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Abstract

The intermediate state of a type I superconductor is a classical example of energy-

driven pattern formation, first studied by Landau in 1937. Three of us recently

derived five different rigorous upper bounds for the ground-state energy, corre-

sponding to different microstructural patterns, but only one of them was com-

plemented by a lower bound with the same scaling [Choksi, Kohn, and Otto,

J. Nonlinear Sci. 14 (2004), 119–171]. This paper completes the picture by pro-

viding matching lower bounds for the remaining four regimes, thereby proving

that exactly those five different regimes are traversed with an increasing magnetic

field. c© 2007 Wiley Periodicals, Inc.

1 Introduction

The intermediate state of a type I superconductor is characterized by penetra-

tion of the magnetic field in selected parts of the material. A microscopic mixture

of normal and superconducting domains is formed [7], as was first predicted by

Landau [10, 11] (see [3] for a discussion of the literature). The mathematical study

of the problem via energy minimization was begun by three of us in [3], building

upon mathematical studies of related pattern formation problems in materials sci-

ence (see, e.g., [1, 2, 8, 9]). We examined the scaling law of the minimum energy

and the qualitative properties of domain patterns achieving this law, which are ex-

pected to represent not only the ground state but also most low-energy metastable

states.
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As explained in [3], the minimum energy has the form

E = E0 + E1,

where E0 is the value obtained by ignoring the surface energy between the nor-

mal and superconducting regions and E1 is the correction due to nonzero surface

energy. The leading-order term E0, which was completely understood by Landau,

corresponds to a “thermodynamic” theory of the intermediate state and determines,

e.g., the volume fraction of the normal domains. Mathematically, it is associated

with the relaxation of the underlying nonconvex variational problem.

The term of interest here, which determines the geometry of the microstructure,

is the correction E1, and in particular its dependence on the surface tension ε of the

normal-superconductor interface and on the magnitude ba of the applied magnetic

field. Different regimes exhibit different scaling laws. The aim of this paper is to

provide matching lower bounds for all the regimes discussed in [3].

Our analysis is restricted to the simplest realistic geometry: a plate of thickness

L , i.e., (0, L) × R
2, under a uniform transverse applied field. Abusing notation

slightly, we denote the normalized applied field (applied field / critical field) by

ba = (ba, 0, 0) with 0 < ba < 1, and in what follows, we will use ba to denote both

the scalar and the vector (ba, 0, 0)—the choice will be clear from its context. Note

that ba = 1 corresponds to the saturation magnetic field, above which the material

ceases to be superconducting. We denote by B = (B1, B2, B3) the magnetic field,

and by χ the characteristic function of the superconducting phase. To avoid edge

effects and facilitate spatial averaging, we assume both B and χ are periodic in y
and z, with period Q = (0, 1)2, so that the only remaining geometric parameter

is the slab thickness L . The choice of period is unimportant, provided it is large

compared to the length scale of the microstructure. We shall be interested in the

phase diagram depending on the two parameters ba ∈ (0, 1) and ε � 1, which

represent the applied field and the surface tension, respectively.

The variational problem determining E1 is

E1 = min
div B=0

Bχ=0 in �

E(B, χ)

where

E(B, χ) :=
∫
�

[
B2

2 + B2
3 + (1 − χ)(B1 − 1)2

]
dx dy dz

+ ε

∫
�

|∇χ | +
∫
�c

|B − ba|2 dx dy dz.
(1.1)

Here � = (0, L) × Q, where throughout this paper Q = (0, 1)2 denotes the

unit square with periodic boundary conditions, identified with the two-dimensional

torus T
2; (B −ba) ∈ L2(R× Q, R

3); and χ ∈ BV((0, L)× Q, {0, 1}). Further, the

fields satisfy Bχ = 0 a.e., representing the Meissner effect, and div B = 0 in the
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Reduced Applied Field ba Optimal Energy Scaling Law/

Example of an Optimal Structure

(c) ba �
( ε

L

)2/7 E1 ∼ baε4/7L3/7

clusters of branched flux tubes

(b)
( ε

L

)2/7 � ba � 1 E1 ∼ b2/3
a ε2/3L1/3

branched flux tubes

(a) Intermediate ba E1 ∼ ε2/3L1/3

branched lamellar

(d)
( ε

L

)2/3 � (1 − ba)

|log(1 − ba)|1/3
� 1 E1 ∼ (1 − ba)|log(1 − ba)|1/3ε2/3L1/3

superconducting tunnels

(e)
1 − ba

|log(1 − ba)|1/3
�

( ε

L

)2/3 E1 ∼ (1 − ba)2L

all normal

TABLE 1.1. The five regimes traversed by a type I superconducting

plate with increasing field ba . By an optimal structure we mean a struc-

ture whose energy achieves the optimal scaling law. Pictorial illustra-

tions of the patterns were given in [3].

sense of distributions, from Maxwell’s equation. A full description of the physical

significance of the various terms in the energy can be found in [3].

Minimization of (1.1) reveals a number of different regimes. In [3], these

regimes were explored, primarily by presenting constructions with a certain en-

ergy scaling law that were believed to be optimal in their appropriate regime. We

also obtained a matching ansatz-independent lower bound for the regime of inter-

mediate values of ba . It is the purpose of this article to prove matching ansatz-

independent lower bounds for the other regimes associated with small and large

ba , i.e., the onset and destruction of the intermediate state.

We now list the five regimes, summarizing the results of [3] and of the present

paper; see also Table 1.1. By f � g (respectively, �, ∼) we mean that f ≤ Cg
(respectively, C f ≥ g, f/C ≤ g ≤ C f ) for some universal constant C .

(0)(a) For intermediate values of ba , bounded away from 0 and 1, E1 ∼ ε2/3L1/3.

This scaling corresponds to a branched microstructure, which can take the form of

either layers or tubes.
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(0)(b) For relatively small values of ba , in the range (ε/L)2/7 � ba � 1, the

prefactor is proportional to b2/3
a . Thus E1 ∼ b2/3

a ε2/3L1/3; this scaling is achieved

by a uniform family of branched flux tubes.

(0)(c) For the smallest values of ba , when ba � (ε/L)2/7 � 1, we obtain the

lower energy E1 ∼ baε
4/7L3/7. This energy corresponds to well-separated families

of branched flux tubes.

(0)(d) For relatively large values of ba , i.e., for ba near 1, the situation is similar

to (b), and one obtains E1 ∼ (1 − ba)|log(1 − ba)|1/3ε2/3L1/3. In this regime the

magnetic flux fills most of the sample, leaving a uniformly distributed family of

branched superconducting tunnels.

(0)(e) For the largest values of ba , the sample is entirely normal and E1 ∼ (1 −
ba)

2L .

Notice that the distinction of regime (a) from either (b) or (d) is made for his-

torical reasons; from our scaling point of view, there is really only one regime.

In [3] we proved all the upper bounds implicit in Table 1.1. Also, using methods

developed in [2], we proved the lower bound

E1 � ba(1 − ba)ε
2/3L1/3,

matching the upper bound in the intermediate regime (a) and missing the upper

bound by a logarithmic factor in regime (d). In this article, we prove all remaining

lower bounds. Specifically, Theorems 4.2 and 4.3 provide matching lower bounds

for (c) and (b), respectively, and Theorem 5.1 provides matching lower bounds for

(d) and (e). Thus we have now identified the entire phase diagram for a type I super-

conducting plate and shown that with increasing applied field ba at fixed ε/L � 1,

the material goes through five different regimes, as listed in Table 1.1.

We summarize the general line of our argument. Basically, it examines the

balance between the three different energy terms (surface, interior, and exterior

magnetic field) by focusing on various sections of the form {x0} × Q (see Fig-

ure 1.1). With a slight abuse of notation we use B1(x0, · ) to denote the value of B1

on sections; for a precise interpretation of this expression (in the sense of traces),

see Lemma 2.1 below.

For the cases of a small applied field (Theorems 4.2 and 4.3), our approach can

be summarized as follows:

(1) We use the smallness of the surface energy ε|∇χ | and the constraint Bχ =
0 to show that for certain x0 in the interior of the sample, the magnetic field has

to concentrate into regions with small boundary. Hence B cannot be uniform on

that section; i.e., it has significant dependence on y and z. More specifically,

Lemma 3.1 shows that if |∇χ | is small, then the support of 1 − χ can be well

approximated with a regular set on which a significant part of B1 must concentrate.
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FIGURE 1.1. We consider a slab of material of thickness L . Most ar-

guments are based on choosing a suitable x0 ∈ (0, L) and studying the

behavior of B and χ on the section {x0}× Q and on one surface {0}× Q.

(2) Focusing on such a cross section x = x0, we define a suitable test func-

tion ψ related to these concentration areas and then derive a lower bound on∣∣∣∣
∫
Q

[B1(x0, · ) − ba]ψ
∣∣∣∣.

In practice, the first term (
∫

Q B1ψ) will dominate.

(3) A telescoping sum is now used to relate this lower bound to the energy.

That is, one notes that∫
Q

[B1(x0, · ) − ba]ψ =
∫
Q

[B1(x0, · ) − B1(0, · )]ψ +
∫
Q

[B1(0, · ) − ba]ψ.

The first term on the right is related to the energy by Lemma 2.2, which gives an es-

timate on the Monge-Kantorovich (i.e., W −1,1) norm of the differences B1(x0, · )−
B1(x1, · ) in terms of the magnetostatic energy inside the sample, exploiting again

the condition div B = 0. The second term on the right can be related to the exterior

magnetic energy via an estimate on the H−1/2 norm of [B1(0, · )−ba] (Lemma 2.1).

For the case of intermediate applied field (Theorem 4.1), the approach is actu-

ally simpler. In step (2) the test function ψ is simply a mollified version of χ(x0, · )
and the term

∫
Q baψ provides the lower bound. We then connect back to the energy

via the telescoping sum involving both B1(x0, · ) and B1(0, · ).
The case of a large applied field (Theorem 5.1) is more involved. For step (2),

the term ∫
Q

[χ(x0, · ) − (1 − ba)]ψ( · )
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now provides the lower bound, with the first term dominating. The correspond-

ing telescoping sum involves additional terms involving χ(x0, · ), B1(x0, · ), and

B1(0, · ), which are all related to parts of the energy.

In all cases, there is a length scale attached to each test function: In fact, for

all but the intermediate ba regime, there are two length scales (cf. r and � in

Lemma 3.1). The (larger) length scale is chosen in a certain optimal way that coin-

cides exactly with the length scale within the center of the sample for the respective

matching upper-bound construction that was presented in [3, sec. 4].

The energy of a type I superconductor is highly nonconvex. We do not suggest

for a moment that the system is typically in its ground state. However, we argued

in [3] that the patterns seen under increasing applied fields may be determined

by the topology of energy minima for the smallest applied fields. Similarly, we

argued that the patterns seen under decreasing applied fields may be determined by

the topology of energy minima for near-critical applied fields. Recent experimental

work on hysteresis in type I superconductors [12] lends support to this view.

The paper is organized as follows. Since the two lemmas involving negative

norms are easy to prove, we present them first in Section 2. A deeper “concen-

tration lemma” (Lemma 3.1) is presented separately in Section 3, together with

Lemma 3.2, which shows that the amount of normal and superconducting phase is

fixed by the external field ba up to a constant factor. Section 3 closes with a di-

gression about interpolation inequalities, which captures the analytical heart of our

analysis in a transparent and generalizable form. Then we get down to business:

Section 4 establishes the desired lower bounds for intermediate and small ba , and

Section 5 addresses the bounds for large ba .

2 Preliminaries

In the entire paper we identify Q = (0, 1)2 with the torus T
2, and assume

without explicit mention that functions defined on Q are periodic. For ω ⊂ Q we

denote by dist(p, ω) the distance of p from ω on Q, i.e.,

dist(p, ω) = inf{|p − q − δ| : q ∈ ω, δ ∈ Z
2},

and the perimeter Per(ω) is interpreted in the Q-sense, i.e.,

Per(ω) := sup

{∫
ω

div ϕ : ϕ ∈ C1(Q; R
2), |ϕ| ≤ 1

}

=
∫
Q

|∇χω|,

where χω is the characteristic function of ω (notice that ϕ ∈ C1(Q) implies

periodicity of ϕ). By Br (p) we mean the ball of radius r centered at p, i.e.,

{p′ ∈ Q : dist(p′, p) < r}. We use the notation �, �, and ∼ for inequalities
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up to some universal constant, and denote explicit constants by c0, c1, etc. For

v ∈ R
3, we denote by v′ the projection on the yz-plane.

We will require two negative norms to capture certain energetic terms. Let

C∞
	 (Q) be the space of Q-periodic smooth functions with mean value 0. For any

k ∈ R we define the H k
	 (Q) norm by

(2.1) ‖ f ‖2

Hk
	 (Q)

:=
∑

ξ∈2πZ
2

ξ �=0

(|ξ |k | f̂ (ξ)|)2,

where f̂ : 2πZ
2 → R denotes the Fourier coefficients of f ∈ C∞

	 (Q) (with

f̂ (0) = 0 since f has average 0). We define the Hilbert space H k
	 (Q) as the

completion of C∞
	 (Q) with respect to this norm. It is clear that (2.1) can be used

whenever the Fourier coefficients are defined. Taking the direct sum of H k
	 and

the space of constant functions, one obtains H k . We shall use the same symbol

‖ · ‖Hk
	 (Q) to denote the corresponding seminorm on spaces of functions where the

average is not constrained to be 0.

We will primarily be interested in the cases k = − 1
2
, 1

2
, 1, and will often use

the following elementary interpolation inequalities: For f ∈ H 1(Q), we have

(2.2) ‖ f ‖2

H1/2
	

≤ ‖ f ‖L2 ‖∇ f ‖L2,

and for f ∈ H−1/2
	 (Q) and g ∈ H 1/2(Q), we have f g ∈ L1(Q) and

(2.3)

∫
Q

f g ≤ ‖ f ‖H−1/2
	

‖g‖H1/2
	

.

Both inequalities are easily proved in Fourier space on C∞
	 (Q) functions and ex-

tended by density.

We also use the Monge-Kantorovich norm of f . Formally, it is finite on the

space W −1,1; rigorously, it is defined by duality with W 1,∞ as∫
Q

|∇−1( f (y, z))| := max
|∇ψ |≤1

∫
Q

f (y, z)ψ(y, z)dy dz,

where ψ is a Lipschitz function on Q. The notation is formal: we are not taking the

L1 norm of any well-defined function ∇−1( f (y, z)). Note that this norm is finite

only for functions f with average 0.

The following two lemmas will be used to relate certain energetic terms to

these norms evaluated on cross sectional slices. The first lemma relates the H−1/2
	

norm of the boundary cross section to the exterior magnetic energy. It will be

systematically applied to B̃ := B − ba . Throughout this article, the equation

div B = 0 is interpreted in the sense of distributions.
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LEMMA 2.1 Let B̃ ∈ L2(R × Q, R
3) be such that div B̃ = 0. Then the first

component of B̃ has a trace B̃1(x0, · ) on all sections {x0} × Q in the space H−1/2
	 .

Specifically, for any x0 ∈ R one has

(2.4)

∫
Q

B̃1(x0, · ) = 0

and

(2.5) ‖B̃1(x0, · )‖2

H−1/2
	 (Q)

≤
∫

x≤x0

∫
Q

|B̃|2.

With a slight abuse of notation, the trace of B̃1 on each section {x0} × Q will

be simply denoted by B̃1(x0, · ). The trace is not a well-defined function; only

expressions of the form
∫

B̃1(x0, · )ψ with ψ ∈ H 1/2 make sense.

PROOF: Without loss of generality, we can assume x0 = 0. As is usual in this

kind of argument, we use the Fourier series in the y- and z-components but not in

x . We introduce the notation

B̃(x, y, z) =
∑

ξ∈2πZ2

bξ (x)eiξ ·(y,z),

where for every ξ ∈ 2πZ
2 and x ∈ R, bξ (x) ∈ C

3. Then∫
x≤0

∫
Q

|B̃|2 =
∑

ξ∈2πZ2

∫ 0

−∞
|bξ |2(x)dx .

The constraint div B̃ = 0 reduces, in Fourier space, to

(2.6) iξ · (bξ )′ + ∂bξ

1

∂x
= 0.

Taking ξ = 0, we get that b0
1(x) does not depend on x , and since

∞ >

∫
R

∫
Q

|B̃|2 >

∫
R

|b0|2,

we have b0
1(x) = 0 for all x . This implies in particular (2.4).

The components with ξ �= 0 of (2.6) give |(bξ )′| ≥ |∂bξ

1/∂x |/|ξ |; hence∫
x≤0

∫
Q

|B̃|2 ≥
∑
ξ �=0

∫ 0

−∞
|bξ

1 |2 + 1

|ξ |2
∣∣∣∣∂bξ

1

∂x

∣∣∣∣2

dx

≥
∑
ξ �=0

∫ 0

−∞
2

1

|ξ | |b
ξ

1(x)|
∣∣∣∣∂bξ

1(x)

∂x

∣∣∣∣dx
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≥
∑
ξ �=0

∫ 0

−∞
1

|ξ |
∂(|bξ

1(x)|2)
∂x

dx

≥
∑
ξ �=0

1

|ξ | |b
ξ

1(0)|2

= ‖B̃1(0, · )‖2

H−1/2
	 (Q)

.

This concludes the proof. �

Next we prove a simple lemma that will be used to relate variations of the

magnetic field B on two interior cross sections to the magnetostatic energy inside.

LEMMA 2.2 Let B ∈ L2((a, b)×Q, R
3) be such that div B = 0 for some a, b ∈ R,

a < b. Then for any x0, x1 ∈ (a, b), x0 < x1, one has

(2.7)

∫
Q

|(∇′)−1(B1(x1, · ) − B1(x0, · ))| ≤
∫

(x0,x1)×Q

|B ′|

in the sense that

(2.8)

∫
Q

(B1(x1, · ) − B1(x0, · ))ψ(y, z)dy dz ≤ ‖∇ψ‖L∞

∫
(x0,x1)×Q

|B ′|

for any ψ ∈ W 1,∞(Q) ⊂ H 1/2(Q). If additionally B − ba ∈ L2(R × Q, R
3), then

for any x ∈ R we have

(2.9)

∫
Q

B1(x, · ) = ba.

PROOF: We claim that the condition div B = 0 implies that, for any ψ ∈
W 1,∞(Q),

(2.10)

∫
Q

(B1(x1, · ) − B1(x0, · ))ψ(y, z) =
∫
Q

∫ x1

x0

B ′ · ∇′ψ dx dy dz.

By a standard mollification argument it suffices to assume B is smooth. In this

case, note that∫
Q

(B1(x1, · ) − B1(x0, · ))ψ(y, z) =
∫
Q

∫ x1

x0

∂ B1

∂x
(x, y, z)ψ(y, z)dx dy dz

= −
∫
Q

∫ x1

x0

(∇′ · B ′)ψ dx dy dz

=
∫
Q

∫ x1

x0

B ′ · ∇′ψ dx dy dz.
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Hence (2.8) follows. Finally, if B − ba ∈ L2(R × Q, R
3), the choice of ψ = 1

trivially implies (2.9) (which can also be derived from (2.4)). �

3 Two Lemmas

We first focus on the trace of the BV function χ on a surface {x0} × Q, which

for a.e. x0 is also in BV. Lemma 3.1 shows that if |∇χ | is small, then the support

of χ can be well approximated with a regular set on which a significant part of

B1 must concentrate. This result was already presented in [4]; moreover, a very

similar lemma was proved long ago by De Giorgi [5, lemma II]. But since Lemma

3.1 lies at the heart of our analysis, we include a complete proof for the reader’s

convenience. (We state the lemma in space dimension 2 because this is what we

use. However, a similar result holds in any space dimension with a similar proof.)

LEMMA 3.1 Let S ⊂ Q be a set of finite perimeter, and let � > 0 be such that

(3.1) � Per(S) ≤ 1

4
|S|.

Then there exists an open set S� ⊂ Q with the properties:

(i) |S ∩ S�| ≥ 1
2
|S|.

(ii) For all r > 0, the set Sr
� := {p ∈ Q : dist(p, S�) < r} satisfies |Sr

� | ≤
C |S|(1 + ( r

�
)2).

The lemma states that for a given set S of controlled perimeter there is a “reg-

ular” set S� “close by.” Here “close by” is meant in the sense of (i): S� covers at

least half of the volume of S. “Regular” is meant in the sense of (ii): the thickened

sets Sr
� have controlled volume.

PROOF: We can assume without loss of generality 0 < |S| ≤ 1
2

(if not, it

suffices to take S� = Q). Let χ be the characteristic function of S, and χ� the

convolution of χ with the normalized characteristic function of B�, i.e.,

χ�(p) := 1

|B�|
∫

B�(p)

χ(p′)dp′ = |S ∩ B�(p)|
|B�| .

Consider the set

(3.2) S� :=
{

p : χ�(p) >
1

2

}
=

{
p : |S ∩ B�(p)| >

1

2
|B�|

}
.

We claim that it satisfies the claimed properties. To prove (i), observe that

χ − χ� ≥ 1 − 1

2
= 1

2
on S \ S�
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so that

|S \ S�| ≤ 2

∫
Q

|χ(p) − χ�(p)|dp

≤ 2
1

|B�|
∫
Q

∫
dist(p,p+h)<�

|χ(p) − χ(p + h)|dh dp

≤ 2 sup
|h|≤�

∫
Q

|χ(p) − χ(p + h)|dp

≤ 2�

∫
Q

|∇χ |

= 2� Per(S)
(3.1)≤ 1

2
|S|.(3.3)

Thus

|S ∩ S�| = |S| − |S \ S�| ≥ 1

2
|S|,

and (i) is proved.

Now let A ⊂ S� be a maximal family such that

(3.4) {B�(p)}p∈A are disjoint.

We claim that

(3.5) S� ⊂
⋃
p∈A

B2�(p).

If not, there would be p ∈ S� such that

∀p′ ∈ A B�(p) ∩ B�(p′) = ∅,

and this would contradict the maximality of A. Furthermore, since A ⊂ S�, we

have

#A|B�| =
∑
p∈A

|B�(p)| (3.2)
< 2

∑
p∈A

|S ∩ B�(p)| (3.4)≤ 2|S|

where #A denotes the number of elements in A. We thus obtain

(3.6) #A ≤ 2|S|
|B�| .
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We are finally ready to prove (ii). Indeed, (3.5) implies

Sr
� ⊂

⋃
p∈A

B2�+r (p).

Thus

|Sr
� | ≤

∑
p∈A

|B2�+r (p)| (3.6)≤ 2|S|
|B�| |B2�+r | = 2|S|

(
2� + r

�

)2

.

�

Our last lemma shows that the amount of normal and superconducting phase is

fixed by the external field ba up to a constant factor.

LEMMA 3.2 If div B = 0, Bχ = 0, ba ∈ (0, 1), and

E(B, χ) ≤ 1

16
min{ba, (1 − ba)

2}L ,

then:

(i) The function χ satisfies

(3.7)

∫ L

0

∫
Q

χ ∼ (1 − ba)L

and

(3.8)

∫ L

0

∫
Q

1 − χ ∼ ba L .

(ii) There exists a subset I ⊂ (0, L) with |I| ≥ L/2 such that for all x ∈ I
one has

(3.9)

∫
{x}×Q

χ ∼ 1 − ba

and

(3.10)

∫
{x}×Q

1 − χ ∼ ba.

PROOF: (i) Since Bχ = 0 and by using (2.9) to evaluate the integral of

B1, we have for all x ∈ (0, L)∫
{x}×Q

(1 − χ)(1 − B1) =
∫

{x}×Q

1 − B1 − χ

=
∫

{x}×Q

1 − ba − χ.

(3.11)
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Integrating (3.11) in x and exploiting the fact the (1 − χ) = (1 − χ)2, we find

∣∣∣∣
∫

(0,L)×Q

1 − ba − χ

∣∣∣∣ =
∣∣∣∣
∫

(0,L)×Q
(1 − χ)(1 − B1)

∣∣∣∣
Hölder≤ L1/2

( ∫
(0,L)×Q

(1 − χ)(1 − B1)
2

)1/2

≤ L1/2 E1/2.

Hence we have ∣∣∣∣(1 − ba)L −
∫

(0,L)×Q

χ

∣∣∣∣ ≤ L1/2 E1/2 ≤ 1

4
(1 − ba)L

and (3.7) is valid.

Consider now (3.8). We again integrate (3.11) over x , exploiting the fact that

(1 − χ) = (1 − χ)2, to obtain

∣∣∣∣
∫

(0,L)×Q

1 − ba − χ

∣∣∣∣ =
∣∣∣∣

∫
(0,L)×Q

(1 − χ)2(1 − B1)

∣∣∣∣
Hölder≤

( ∫
(0,L)×Q

(1 − χ)

)1/2( ∫
(0,L)×Q

(1 − χ)(1 − B1)
2

)1/2

≤
( ∫
(0,L)×Q

(1 − χ)

)1/2

E1/2

≤ 1

4

∫
(0,L)×Q

(1 − χ) + E .(3.12)

Thus we have ∣∣∣∣ba L −
∫

(0,L)×Q

1 − χ

∣∣∣∣ ≤ 1

4

∫
(0,L)×Q

(1 − χ) + 1

16
ba L ,

which implies (3.8).

(ii) Consider the set J1 of x ∈ (0, L) with the property that

∣∣∣∣
∫

{x}×Q

1 − ba − χ

∣∣∣∣ ≥ 2E1/2

L1/2
.
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Integrating in x and arguing as in (3.11) and the lines just after it, we find

|J1|2E1/2

L1/2
≤

∫
J1

∣∣∣∣
∫
Q

1 − ba − χ

∣∣∣∣
≤

∫
J1×Q

∣∣∣∣1 − B1 − χ

∣∣∣∣
Hölder≤ |J1|1/2

( ∫
(0,L)×Q

(1 − χ)(1 − B1)
2

)1/2

≤ |J1|1/2 E1/2,

which gives |J1| ≤ L/4. For all x ∈ I1 := (0, L) \ J1 we have∣∣∣∣1 − ba −
∫

{x}×Q

χ

∣∣∣∣ ≤ 2E1/2

L1/2
≤ 1

2
(1 − ba),

which implies (3.9). Further, |I1| ≥ 3L/4.

Finally, consider the subset J2 of x ∈ (0, L) with the property that∣∣∣∣
∫

{x}×Q

ba − (1 − χ)

∣∣∣∣ ≥ c0ba

for some constant c0 to be chosen shortly. Then combining (3.12) with (3.8), we

find

|J2|c0ba ≤ 1

4

∫
(0,L)×Q

(1 − χ) + E

≤ c1ba L + 1

16
ba L

for some constant c1. Hence

|J2| ≤ c1 + 1/16

c0

L .

We choose c0 such that the right-hand side is less than L/4. Then (3.10) holds for

all x ∈ I2 := (0, L) \ J2 and |I2| ≥ 3L/4. Finally, taking I = I1 ∩ I2, we

have that |I| ≥ L/2 and for all x ∈ I both (3.9) and (3.10) hold, and the proof is

concluded.

�

The rest of this section is a digression. Its goal is to explain the mathemati-

cal heart of our lower bounds in a transparent and generalizable way. (Impatient

readers can skip to Section 4 without loss of continuity.)
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Let χ be a periodic characteristic function with unit cell Q = [0, 1]2 and mean

χ̄ = ∫
Q χ . The interpolation inequalities

(3.13)

∫
Q

(χ − χ)2 �
(∫

Q

|∇χ |
)2/3(∫

|∇−1(χ − χ)|2
)1/3

and

(3.14)

∫
Q

|χ − χ | �
(∫

Q

|∇χ |
)1/2(∫

Q

|∇−1(χ − χ)|
)1/2

are relatively easy to prove. (An efficient proof of the former can be found, for

example, in [4], and the latter can be proved using the same technique.)

Now consider the low-volume-fraction regime: suppose the area fraction of the

set where χ = 1 is θ � 1. Since χ = θ , we have
∫

Q(χ − χ)2 = θ(1 − θ) ∼ θ and∫
Q |χ − χ | = 2θ(1 − θ) ∼ θ . Therefore (3.13) and (3.14) become

(3.15)

(∫
Q

|∇χ |
)2/3

‖χ − θ‖2/3

H−1
	

≥ Cθ

and

(3.16)

(∫
Q

|∇χ |
)1/2(∫

Q

|∇−1(χ − θ)|
)1/2

≥ Cθ

with C independent of θ .

It is natural to ask whether these estimates are optimal or, more precisely,

whether the dependence of the right-hand side on θ is optimal. The answer turns

out to be no. Indeed, (3.15) can be improved to

(3.17)

(∫
Q

|∇χ |
)2/3

‖χ − θ‖2/3

H−1
	

≥ Cθ |log θ |1/3 for θ � 1,

and (3.16) can be improved to

(3.18)

(∫
Q

|∇χ |
)1/2(∫

Q

|∇−1(χ − θ)|
)1/2

≥ Cθ3/4 for θ � 1.

The proof of (3.17) can be found in [4]; the argument uses Lemma 3.1 and is

somewhat similar to the proof of Theorem 5.1. The proof of (3.18) is easier; we

shall give it in a moment. The argument is similar to the proof of Theorem 4.2.

The preceding comments are specific to space dimension 2. Let us briefly dis-

cuss what happens in space dimension n ≥ 3. The elementary estimates (3.13)–

(3.16) are valid in any dimension. In dimension n ≥ 3 the right-hand side of (3.15)
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cannot be improved, as we show below. The situation is different for (3.16): the

analogue of (3.18) in space dimension n is

(3.19)

(∫
Q

|∇χ |
)1/2(∫

Q

|∇−1(χ − θ)|
)1/2

≥ Cθ1−1/(2n).

This estimate also has the optimal scaling; see below.

We now give the proof of (3.18). We shall apply Lemma 3.1 with S = {χ = 1}
and � defined by

� Per(S) = 1

4
|S| = 1

4
θ.

The value of the parameter r in Lemma 3.1 will be chosen later, in (3.20); for now

we leave it unspecified but assume r > �. The lemma provides a set S� such that

• |S ∩ S�| ≥ 1
2
|S|.

• |Sr
� | ≤ c1(r/�)2|S| where Sr

� = {p : dist(p, S�) < r}.
Define a test function ψ on Q by

ψ(p) = max{r − dist(p, S�), 0}
so that ψ ≥ 0 and

ψ = r on S�, |∇ψ | ≤ 1, ψ = 0 off Sr
� .

We have ∫
Q

(χ − θ)ψ ≤
∫
Q

|∇−1(χ − θ)|

by definition, since |∇ψ | ≤ 1. Now,∫
Q

χψ ≥ r |S� ∩ S| ≥ 1

2
rθ,

while ∫
Q

θψ ≤ θr |Sr
� | ≤ c1θ

2r
(

r
�

)2

.

We are ready to choose r : it should satisfy

(3.20) c1θ

(
r
�

)2

= 1

4
;

notice that this gives r ∼ �θ−1/2. It follows that∫
Q

(χ − θ)ψ ≥ 1

4
rθ ∼ �θ1/2.
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Recalling the definition of �, we conclude that∫
Q

|∇−1(χ − θ)| ≥ C
(∫

Q

|∇χ |
)−1

θ3/2,

which is equivalent to (3.18). The same argument, using the n-dimensional version

of Lemma 3.1, proves (3.19).

We finally show the optimality of the mentioned scalings. We start with (3.15).

Let n > 2, and for any θ > 0 sufficiently small, let Bθ ⊂ Q be a ball such that

|Bθ | = θ . We set χ to be the characteristic function of Bθ . Clearly∫
Q

|∇χ | = Hn−1(∂ Bθ ) = cθ(n−1)/n.

At the same time, by duality

‖χ − θ‖H−1
#

= sup

{∫
Q

(χ − θ)φ : φ ∈ H 1
# (Q), ‖φ‖H1

#
≤ 1

}
.

Since
∫

Q φ = 0, the integral can be estimated by∫
Q

(χ − θ)φ =
∫
Q

χφ ≤ ‖χ‖L p′ ‖φ‖L p ≤ cθ1/p′‖φ‖H1
#
.

Here p = 2n/(n − 2) is the Sobolev-conjugate exponent to 2 in dimension n and

p′ = p/(p −1) = 2n/(n +2). We also used the continuous embedding of H 1
# into

L p and Hölder’s inequality between L p and L p′
. We conclude that, for the present

choice of χ , (∫
Q

|∇χ |
)2/3

‖χ − θ‖2/3

H−1
	

≤ cθ
2
3 ( n−1

n )θ
2
3 ( n+2

2n ) = cθ.

This proves optimality of (3.15) for n > 2. In the case n = 2 this construction fails

because of the failure of the critical embedding of H 1 into L∞.

We now turn to (3.19). We take the same test function and write∫
Q

|∇−1(χ − θ)| =

sup

{∫
Q

(χ − θ)φ : φ ∈ W 1,∞(Q), ‖∇φ‖L∞ ≤ 1,

∫
Q

φ = 0

}
.



612 R. CHOKSI ET AL.

Proceeding as above and using the duality L1-L∞ to estimate the product and the

continuous embedding of W 1,∞ into L∞, we obtain∫
Q

(χ − θ)φ =
∫
Q

χφ ≤ ‖φ‖L∞(Q)

∫
Q

χ ≤ cθ.

Therefore(∫
Q

|∇χ |
)1/2(∫

Q

|∇−1(χ − θ)|
)1/2

≤ cθ(n−1)/2nθ1/2 = cθ1−1/(2n).

All constants depend on dimension, but not on θ .

4 Geometry-Independent Lower Bounds
for Small and Intermediate Applied Fields

4.1 Lower Bound at Intermediate Fields
As a warm-up, we present a short proof of the bound at intermediate fields,

which illustrates in a simpler setting the strategy followed for large and small fields.

This bound was previously proved in [3], in which a less direct argument was

used. In this intermediate regime one does not need the concentration estimate of

Lemma 3.1; it suffices to take, as a test function, a suitable mollification of χ .

THEOREM 4.1 For any γ > 0 there exists C(γ ) (a constant depending on γ )

such that the following holds: For any ε < L, any ba ∈ (γ, 1 − γ ), and any
χ ∈ BV((0, L) × Q; {0, 1}) and B such that B − ba ∈ L2(R × Q; R

3), both
Q-periodic and obeying the compatibility conditions div B = 0 and Bχ = 0 a.e.,
we have

E(B, χ) ≥ C(γ )ε2/3L1/3.

PROOF: Let (B, χ) be an admissible pair. We may assume E = E(B, χ) � L ,

with a constant that permits us to apply Lemma 3.2. Otherwise, there is nothing to

prove. We choose x0 ∈ (0, L) such that (3.9) and (3.10) hold, and

(4.1)

∫
{x0}×Q

ε|∇χ | + (1 − χ)(1 − B1)
2 � E

L
.

Fix a small parameter ρ > 0 to be chosen below, and let χρ be a mollification

of χ(x0, · ) on a scale ρ. This means χρ = χ(x0, · ) ∗ ϕρ where ϕρ(y, z) =
ρ−2ϕ1(y/ρ, z/ρ) and ϕ1 ∈ C∞

c (R2) with
∫

ϕ1 = 1. Then standard estimates give

(4.2) ‖∇χρ‖L∞ � 1

ρ
, ‖χ − χρ‖L1 � ρ

∫
{x0}×Q

|∇χ |
(4.1)

� Eρ

εL
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(for the second inequality, see the proof of (3.3) above; the constants may depend

on the choice of ϕ1). Hence we have (remembering that |Q| = 1)

‖χρ‖H1/2
	

(2.2)≤ ‖χρ‖1/2

L2 ‖∇χρ‖1/2

L2

≤ ‖χρ‖1/2
L∞ ‖∇χρ‖1/2

L∞

(4.2)

� 1

ρ1/2
.(4.3)

We intend to use χρ as a test function in the estimates of Lemma 2.1 and 2.2.

First note that by (3.9) in Lemma 3.2, we have the lower bound∫
Q

baχρ = ba

∫
{x0}×Q

χ � C(γ ),(4.4)

where C(γ ) is a positive “constant” (which can depend on γ ). We now use the

telescoping sum∫
Q

baχρ =
∫
Q

[ba − B1(0, · )]χρ

+
∫
Q

[B1(0, · ) − B1(x0, · )]χρ +
∫
Q

B1(x0, · )χρ

to relate back to the energy. To this end, we note that by Lemma 2.1, the energy

bounds the fluctuation of B1 at the boundary of the sample in the sense that∫
Q

[ba − B1(0, · )]χρ

(2.3)≤ ‖B1(0, · ) − ba‖H−1/2
	

‖χρ‖H1/2
	

(4.3)
Lemma 2.1

� E1/2

ρ1/2
.(4.5)

Now, from Lemma 2.2 we find that the relevant projection of B1 does not change

much from the boundary to the section {x0} × Q, namely,∫
Q

[B1(0, · ) − B1(x0, · )]χρ

Lemma 2.2≤ ‖∇χρ‖L∞

∫
(0,L)×Q

|B ′|

(4.2)
Hölder

� (E L)1/2

ρ
.
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Lastly, since Bχ = 0, we obtain∫
Q

B1(x0, · )χρ =
∫
Q

B1(x0, · )[χρ − χ(x0, · )]

≤
∫

{x0}×Q

|χρ − χ | +
∫

{x0}×Q

B2
1 |χρ − χ |

�
∫

{x0}×Q

|χρ − χ | +
∫

{x0}×Q∩{|B1|>2}
[B1 − 1]2[1 − χ ]

(4.1)
(4.2)

� Eρ

εL
+ E

L
.(4.6)

In the second line above we used that B1 ≤ 1 + B2
1 ; in the third line we used that

if |B1| > 2 then χ = 0, so |χρ − χ | ≤ 1 = |1 − χ |.
The telescoping sum together with (4.5)–(4.6) and (4.4) gives

E1/2

ρ1/2
+ (E L)1/2

ρ
+ Eρ

εL
+ E

L
� C(γ )

or

E � C(γ ) min

{
ρ,

ρ2

L
,
εL
ρ

, L
}
.

Balancing the second and third terms gives the optimal choice ρ = ε1/3L2/3 and

the result follows. �

4.2 Lower Bound for the Smallest Applied Fields
THEOREM 4.2 There exists a constant (implicit in the notation below) such that if
ba, ε, and L satisfy

(4.7) b7/2
a ≤ ε

L
≤ 1

2
,

then for any χ ∈ BV((0, L) × Q; {0, 1}) and any B such that B − ba ∈ L2(R ×
Q; R

3), both Q-periodic and obeying the compatibility conditions div B = 0 and
Bχ = 0 a.e., we have

E(B, χ) � baε
4/7L3/7.

PROOF: It suffices to prove the theorem under the additional assumption

(4.8) b7/2
a ≤ c̄

ε

L
for some c̄ ≤ 1 to be chosen below. Indeed, if (4.8) does not hold, it suffices to

replace L with L ′ = c̄L and restrict all functions to (−∞, L ′)× Q. In doing this it

is important that the following proof use only the last term in (1.1) on the restricted

set �′
c = (−∞, 0) × Q.
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Let (B, χ) be an admissible pair. Fix a constant c∗ > 0 (chosen below). With-

out loss of generality we may assume

(4.9) E := E(B, χ) ≤ c∗baε
4/7L3/7.

Otherwise there is nothing to prove. We note that by assumption, the hypothesis

of Lemma 3.2 is valid, with perhaps a suitable restriction on c∗ and c̄. Hence

Lemma 3.2, (4.8), and (4.9) imply that there exists x0 ∈ (0, L) such that

(4.10)

∫
{x0}×Q

1 − χ ∼ ba

and

(4.11)

∫
{x0}×Q

ε|∇′χ | + (1 − χ)(B1 − 1)2 � c∗ba

(
ε

L

)4/7

hold. We now apply Lemma 3.1 on Q. We choose � = ε3/7L4/7 and define S ⊂ Q
to be the support of (1 − χ)(x0, · ). By (4.10) and (4.11),

� Per(S) � c∗ba � c∗|S|;
hence if c∗ is sufficiently small, we can apply Lemma 3.1 and obtain a set S� ⊂ Q
such that

(4.12) |S ∩ S�| ≥ |S|
2

� ba,

and, for r ≥ � (chosen below),

(4.13) |Sr
� | � |S|r

2

�2
∼ ba

r2

�2
.

We shall use the set Sr
� to construct a test function on Q that will permit us to

estimate the magnetic energy through integrals on good sections. Specifically, for

p ∈ Q we set

(4.14) ψ(p) := max{r − dist(p, S�); 0},
where the distance above is computed in Q (see Figure 4.1). Clearly ψ is Lipschitz-

continuous on Q with |∇ψ | ≤ 1. Since ψ = r on S�, ψ ≤ r on Q, and ψ = 0 on

Q \ Sr
� , the inequalities (4.12) and (4.13) imply∫

Q

[1 − χ(x0, · )]ψ ≥ r |S ∩ S�| � rba,(4.15)

∫
Q

ψ2 ≤ r2|Sr
� | � r2ba

r2

�2
,

∫
Q

|∇ψ |2 ≤ |Sr
� | � ba

r2

�2
.(4.16)
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S�

Sr
�

ψ

FIGURE 4.1. Sketch of the construction of ψ for the case where S� is a circle.

Next we derive a lower bound for
∫

B1(x0, · )ψ . Using Bχ = 0, we write

(4.17)

∫
{x0}×Q

B1ψ =
∫

{x0}×Q

[1 − χ ]ψ −
∫

{x0}×Q

[1 − χ ][1 − B1]ψ.

The first term is bounded below by (4.15). The second one can be controlled,

assuming

(4.18) r ≤ �

(
L
ε

)2/7

= ε1/7L6/7,

by

∫
{x0}×Q

[1 − χ ][1 − B1]ψ Hölder≤
( ∫
{x0}×Q

[1 − χ ][B1 − 1]2

)1/2(∫
Q

ψ2

)1/2

(4.11)
(4.16)

� c1/2
∗ b1/2

a

(
ε

L

)2/7

rb1/2
a

r
�
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(4.18)≤ c1/2
∗ rba

(4.15)

� c1/2
∗

∫
{x0}×Q

[1 − χ ]ψ.

Comparing with (4.15) and (4.17), we see that, if c∗ is sufficiently small, one has

(4.19)

∫
{x0}×Q

B1ψ ≥ 1

2

∫
{x0}×Q

[1 − χ ]ψ � rba.

We now relate this lower bound back to the energy via the telescoping sum

(4.20)

∫
Q

[B1(x0, · ) − ba]ψ =
∫
Q

[B1(x0, · ) − B1(0, · )]ψ +
∫
Q

[B1(0, · ) − ba]ψ.

To this end, we relate the right-hand side of (4.20) to the magnetic energy. The first

term is estimated by Lemma 2.2. The constraint Bχ = 0 implies∫
Q

∫ L

0

|B ′| =
∫
Q

∫ L

0

[1 − χ ]|B ′|

Hölder≤
(∫

Q

∫ L

0

[1 − χ ]
)1/2(∫

Q

∫ L

0

|B ′|2
)1/2 (3.8)

� (E Lba)
1/2.

Therefore (2.8) gives

(4.21)

∫
Q

[B1(x0, · ) − B1(0, · )]ψ � (E Lba)
1/2.

For the second term, we use Lemma 2.1 to estimate the H−1/2
	 norm of B1(0, · )−ba

in terms of the energy:∣∣∣∣
∫
Q

[B1(0, · ) − ba]ψ
∣∣∣∣ (2.3)≤ ‖B1(0, · ) − ba‖H−1/2

	
‖ψ‖H1/2

	

Lemma 2.1
(2.2)

(4.16)

� E1/2 r3/2b1/2
a

�
.(4.22)

We now choose the value of r :

r = �2/3L1/3 = ε2/7L5/7.



618 R. CHOKSI ET AL.

This choice is admissible since r/� = (L/ε)1/7 ≥ 1 and r ≤ ε1/7L6/7 by (4.7).

The choice of r implies that the right-hand sides of (4.21) and (4.22) have the same

scaling in ε, L , and ba .

By (4.13) and (4.19) we have

(4.23)

∫
Q

baψ � b2
a

r3

�2
and

∫
Q

B1(x0, · )ψ � rba.

We now choose the constant entering (4.8) to be such that

ba
r2

�2
= ba

(
L
ε

)2/7

is sufficiently small compared with (an appropriate function of) the two implicit

constants entering in (4.23). This will insure that, when we include the implicit

constants, the right-hand side of the second inequality of (4.23) dominates that of

the first. Thus ∫
Q

[B1(x0, · ) − ba]ψ � rba.

This now combines with (4.21) and (4.22), via the telescoping sum (4.20), to yield

rba �
∫
Q

[B1(x0, · ) − ba]ψ

� E1/2 r3/2b1/2
a

�
+ E1/2L1/2b1/2

a

= 2E1/2L1/2b1/2
a

where in the last step we used the definition of r . Finally, inserting the definition

of �, we obtain

E1/2 � rba

L1/2b1/2
a

or E � 1

Lba
r2b2

a = baε
4/3L3/7.

This concludes the proof. �

4.3 Lower Bound for Relatively Small Applied Fields
THEOREM 4.3 There exists a constant (implicit in the notation below) such that if
ba, ε, and L satisfy

(4.24)
ε

L
≤ b7/2

a ≤ 1

2
,

then for any χ ∈ BV((0, L)× Q; {0, 1}) and B such that B −ba ∈ L2(R× Q; R
3),

both Q-periodic and obeying the compatibility conditions div B = 0 and Bχ = 0,
we have

E(B, χ) � b2/3
a ε2/3L1/3.
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PROOF: The proof is analogous to that of Theorem 4.2. We mention the dif-

ferences. Let (B, χ) be an admissible pair. Assumption (4.9) is naturally replaced

with

E := E(B, χ) ≤ c∗b2/3
a ε2/3L1/3

(again, c∗ is chosen below). Further, by Theorem 4.1, it suffices to prove the result

under the assumption that

(4.25) ba ≤ c̄

for some c̄ chosen below. These assumptions and (4.24) imply that the hypothesis

of Lemma 3.2 is valid (with suitable restrictions on c∗ and c̄). We may therefore

choose x0 ∈ (0, L) such that

(4.26)

∫
{x0}×Q

ε|∇′χ | + (1 − χ)(B1 − 1)2 � c∗b2/3
a

(
ε

L

)2/3

and (3.10) hold. We apply Lemma 3.1 with � = b1/3
a ε1/3L2/3, S ⊂ Q being the

support of (1 − χ)(x0, · ). As above, this choice of � is admissible provided c∗ is

sufficiently small. We obtain a set S� ⊂ Q such that (4.12) and (4.13) hold for

any r ≥ � (chosen below). Next consider the test function ψ defined as in (4.14).

Recall that ψ is Lipschitz-continuous with |∇ψ | ≤ 1 and (4.15) holds. For the

estimate (4.19), we find, arguing as above and assuming

(4.27) r ≤ �b1/6
a

(
L
ε

)1/3

= b1/2
a L ,

that ∫
{x0}×Q

[1 − χ ][1 − B1]ψ ≤
( ∫
{x0}×Q

[1 − χ ][B1 − 1]2

)1/2(∫
Q

ψ2

)1/2

(4.26)
(4.16)

� c1/2
∗ b1/3

a

(
ε

L

)1/3

rb1/2
a

r
�

(4.27)≤ c1/2
∗ rba

(4.15)

� c1/2
∗

∫
{x0}×Q

[1 − χ ]ψ.

Therefore, if c∗ is small enough, (4.15) and (4.17) imply that∫
{x0}×Q

B1ψ � rba.
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Again, we have to ensure that this term is larger than
∫

baψ , which by (4.13) can

be bounded by

(4.28)

∫
Q

baψ � b2
a

r3

�2
.

We choose

r = c̄1/2 ε1/3L2/3

b1/6
a

= �

(
c̄
ba

)1/2

,

where c̄ ≤ 1 is the constant entering (4.25). This choice is admissible since r/� =
(c̄/ba)

1/2 ≥ 1 and, by (4.24), r ≤ b1/2
a L . From (4.28) we obtain

(4.29)

∫
Q

baψ � bar
(

ba
r2

�2

)
= c̄bar � c̄

∫
{x0}×Q

B1ψ.

If the constant c̄ entering (4.25) is small enough, we obtain∫
Q

[B1(x0, · ) − ba]ψ � rba.

Proceeding as in (4.21) and (4.22) of Theorem 4.2, we find both∫
Q

[B1(x0, · ) − B1(0, · )]ψ � (E Lba)
1/2

and ∫
Q

[B1(0, · ) − ba]ψ � E1/2 r3/2b1/2
a

�
.

The telescoping sum (4.20) now implies that

rba � E1/2L1/2b1/2
a + E1/2 r3/2b1/2

a

�

or

E1/2 � min

{
rb1/2

a

L1/2
,
�b1/2

a

r1/2

}
.

The choice of r combined with assumption (4.24) implies that the first term is

smaller, and hence

E � r2ba

L
= c̄b2/3

a ε2/3L1/3.

�
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5 Geometry-Independent Lower Bounds for Large Applied Fields

THEOREM 5.1 For any χ ∈ BV((0, L) × Q; {0, 1}) and any B such that B −
ba ∈ L2(R × Q; R

3), both Q-periodic and obeying the compatibility conditions
div B = 0 and Bχ = 0, and any ba ∈ ( 1

2
, 1), we have

E(B, χ) � min
{
(1 − ba)ε

2/3L1/3|log(1 − ba)|1/3, (1 − ba)
2L

}
.

The first regime corresponds to families of superconducting tunnels in a normal

matrix (see [3, sec. 4.4]). The tunnels have diameter of order � and are separated

by a distance of order τ (both length scales are defined in (5.2) below). The second

regime does not have a microstructure and arises from the fact that if ba is very

close to 1, eventually the cost of field penetration in the whole sample is smaller

than the cost of building the interfaces. This gives χ = 0, B1 = ba everywhere,

and the total energy

E = (1 − ba)
2L .

PROOF: It is convenient to replace ba by the small quantity

α = (1 − ba)
1/2.

By Theorem 4.1 it suffices to prove the thesis for sufficiently small α. Let (B, χ)

be an admissible pair. We can assume without loss of generality that

E = E(B, χ) ≤ min

{
1

16
α4L , c∗α2ε2/3L1/3|log α|1/3

}
.

As in the previous cases, we shall choose c∗ below. Note that the hypothesis of

Lemma 3.2 is satisfied. Hence we may choose {x0} × Q such that (3.9) holds,∫
Q

|∇χ |(x0, · ) � E
εL

≤ c∗
α

τ
= c∗

α2

�

and

(5.1)

∫
Q

[B ′]2 + [B1 − 1]2[1 − χ ](x0, · ) � E
L

.

Here we denote by

(5.2) τ := ε1/3L2/3

α|log α|1/3
and � := ατ = ε1/3L2/3

|log α|1/3
,

the natural length scales of the problem. If c∗ is sufficiently small, we can apply

Lemma 3.1 to the support of χ and obtain S� such that

(5.3)

∫
S�

χ(x0, · ) � α2.
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The test function will equal 1 on S� and then decrease logarithmically. To be more

specific: suppose β ∈ (2α1/2, 10) (in the end we will fix β, taking it equal to either

3 or 1). Define ϕ : [0, ∞) → R by

ϕ(r) :=




1 if r < ατ = �,
log(βτ/r)

log(β/α)
if ατ < r < βτ,

0 if r > βτ.

The test function is constructed by setting

ψ(p) := ϕ(dist(p, S�)).

We notice that ψ = 1 on S�, and that |∇ dist( · , S�)| = 1 a.e. on Q \ S�. Further,

by Lemma 3.1 we have, for all r ≥ �,

(5.4) |Sr
� | � |S|r

2

�2
.

We estimate, using the coarea formula [6, theorem 2 in sec. 3.4.3 and prop. 2 in

sec. 3.4.4] and integrating by parts,∫
Q

|ψ |2 dp = |S�| +
∫ ∞

0

ϕ2(r)H1({p ∈ Q : dist(p, S�) = r})dr

= −
∫ ∞

0

[
d
dr

ϕ2(r)

]
|Sr

� |dr

(5.4)

�
∫ βτ

ατ

log(βτ/r)

r log2(β/α)
|S|r

2

�2
dr

� |S|(βτ)2

�2 log2(β/α)

� β2

log2(β/α)
.

Analogously we find∫
Q

|ψ |dp �
∫ βτ

ατ

1

r log(β/α)
|S|r

2

�2
dr � β2

log(β/α)

and ∫
Q

|∇ψ |2 dp ≤
∫ ∞

0

|ϕ′|2(r)H1({p ∈ Q : dist(p, S�) = r})dr

= −
∫ βτ

ατ

[
d
dr

|ϕ′|2(r)

]
|Sr

� |dr

≤ 1

τ 2 log β/α
.
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We summarize these bounds as follows:

(5.5)

‖ψ‖2
L2 � β2

log2 β/α
, ‖ψ‖L1 � β2

log β/α
,

‖∇ψ‖2
L2 � 1

τ 2 log β/α
, ‖ψ‖2

H1/2
	

(2.2)

� β

τ log3/2 β/α
.

With the test function in hand, our remaining tasks are

• to prove the lower bound

(5.6)

∫
{x0}×Q

[χ − (1 − ba)]ψ � α2,

• to relate this back to the energy by using the usual telescoping sum for the

left-hand side.

Focusing on the first task, note that by (5.3),∫
{x0}×Q

χψ ≥
∫

{x0}×S�

χ � α2.

Also, we have ∫
{x0}×Q

[1 − ba]ψ =
∫

{x0}×Q

α2ψ � α2β2

log β/α
� α2

|log α| .

In the last step we used that β ∈ (2α1/2, 10) and that α < 1. Since we are working

in the small-α regime, we can assume that∫
Q

[1 − ba]ψ ≤ 1

2

∫
Q

χψ.

Thus (5.6) holds.

We now use the telescoping sum∫
Q

[χ(x0, · ) − (1 − ba)]ψ =
∫
Q

[χ(x0, · ) + B1(x0, · ) − 1]ψ

+
∫
Q

[B1(0, · ) − B1(x0, · )]ψ

+
∫
Q

[ba − B1(0, · )]ψ
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to relate (5.6) to the energy. To this end, from (5.1) we have∫
Q

[χ(x0, · ) + B1(x0, · ) − 1]ψ =
∫
Q

[B1 − 1][1 − χ ]ψ

Hölder≤
(∫

Q

[B1 − 1]2[1 − χ ]
)1/2(∫

Q

ψ2

)1/2

�
(

E
L

)1/2

‖ψ‖L2

(5.5)

�
(

E
L

)1/2
β

log β/α
.(5.7)

Turning to the next term, we have∫
Q

[B1(0, · ) − B1(x0, · )]ψ( · ) (2.10)= −
∫
Q

∫ x0

0

B ′(x, · )∇ψ( · )

Hölder≤ (E L)1/2‖∇ψ‖L2

(5.5)

� (E L)1/2

τ log1/2 β/α
.(5.8)

The last term satisfies∫
Q

[ba − B1(0, · )]ψ( · ) (2.3)≤ ‖b − B1(0, · )‖H−1/2
	

‖ψ‖H1/2
	

Lemma 2.1≤ E1/2‖ψ‖H1/2
	

(5.5)

� E1/2β1/2

τ 1/2 log3/4 β/α
.(5.9)

Combining (5.7)–(5.9) with (5.6), we obtain

E1/2 � min

{
α2L1/2 log β/α

β
,

α2τ log1/2 β/α

L1/2
,

α2τ 1/2 log3/4 β/α

β1/2

}
,

or

E � min

{
α4L log2 β/α

β2
,

α4τ 2 log β/α

L
,

α4τ log3/2 β/α

β

}
.(5.10)
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We distinguish two cases. If

(5.11)

(
ε

L

)2/3

≤ α2

|log α|1/3
,

we shall show that the right-hand side of (5.10) is greater than or equal to a constant

times

E0 := α2|log α|1/3ε2/3L1/3.

To see this, we factor out E0 from the right-hand side of (5.10), obtaining

E � E0 min

{(
L
ε

)2/3(
α

β

)2
log2 β/α

|log α|1/3
,

log β/α

|log α| ,

(
L
ε

)1/3
α

β

log3/2 β/α

|log α|2/3

}
.

We claim that for some β the minimum on the right is larger than c > 0. To see

this, note that the third term in the brackets is the geometric mean of the first and

the second; hence we can neglect it. We therefore need to find β ∈ (2α1/2, 10)

such that

(5.12)

(
L
ε

)2/3(
α

β

)2
log2 β/α

|log α|1/3
� 1,

log β/α

|log α| � 1.

We choose β = 3, so that log β/α ≥ 1 + log 1/α. The second inequality in (5.12)

is obvious, and the first one follows from (5.11). This concludes the proof if (5.11)

holds.

On the other hand, if

(5.13)

(
ε

L

)2/3

≥ α2

|log α|1/3
,

we need to show that the energy is larger than a constant times

E1 := α4L .

Arguing as before, we factor out E1 to get

E � E1 min

{
log2 β/α

β2
,

(
ε

L

)2/3
log β/α

α2|log α|2/3
,

(
ε

L

)1/3
log3/2 β/α

αβ|log α|1/3

}
.

By (5.13), the result now follows with the choice of β = 1. �
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