capture the essential features of these examples. We have not tried to find the most
general hypotheses for which our analysis holds.

(H1) W(z): [−1,1]→ R+ is an evenC2 function with zeros only atz= ±1.
(H2) W′(z) < 0 for z ∈ (0,1).
(H3)

(√
W(z)

)′′
< 0 for z ∈ (−1,1).

We note that these hypotheses imply the following two inequalities hold. There exists
a constantC > 0 depending only onW, such that for allz ∈ [−1,1],

z2+W(z) > C. (2.1)

Let φ: [−1,1]→ R be theC1 function such thatφ(0) = 0 andφ′(z) = √W(z). There
exists a constantC > 0 depending only onW such that for anyz1, z2 ∈ [−1.1],

|z1− z2|2 ≤ C|φ(z1)− φ(z2)|. (2.2)

As in domain theoryfor micromagnetics (cf. [15]), a common approach to finding
the minimum energy is to a priori assume a rigid one or two dimensional ansatz for the
microphase patterns with basically one degree of freedom. One computes the energy of
such a structure, and minimization with respect to the free variable leads to the “optimal”
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energy and scale. Alternatively we can think of this approach as computing the energy
within this ansatz and “renormalizing” in the sense that one factors out of the expression
the expected optimal scaling. One then minimizes what remains with respect to the
free variable, and finds that in the parameter regime of interest, the minimum is some
fundamental constant, i.e., does not depend on the material parameters. The approach
of our lower bound is similar in spirit but we make no a priori assumption on what the
three-dimensional pattern looks like. After renormalization of the energy computed for
any structure, what one is left with is a certain weighted (with respect to the material
parameters) sum of three terms which include theH1 andH−1 norms. We prove that this
sum is always bounded below by a fundamental constant. This was exactly the approach
taken in [5] and [6]. However, there we needed an interpolation inequality between the
spacesBV(functions of bounded variation),H−1 (or H−

1
2 ), andL2. A similar inequality

holds, where theBV norm is essentially replaced by the sum of theH1 norm and the
double-well energy. The following modifications for the proof of this new inequality
were shown to me by F. Otto [25].

Lemma 2.1. Let u∈ H1(Ä)with |u(x)| ≤ 1 for all x ∈ Ä. Then there exists a constant
c2 such that for all positive integers N andλ > 0,∫

Ä

|u|2 dx≤ c2

{
1

N

(∫
Ä

λ|∇u|2+ 1

λ
W(u)dx

)
+
∑
n∈Z3

min

{
1,

N2

|n|2
}
|un|2

}
. (2.3)

Proof. The proof is similar to that of Lemma 2.3 in [5]. There it was presented in two
dimensions, but the same proof would work in three dimensions or higher. We will apply
the inequality in three dimensions and hence state the proof as such. For completeness,
we include the necessary modifications for

λ

∫
Ä

|∇u|2 dx+ 1

λ

∫
Ä

W(u)dx replacing
∫
Ä

|∇u|dx.

Let φ: [−1,1] → R be theC1 function such thatφ(0) = 0 andφ′(z) = √W(z). By
the elementary Cauchy inequality,

2
∫
Ä

|∇φ(u)|dx ≤ λ
∫
Ä

|∇u|2 dx+ 1

λ

∫
Ä

W(u)dx. (2.4)

Now fix an integerN > 0. We show that the same linear operatorTN : L2(Ä)→ L2(Ä)

constructed in [5] satisfies∫
Ä

|u− TNu|2 dx ≤ C1
1

N

∫
Ä

|∇φ(u)|dx and∫
Ä

|TNu|2 ≤ C2
∑

n∈Z3 min
{
1, N2

|n|2
}
|un|2,

(2.5)

for constantsC1,C2 independent ofN. Hence with (2.4), the lower bound (2.3) will
follow. The operatorTN is constructed as follows. Fixη ∈ C∞0 (Ä) such that

∫
Ä
η = 1.
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We define a partition ofÄ into N3 subcubesÄm wherem ∈ {0, . . . , N − 1}3, and a
rescaled vesion ofη, ηm with support inÄm, that is,

Äm := 1

N
(m+Ä), 1

N3
ηm

(
1

N
(m+ x)

)
= η(x).

Finally we define the operatorTN by

TNu :=
∫
Äm

uηm dx on each squareÄm.

As in Lemma 2.3 in [5], to prove the first inequality of (2.5), it suffices to prove there
exists a constantC such that for allu ∈ H1(Ä),∫

Ä

∣∣∣∣u− ∫
Ä

uη dx

∣∣∣∣2 dx ≤ C
∫
Ä

|∇φ(u)|dx. (2.6)

To see this, note that∫
Ä

|u− TNu|2 dx =
∑

m

∫
Äm

∣∣∣∣u− ∫
Ä

uηm dx

∣∣∣∣2 dx.

Hence it suffices to prove that there exists a constantC such that for allu ∈ H1(Äm),∫
Äm

∣∣∣∣u− ∫
Äm

uηm dx

∣∣∣∣2 dx ≤ C1
1

N

∫
Äm
|∇φ(u)|dx, (2.7)

and then sum over allm. Inequality (2.7) follows from (2.6) by a simple rescaling
argument. We must prove (2.6). To this end,∫

Ä

∣∣∣∣u(x)− ∫
Ä

u(y)η(y)dy

∣∣∣∣2 dx ≤
∫
Ä

∫
Ä

|u(x)− u(y)|2 dx dy

≤ C
∫
Ä

∫
Ä

|φ(u(x))− φ(u(y))|dx dy.

Here we made use of Jensen’s inequality in the first inequality and (2.2) in the second.
Thus it remains to show forψ = φ ◦ u,∫

Ä

∫
Ä

|ψ(x)− ψ(y)|dx dy ≤ C
∫
Ä

|∇ψ(x)|dx.

This follows from the convexity and boundedness ofÄ. To see this, note that

|ψ(x)−ψ(y)| =
∣∣∣∣∫ 1

0
∇ψ(tx+ (1− t)y) · (x− y)dt

∣∣∣∣≤C
∫ 1

0
|∇ψ(tx+ (1− t)y)|dt.

Hence,∫
Ä

∫
Ä

|ψ(x)− ψ(y)|dx dy ≤ C
∫ 1

2

0

∫
Ä

∫
Ä

|∇ψ(tx+ (1− t)y)|dy dx dt

+ C
∫ 1

1
2

∫
Ä

∫
Ä

|∇ψ(tx+ (1− t)y)|dx dy dt.
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Changing variables fromy to z in the inner integral of the first term on the right, andx
to z in the inner integral of the second term wherez = tx + (1− t)y, and noting that
for fixed x or y in Ä, the respective sets{tx + (1− t)Ä} or {tÄ + (1− t)y} are both
contained inÄ (by convexity ofÄ), we have

∫
Ä

∫
Ä

|ψ(x)− ψ(y)|dx dy ≤ C
∫ 1

2

0

∫
Ä

1

(1− t)3

∫
Ä

|∇ψ(z)|dzdx dt

+ C
∫ 1

1
2

∫
Ä

1

t3

∫
Ä

|∇ψ(z)|dzdy dt,

and the first inequality of (2.5) follows. The proof of the second inequality of (2.5) follows
verbatim from Lemma 2.3 of [5] with the obvious dimensional changes appropriate to
Ä ∈ R3.

3. A Scaling Law in Three Dimensions

A simple application of Lemma 2.1 gives a rigorous lower bound for the total free energy
of anyadmissible structure. The constants in the following hypothesis 0< ε < 2σ < 1

3
are simply for convenience in proving the lower and upper bounds.

Theorem 3.1. There exists a constant c1 which depends only on the structure of the
double-well energy W, such that if0< ε < 2σ < 1

3,

min
u∈A

Eε,σ ≥ c1ε
2
3σ

1
3 .

Proof. Let u ∈ A. By (1.4),

Eε,σ (u)

σ
=
∫
Ä

ε2

σ
|∇u|2+ 1

σ
W(u)+

∑
n∈Z3

|un|2
|n|2

= ε
2
3

σ
2
3

[
ε

1
3

σ
1
3

∫
Ä

(
ε|∇u|2+ 2W(u)

3ε

)
dx

+ σ
2
3

ε
2
3

∑
n∈Z3

|un|2
|n|2

]
+ 1

3σ

∫
Ä

W(u)dx

≥ ε
2
3

σ
2
3

[
ε

1
3

σ
1
3

∫
Ä

(
ε|∇u|2+ 2W(u)

3ε

)
dx

+
∑
n∈Z3

min

{
1,

σ
2
3

ε
2
3 |n|2

}
|un|2

]
+ 1

3σ

∫
Ä

W(u)dx.
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u = -1
}1/m

1
-1
1

-1
1

z

f(z)

1

-1

ε

1/m

Fig. 2. (left) Periodic laminate structure which up to primary order is minimizing; (right)ub at
the interfaces.

Now we are in a position to apply Lemma 2.1 to the squared brackets withλ = ε and
N ∼ σ 1

3 ε−
1
3 which by hypothesis is possible:

Eε,σ (u)

σ
≥ C

ε
2
3

σ
2
3

(∫
Ä

u2 dx
)
+ 1

3σ

∫
Ä

W(u)dx

≥ C
ε

2
3

σ
2
3

(∫
Ä

u2+W(u)dx
)

≥ C
ε

2
3

σ
2
3

,

where in the second line, we use that by hypothesis,

ε
2
3

σ
2
3

<
1

3σ
,

and in the third line, inequality (2.1). Thus for some constantc1 which depends only on
the structure ofW, we have

Eε,σ (u) ≥ c1ε
2
3σ

1
3 ,

and the result follows.

As for the upper bound, it is straightforward to check that a simple lamellar structure
with optimal period achieves the scaling of Theorem 3.1. Letub(x, y, z) := f (z) where
the structure off can be easily inferred from Figure 2: the right-hand side of Figure 2
graphsf over the first period, i.e., forz ∈ [0, 2

m− ε2 ]. We choose an even integerm such
that

1

m
∼ ε

1
3

σ
1
3

, (3.1)

i.e., choose the closest even integer toσ
1
3 ε−

1
3 (note that by hypothesis,σ

1
3 ε−

1
3 > 2). The

interfacial energy is easily found to be of orderε
2
3σ

1
3 . For the double-well energy, one
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easily sees, using a crude bound likeW(·) ≤ W(0), that this term contributes an energy
belowCε

2
3σ

1
3 . Turning to the nonlocal energy, a simple scaling argument implies that

the nonlocal energy ofub, written in terms of the Fourier coefficients (cf. (1.4)), scales
like σ1/m2 ∼ ε 2

3σ
1
3 . Thus for some fundamental constantC,

Eε,σ (ub) ≤ Cε
2
3σ

1
3 .

Note that if one had kept the number of oscillationsm as a variable throughout these
calculations and finally optimized with respect tom, one would have come up with (3.1).
We have proved:

Theorem 3.2. There exist constants c1,C1 depending only on the structure of W such
that if 0< ε < 2σ < 1

3,

c1ε
2
3σ

1
3 ≤ min

u∈A
Eε,σ ≤ C1ε

2
3σ

1
3 .

Remark3.3. The global minimizer to(P) does exist (a simple application of the direct
method of the calculus of variations). Following [5], one could further obtain a result
pertaining to the average length scale of all global minimizers. Based upon the ansatz of
phase separation, we would replace(P) with

min
u∈S

Esharp
ε,σ =

∫
Ä

ε|∇u| + σ
∑
n∈Z3

|un|2
|n|2 ,

where

S :=
{

u ∈ BV(Ä, {1,−1})
∣∣∣∣∫
Ä

u dx = 0

}
.

BV(Ä, {1,−1}) is the space of functions of bounded variation taking on the values 1 or
−1, and the first term in the energy represents the total variation of the distributional
derivative which, in this case, is simply twice the total area of the interfaces. Using the
sharp interface interpolation inequality, i.e., Lemma 2.1 of [5], it is possible to show
that for any pattern satisfying the optimal energy scaling law, the lower bound holds
separately for both the surface energy and the nonlocal energy inEsharp

ε,σ . With this in

hand, one proves the following: Letu∗ be a minimizer (which also exists) ofEsharp
ε,σ ,

and let

d∗ :=
(∫

Ä

|∇u∗|
)−1

.

Since|Ä| = 1, d∗ represents the average domain width (or average period) across the
sample. Thend∗ ∼ (ε/σ)

1
3 , i.e., there exist fundamental constantsc3,C3 such that if

0< ε < 2σ < 1
3,

c3
ε

1
3

σ
1
3

≤ d∗ < C3
ε

1
3

σ
1
3

.
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Remark3.4. The analysis of this paper is based upon the particular form of the kernel
(Greens function) in (1.3). A similar analysis with a different interpolation inequality
could be applied for theL2 norm squared of any negative power of(−4), i.e., any
negative Sobolov norm. Of course the resulting scaling law would depend on this power.
One would suspect that the same scaling law should hold for a kernel that differed from
our Greens function only at its tail end: for example, with an exponentially decaying tail.
However, the methods of this paper would not directly apply to this modified kernel.

This alerts us as to two important directions for future research. First, one would like
to characterize the class of kernels whose inclusion would result in the same scaling
behavior for minimizers and perhaps even the same morphology for self-assembly pat-
terns; their predictions agree with the clear experimental phase diagram for the different
self-assemblies; see for example [4]. The previously mentioned method of Alberti and
Müller ([2]) could prove very useful here. Second, one should revisit the derivation of
(1.1) in [22], and moreover go back to older and newer models proposed by Leibler [17],
Helfand [14], and Matsen and Schick [18] to see what exactly determines the behavior
of the kernel, and which kernels should, at least from the point of the statistical physics,
give rise to an equivalent functional, one with similar topologies and scales for its ground
states. In doing so, it would be instructive to write the free energy functional not in terms
of ε (as is the norm for applied mathematicians),σ , andm but rather in terms of the
standard material parameters in the vast copolymer literature: the Flory-Huggins inter-
action parameterχ , the index of polymerizationN , and the molecular weight ratiof
(essentially ourm). Indeed, for the purposes of the phase diagram, it is reallyf and the
productχN which are relevant (cf. [4]).
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