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Abstract

Melts of diblock copolymer/homopolymer blends exhibit multiscale phase separatiomatijophaseseparation into
homopolymer- and copolymer-riaimacrodomaindollowed by (ii) microphaseseparation into A- and B-ricmicrodomains
within the copolymer-rich macrodomains (cf. [S. Koizumi, H. Hasegawa, T. Hashimoto, Macromolecules 27 (1994) 6532;
S. Koizumi, H. Hasegawa, T. Hashimoto, Macromolecules 27 (1994) 7893; H. Tanaka, H. Hasegawa, T. Hashimoto, Macro-
molecules 24 (1991) 240]). Following our previous derivation in [R. Choksi, X. Ren, On a derivation of a density functional
theory for microphase separation of diblock copolymers, J. Stat. Phys. 113 (2003) 151-176], we derive a density functional
theory for blends. This theory has been shown numerically to capture the multiscale separation (cf. [T. Ohta, A. Ito, Dynamics
of phase separation in copolymer—homopolymer mixtures, Phys. Rev. E 52-5 (1995) 5250-5260; A. Ito, Domain patterns in
copolymer—homopolymer mixtures, Phys. Rev. E 58-5 (1998) 6158—6165]). We also prove a result on local minimizers in one
space dimension, confirming a lamellar multiscale phase separation.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A diblock copolymer is a linear-chain molecule consisting of two sub-chains joined covalently to each other.
One of the sub-chains is made of monomers of type A and the other of type B. Below a critical temperature, even a
weak repulsion between unlike monomers A and B induces a strong repulsion between the sub-chains, causing th
sub-chains to segregate. A macroscopic segregation, whereby the sub-chains detach from one another, cannot occ
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because the sub-chains are chemically bonded: rather, a phase separation on a mesoscopic scale with A and B-ricl
domains emerges. The mesoscopic domains which are observed are highly regular periodic structures; for example,
lamellar, bcc centered spheres, cylindrical tubes, and bicontinuous gyroids (see for eX8haple the references
therein). This phenomena of diblock copolymer melts is commonly referredrticagphase separation

In this article, we consider a mixture of A—B copolymers with homopolymers of monomer species C, where the
species Cis thermodynamically incompatible with both the A and B monomer species. By a homopolymer of species
C we mean a polymer chain consisting purely of the monomer species C, and hence, a diblock copolymer results
from covalently joining one end of a A-homopolymer to one end of a B-homopolymer. When such a mixture contains
a sufficient concentration of the C homopolymers, the result in the melt phase is a macroscopic phase separation
(which we callmacrophase separatipimto homopolymer- and copolymer-rich domains followedrbigrophase
separationwithin the copolymer-rich domains into A- and B-rich subdomains [(t6,17,26). Following this
phenomena, let us agree to call the C-rich domaiasrodomainsnd the A- and B-rich domaimsicrodomains

Following the work of Leiblef19], Ohta and KawasalR3] proposed a density functional theory (DFT) to
model microphase separation of diblock copolymers wherein the energy of the system is written exclusively in
terms of the averaged relative monomer density fieldandug. This free energy entails a locabhn-Hilliard-like
(cf. [5,22]) term together with a nonlocal interaction term stemming from the connectivity of the chains.

Ohta and Itd24,18]later noted that the Ohta—Kawasaki DFT could be generalized to the case of blends. Using
an appropriate gradient flow, they presented simulations on the dynamics of the micro-macro phase separation. In
particular, working with two order parameters (#ggendix Aof the present article) they wrote down a precise form
of the nonlocal interaction term. No details were presented on its derivation and we are unaware of any systematic
derivation of such a nonlocal functional for a homopolymer/copolymer blend.

In [6], we gave a systematic derivation of the Ohta—Kawasaki DFT for microphase separation of diblock copoly-
mers, presenting it as an offspring of the the self-consistent mean field thed20]cind the references therein).

The main purpose of this article is to derive a similar DFT for a homopolymer/copolymer blend in terms of the
averaged relative monomer density fields ug anduc. Because of thivcal nature of the mean field approximation

and thdinear framework for the entropic part of the free energy, the addition of the homopolymers simply induces
a linear perturbation of the pure diblock problem considere@jnWhile we do outline all the major steps, we
detail only the modifications, and refer the readef6iofor missing details. One simplification over the approach

in [6] is used: By using periodic boundary conditions, we simplify several of the steps.

Finally, we include a separate section (Sectiprdevoted to proving a result in one space dimension on the
existence of local minimizers which display a multiscaled lamellar pattern.

2. Notation
For clarity, we provide a brief summary of some of our notation:

e 2 c R3is the physical domain with volum&2| on which the melt lives anB is a normalized physical domain
of unit volume. Unlike in[6], we will assume here tha? andD are the cubes (@)2 and (Q 1)° respectively,
and work with periodic boundary conditions; that is, we idenfZfyandD with the three dimensional cubic torus
73 of dimensionL and 1, respectively. We usez to denote points ir2 with dx (or dy, dz) in reference to a
volume integral.

e Fields with super and sub indices of A—C will be used to denote reference to the A—-C monomers, respectively.
In Section3, we often us&k andm as variables taking on the values of eitheandB or A—C. To distinguish
between sums over A and B and sums over A—C we use explicit summation notation rather than the summation
convention.

e The indices of polymerization for the copolymer and homopolymer chains are denoted respectively by the
integersN and Nc. For a copolymer chains parametrized by either ¢ € [0, N], we letZp = [0, Na) denote
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the interval occupied by the A-monomers dfigl= [ Na, N] denote the interval occupied by the B-monomers.
We letNg := N — Na. The molecular weight of the A and B monomers aig/N andNg/N, respectively.

o P =P, ..., rP) denotes am-tuple of copolymer chains (continuous functions from/Q to £2) andr’ =
(r}", cee, rZ*) denotes am-tuple of homopolymer chains (continuous functions fromy@] to £2). Associated to
these g + v)-tuples is anf + v)-product Wiener measure denoted hy@ee SectioB for a precise definition).

¢ | denotes the Kuhn statistical length. The Boltzmann constant has been normalized to urfitdearates the
reciprocal of the absolute temperature measured in units of (enérgy)

3. Mean field approximation

We assume there areAB-diblocks chains WrittentlD, ...rP andv C-homopolymer chains written?, . .. r/t.
Each of the diblock chairvr;D is a Brownian process in the function space

P = C((0. N1, 2).

and each of the homopolymer cha'rrﬁéis a Brownian process in the function space
it = c([0. Ncl. ).

If we write everyr? e C([0, N, 2) asr? = rP(0) + (rP — rP(0)), the space is decomposed into
C([0, N], 2) = 2 x {r? € C([0, N], 2) : rP(0) = O}.

Let dPé’ be the Wiener measure of the standard Brownian motion, scaled by altaz(fﬂron{r}’ e C([0, N], £2) :

riD(O) = 6}. | is the Kuhn statistical lengfl7,9] that measures the average distance between two adjacent monomers.
In this paper we only consider the situation when thssindependent of the types of the adjacent monomers.
This Wiener measure is often written formally as

2
3 (N (drP(v)
D _° i D
dP; ~ exp e A < = dr | dri.

Then the spac€([0, N], £2) is equipped with the measure
duf = dx x dP?.
With n chains in the material, we consider the space of diblocks is
r’ =P =¢P....rP):rP e ([0, V], R3))
equipped with the product measure

dupzdu?xdu?x-nxdu?.

n
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The analogous definitions apply for the homopolymer chains defidtndP?, du}t, du™, andrr*. Thus, our
phase space is

r=rPxr,

equipped with the full product measurg e du? x du™.

For the diblocks, the A (B, respectively) monomers occupy the intéiyak [0, Na) (Zg = [Na, N] respec-
tively).With n andv chains of polymerization indicééandNc, respectively, there araV + vNc monomers. Inside
£2, the total average monomer number density is

nN + vNc
PO = ———. (3.1)
|£2]

We also have the average monomer number densities for the diblocks and homopolymers

nN VINc
oy = ot = —=

= Y=1or (3.2)

Next we introduce the interaction Hamiltonian dn. Let VAA VBB yCC yAB(— yBA) yAC(— yCA)
VBC(= VCB) (all positive) denote the interaction parameters. The interaction Hamiltonian is now

km
HEP =Y Y ‘Z’_po [I k /I RGORHOLT!

i,j k,m=A,B

VkC Nc
+ Z Z E/zk/o 5(7?(7)—r;7‘(z))drdz

i,j k=A,B

VCC Nc pNc
g [ s - oy drar (3.3)
Y 2p0 Jo Jo

where here, the indicésj gofrom 1 ..., nfor 7,77, and 1 ..., vfor 7%, /7, and the indices k and m take on the

values of A and B, respectively. Note that factor 1/2 is missing in the second term to account for the iifdsing
terms, and that we assume that the interaction is short ranged in the usé-@fitiction. With this in hand, we can
now write the Gibbs canonical distribution and partition function:

D(rP, r) = %exp(—ﬂH(rD,rH)), 7= /F expBH (P, ™)) du,

which describes the thermal equilibrium. Here we use the energy unit to measure the absolute temperature so the
Boltzmann constant is 1 angl is the reciprocal of the absolute temperature. The free energy of the system is
—pBLlog Z. Introducing the microscopic densities

pi(x, PPy = fI 8(x — rP(2)) dr, k=AandB
i=1"+k
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and
n Nc
pete ™) =3 [ st - @) dr
i—1 70

we define the macroscopic densities:

k() = /F o D)D) di. k=AandB  (pe(x)) = /F pete, YD) . (3.4)

In terms of these macroscopic densities, the Hamilto(8a8) can be written

Vkm VkC
HOP M = [ e P Myt [ 3 e Pypete
2 m=p.p PO 2yZap PO

VCC
4 / Y oo Mypc(e, Yy,
2 200

where km e {A, B}.

At this stage, it is hopeless to compute the free energy and macroscopic densities due to the nonlocal characte
of the interaction term. As is customary (§86—14,20,23), we introduce a mean field approximation whereby the
effects of all the chains on a single chain is simulated by means of an external field acting separately on the A—C
monomers. In doing so, we avoid these purely technical obstacles of using the delta function.

The mean field approximationssipportedor motivated by the following variational principle (see, for example,

[2]): For any distributionD’ (i.e. D' # D),

,3/ HP, D' (P, rydu — S(D') > —log Z.
r

with equality whenD’ = D on the left sideP being as above the Gibbs canonical distribution induce(BIS).
Here S(D’) denotes the statistical entropy associated with the distribidipne.

S(D) = — / D'log D' du.

This variational principle motivates the following approximation method: consider a smaller class of distributions
D', and define

F(D) = fr H(P, D' (P, r)ydu — pES(D).

F(D') may be considered as an approximate free energy of the original systemiindesume that in the smaller
classF(D’) is easier to compute and minimize. Then the minimizer within this smaller class approximates the true
distributionD.

In the self-consistent field theory (see Helfdh@], Helfand and Wassermghl-13] Hong and Noolandil4],
Matsen and Schic0] —the latter two being formulated in the context of diblock copolymers), we choose the class
of distributions to be those generated by triple of external figlds (U”, UB, UC), acting on the A—~C monomers,
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respectively. There is no interaction between the monomers. These fields induces the following Hamiltdrian on
n v Nc
Hy(P. =3 > / USerP () dr+ ) / Ul (v) dr.
i=1 k=A.B ¥ Tk i=1 70
They in turn induce a Gibbs canonical distribution and partition function:
1
PGP = e pHUG ). Zu = [ exptpHUT ) d
U r
We use(-)y to denote the expectation with respectg (2, r*t) du. It is straightforward to show (sd6]) that
s =p [ 3 UK +log 2o,
2k=AB.C
The approximate free energy undéis

km
FO = [ | X Gl — Y UKaoda | di- oy, 3.5)

k,m=A,B,C k=A.B,C

We note thaZ; factors into two parts associated with the diblocks (AB) and homopolymers (C), respectively. That
is,

Zy = Za yey - Zyc = { /F , exp(—ﬁ [ /I UAA(rP(2)) de + /I UB(P(x)) de dyf}

« { /F ) exp(—ﬂ /0 " ety dr) dui‘}v

1

Since logZy, and hencep,, decouple, the free energy can be writtert as.
F(U) = F(U®, UB, U®)

km

1%
= / Y S okulem(e = D U@ s vm) — US@pc))pe | dr
2 | km=a.c 0 k=A.B
1 1
— /_3 log Z(ya yBy — B logZ;c. (3.6)

Here, we have used the fact that l{hﬁ, r;“} are all independerrownian chains

1 We note here, as we should have[@), that in calculating the expectation of the original interaction Hamiltorigr?, ) under the
external fieldU, i.e.,

km

[ G I e L B S e LS

r 2y meas.c 2P0

we assume independence of the microscopic densgitiasr?), k = A, B, pc(x, r*). The densities involve sums over all the respective chains,

and when taking products the diagonal terms (i.e. products involving the same chain) are of course dependent. However, in the end we consider
a system of many chains (largeandv). Hence for any given chain, its energetic interaction with the other chains is of greater order than the
interaction with itself. We thus neglect the contribution of the correction term associated with this chain self-interaction.
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In this paper, our goal is to write the energy entirely in terms of the macroscopic dexgsitiep . In [6], we
followed the following steps:

(i) We determine the dependenceff and(pk(x))y onU via the Feynman—Kac integration theory wherein we

solve the modified heat equations with Dirichlet boundary conditions.

(i) We use the self-consistency of the model to write the entropic part of the energy as an inner prédadif
andu,

(iii) We take the thermodynamic limit to enable us to neglect boundary effects and work with the fundamental
solution of the heat equation. We then compute the linearized (gbeud)’ dependence ofok(x))y onU.

(iv) In Fourier space, we invert this relationship to obthiras a function of pk(x))y, the density distribution it
generates.

(v) We return from the thermodynamic limit, to consider a finite system over a finite domain. Lastly, we nondi-
mensionalize.

We carry out essentially the same program separately for the diblocks and the homopolymers. However, we
first make one simplification. We take = (0, L)3 with the periodic boundary condition, i.e. the boundaries are
properly identified so tha® is topologically a three dimensional torus. Thus, the configurations of the chains may
be regarded as Brownian motion on a 3D flat torus, and the modified heat equations in the Feynman—Kac theory are

solved with periodic boundary conditions. This eliminates the need to take the thermodynamic limit. The modified
steps are as follows:

(i) We determine the dependence®fi and{pk(x))y onU via the Feynman—Kac integration theory wherein we
solve the modified heat equations with periodic boundary conditions.

(ii") We use the self-consistency of the model to write the entropic part of the energy as an inner prdgduot)pd
andu,

(ii")y We compute the linearized (aboyt= 0) dependence dfok(x))y onU.

(iv)) In Fourier space, we invert this relationship to obtélras a function of ok(x))y, the density distribution it
generates.

(v) We nondimensionalize.

For the diblocks, the calculations are verbatim fri@inexcept for the simplification due to the periodic boundary
conditions. One obtains

zonim = { [ a0r90:08] = [ din mo M0} (37)
and
n k
(Pk(x))(UA,UB) = m /Ik C](UA,UB)(xv t)q(UA,UB)(x’ 7)dr. (3.8)
(vA.U®)

where k = A,B. Where setting/(y, 7) = UX(y) for t € Zy, qun,us)(x, 7) andqkuA UB)(x, 7) solve

(dwn v8)e + (%/8)Aqn p8y = BUGuA ) = 0. qum vey(3- N) = L. (. 7) € 2 x (0. N) (3.9)

2 B = 0 corresponds to infinite temperature, and we refer the rea@@lrfior warnings about the validity of such an expansion in the different
regimes.
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and

(Q?UA)UB))T - (IZ/G)quuA’UB) + ﬂﬁqz}]AﬁuB) = 07 qzuA’UB)(yv O) = 1s (yﬂ f) € 2 x (07 N)9 (310)
respectively. Here we invoke periodic boundary conditiong@nx (0, N).
To write B(U*, U®) as a function of p(x))ya ey, k = A, B we linearize aboug = 0. We find®

EeDntropy:z _S(D(DUA,UB)) + S(Dg)

1 lZMkk 5 6ka = _ B
~ o) | 2 o+ Y (A Mok = Bd)om —pm) | dx. (3.11)
Po 72| ke(A.B) k.me(A.B}
where
N N? N2
1| ~a 0 3 N2 Na Ng
Mzi[c;\ l}’ R=3|_ v 2 | (3.12)
Ng ~NaMg Nz

andpoD is defined by(3.2). In(3.12)above, we have for convenience denafadx)) 4 ¢y, k = A, Band{pc(x))yc
simply by pk(x), k = A, B andpc(x), respectively.

For the homopolymers, Steps (i’) and (ii’) are the same; That is,

zve = [avc. 00} ={ [ st vora] (3.13)
and

% Nc
(pehve = 3 [ avet et 1 dr (3.19)
zt Jo

whereg;c andq’gC solve(3.9) and (3.1Q)respectively, withl/ replaced withU. Step (iii") is however different,
and indeed simpler since only one field acts on the homopolymers. We will use the linear approximation:
_ Al c
{pc)yc &~ pc — N—R x (BU™). (3.15)
C

Using the Fourier series of the fundamental solution to the heat equation with periodic boundary conditions
12

2 .
K(z,t) = Z é exp(—g (2%) §2|t|> exp(?s . z) . (3.16)
A

one obtains the Fourier serieskif

2 4 47?2182 Ne 27i
R@) =) Ve h( 6.2 )exp<Ts-z>. (3.17)

gez8

2nlE
V6L

3 This follows directly from[6] with the following simplifications: the periodic boundary conditions imply that the solugerandgg (i.e.

under a external fieldl/(*, UB) = 0) are identically equal to 1, and the soluti@ (see[6]) is simply the fundamental solution of the heat
equation with periodic boundary conditions.
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where
hs)=e*+s5s—1

Denote the Fourier coefficients Bfby

. 2 | 27le |74 [ 47212|E12 NG
k0= 15\ 7| (e
so that
~ 21i
R = ¥ k@ew( e 1)
A

For Step (iv"), we compute the inverse Bfvia the following approximation:

h(s) ~ s ifs>1

2

h(s) ~ E if s < 1.

This leads to

1 (2mgnL | L3
R(&) 12N¢ = NZ'

Hence, denotingox),c simply by poc, we obtain

Nc _
BUC ~ ——<T(pc — pc),
Po

whereT is the operator

2 1
T := (—A)+ —,
N¢

12Nc

andpgf is defined by(3.2). Integrating with respect tp¢ — pc), we find

1 12 1 _
El opy = —S(D}ec) + S(D) ~ 27/, [1—2|W><:I2 + N—C(pc - pc)z] dx.
0

For both the diblocks and homopolymers we neglect the consfam@), S(DZ;‘).
From(3.11), (3.20)the free energy3.6) becomes

(3.18)

(3.19)

(3.20)
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ﬂF‘f : . kle 2+ L IZW 2

= |>% pKl°+ == =1V ec
D H

Q 2,00 ke (A-B) 6 2,00 12

Lkm

6 1 J— —
+ Y oz (=) ok = p)em — pm)
kmeraB) 200 LN

km

2p0

+ (oc—pc)>+ Y

k,m=A,B,C

dx, 3.21
207N PkPm (3.21)

whereF = F(pa, pB, pc) is the total free energy.

We scale the variableto Lx so thatx € (0, 1)°. We also re-scalgy to ux = px/po. Then the total free energy
per unit monomer in dimensionless unit$ is

E(u) := P /T3 [;(KVM, Vu) + %(](—A)_l/z(u —u), (=AY — ) + W(u)} dr  (3.22)

where
2 6L nN
2
© T L2 = N2 (nN+ vNc> (3.23)
N N
nN + vNc 0 0
nNa
1 N N
K=1 0 v+ vive 0 , (3.24)
2 nNg
0 0 nN 4+ vNc
vNc
nN + vNc 2 (nN + vNc)2
3 nNa nNanNpg
J=3| (@N+vNc)* (nN+vNc 2 ol (3.25)
nNanNg nNg
0 0 0

km
W(u) = Z m

k,me{A,B,C}

We have denoted the three-dimensional flat torus of the unit length T3 .Mdote that in the calculation ¢8.22),

we have ignored the second to last ternf£1) We can justify this in two separate ways. One expects minimizers
(ua, up, uc) to take on primarily the values (0, 0), (0, 1, 0) and (Q 0, 1). Thus, this term involving the integral

of (u — uc)? may be regarded as a constant. Alternatively, si¥igés large, one may ignore this term because it is
much smaller than the last term (#.21)

4 The reader may be surprised as to the dependendg dn all the non-zero components Kf andJ. This is simpy because of the rescaling
of variables whereby all the monomer densities are scaled via the total monomer ggnsity
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We set
N, N, N
a:n—A7 b:n—37 c= ¢ (3.26)
nN + vNc nN + vNc nN + vNc

Thena+b+c=1and

16 o0 1 1
a ) __b
1 a a
k=2lo 2 o] s=3| 2 1 | (3.27)
b ab b2
00 = 0O 0 0
c

We assume thal/ («) is concave inia + ug + uc = 1. This is achieved i’X™ is large compared &k and
vMMfor all k, m € {A, B, C}, k £ m. We subtract a linear term

ﬂvkk

ug (3.28)
ke{A,B,C}

from W andredefine Was follows:

km kk
W= Y m— 3 ’3‘; k. (3.29)

k,me{A.,B,C} ke{A,B,C}

This W is non-negative, and it achieves minimum value 0 at exactly three poin&:d}, (0, 1, 0), and (0, 1).
Note that this modification diV only changes the free energy by a constant.

4. Local minimizers in 1D: the CABAB ... ABA lamellar pattern

In this last section, we prove a resuliheorem 4.%about local minimizers of3.22)within the ansatz of patterns
depending only on one variable. In one space dimension one naturally conjectures that the optimal pattern mus
consist of two macrodomains; one involving the pure C phase and the other devoted to a lamellar structure of
alternating A and B microdomains. The respective widths of these domains would be dictated by the material
parameters including, » andc. We call such a pattern the CABAB . ABA lamellar pattern. While we are not
able prove this structure is the global minimizer, we prove the existence of local minimizers displaying this pattern.
Owing to the fact that such a structure has only one C domain but many A and B domains, let us agree to refer to
the pure A and B domains asicrodomainsand the pure C domain as@acrodomain

Let u = (ua, ug, uc) be the relative monomer density fields. In one space dimension, the free ¢BetBy
becomes

1 2
Lo(u) = fo [%w u') + %(J(—A)‘l/z(u —u), (—A) Y2 — u)) + W(u)] dx (4.30)

whereK andJ are defined by3.27)andW is defined fow that satisfiesa + ug + uc = 1. Wachieves minimum
value 0 at exactly three points:,(@, 0), (0, 1, 0) and (Q 0, 1). The functional, is defined in

{u = (ua, ug, uc) : um € Wl’z(Tl)(m:A,B,C),uA+uB+uc: lLupn—a=ug—b=uc—c=0}.
(4.31)
Here we usd'! to denote (01) with 0 and 1 identified.
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Fore small, the theory of"-convergence (cf8,4,1]) allows us to reduce the study ffto that of a much simpler
problem, which we calQ (the I'-limit of ¢~11.) and define below it4.34) We will give a precise statement of this
convergence ibhemma 4.5 The functionalQ will be defined on the admissible set

{u = (upa,up,uc) i ua +ug+uc=1,upn—a=ug—b=uc—c=0,un,up,uc€ BV(Tl, {0, 11)}.
(4.32)

HereBV(T1, {0, 1}) is the space of functions of bounded variation that only take two values: 0 and 1. Each member
in this function space jumps between 0 and 1 at finitely many points. Thereforei éach (4.32)divides7? into
a number of intervals wheeey, = 1 andug = uc = 0 (pure A domains), a number of intervals whege= 1 and
up = uc = 0 (pure B domains), and a number of intervals whefe= 1 andua = ug = 0 (pure C domains).

The set(4.32) is much simpler than the s¢4.31) because of a natural decomposition.pAtternp of k
microdomainss aloop ofk lettersof A-C modulo translation. Note that unlike in the previous section, k will
now denote a positive integer. Any two adjacent letters must be distinct. The first and the last letter are considered
adjacent. For example = CABABA is a pattern of six subdomains. Note that ACABAB is by definition the same
pattern because they differ just by a translation. As explained above each mergh8@ifias a particular pattern
p, and(4.32)is the disjoint union of the sets

{u € (4.32) : u has the patternjp (4.33)

that are labeled by p. Between letters of a pattern we have interfaces. For p = CABABA, there is a CA interface
between the first two letters, an AB interface between the second letter and the third letter, etc. We also have another
CA interface between the last letter and the first letter.

We are now ready to defir@. For eactuin (4.32)

1
O@u) = B Nag + 18N + T Nea + g fo (J(=A) Y2 = u), (=A) Y — ) dx. (4.34)

Here Nag (and Ngc, Nca) is the number of AB (BC and CA, respectively) interface®®, B, andtCA are
positive constants called surface tensions. For exarffeis the surface tension of an AB interface, and is given
by (cf. Lemma 4.5and[1])

1
rAB=ir,;f{ﬁ / VW@)(Kn'(e), n/(e)) dt - p € €O, 1], (0) = (1,0,0), n(1) = (0,1,0)1 .  (4.35)
0

In this definitionn is a curve in the planea + ug + uc = 1 connecting the A-state and the B-state. The surface
tensionstBC andCA are similarly defined. Her andW are given respectively b§8.27) and (3.29)One readily
checks that the infimum far*8 is obtained whem(r) = (1, 0, 0)"(1 — 1) + (0, 1, 0)T#, and hence

=(/0l (1—t)tdt> /<2+%>XAB=% /(c—llJr%)XAB,

where the Flory—Huggins AB parameter is given by

XAB — ,BVAB _ g(vAA + VBB).
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Similarly, one has
T 1 1 T
8y <a + c) X ~ 8 V

where

All three Flory—Huggins parameteyé®, xAC and xBC€ are assumed a priori to be strictly positive.
With these functionals in hand, we now turn toward their local minima. First we note thattlratrix

JAA  JAB 3 -2 _(ab)-L
_3| a (ab) (4.36)
JAB  sBB 2| —(ab)? p—2
has an eigenvalue 0 whose associated eigenvectariisgnd a positive eigenvalugd? + 1/b% whose associated

eigenvector isf, —a).
Next we note that the nonlocal part HfandQ can be greatly simplified by introducing the variables

¢ = bup — aup, Y = aup + bup, (4.37)
together withw andz where
—w =¢inTLw=0; —7'=v¢—(@®+bd)inTLz7=0. (4.38)

Recall thatw denotes the average wfover 7. To this end, ifv = (va, vg, vc) is given by

—v =um—uminT!, om =0, form=A,B,C. (4.39)
m
then
az + bw bz —aw
w = bvp — avg, 7 = ava + bvg, va = Zip? B = 2102 (4.40)
The nonlocal part of, andQ can be rewritten as
1
[ 8y V2= ), (- )V )
0
1
= / (JV', V) dx
0
1 ! AA / "2 AB / / / / BB / "2
= m/ [J(az + bw')* + 2J7(az’ + bw')(b7' — aw') + J°° (b7 — aw')7] dx
- @ b2)2 / (L2IMN — 2abJ™8 + @ JBB)(w')? dx = > 2b2 / (w')? dx. (4.41)

Hence in what follows, we focus on

. 1
Ou) = /0 (w')? dk. (4.42)
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We now consider a particular pattern CABAB ABA and show that a function of such a pattern exists as a
local minimizer ofQ. We letx1, x2, ..., xx € (0, 1) be the interfaces. Collectively we set= (x1, x2, ..., x¢). The
intervals (Q x1) and (, 1) are occupied by C-monomers. Since under the periodic boundary condition, 0 and 1 are
identified, we should regard (81) U (xz, 1) as a single interval of C-monomers. The A-monomers occupy the inter-
vals (x1, x2), (x3, x4),. .., (tx—1, x¢); and the B-monomers occupy the intervals, (x3), (xa, x5),. .., k—2, Xk—1).

Note thatk is even and there is one C-macrodomdif A-microdomains, andk(2) — 1 B-microdomains. We
view Q as a function ok. Since the functiow is

0 if xe€(0, x1)

b if xe(x1,x2)

—a if xe (xz, xs)

dx)=1: . (4.43)
—a if xe (xg_2, xx—1)

b if xe(xr—1,xx)

0 if xe(x,1)

we sometimes write(x; X) to emphasize that depends or. Similarly we may writew(x; x).
There exist constraints on In particularg = 0 anduc = c imply respectively that

b(x2 — x1) —alxz —x2) + - - - + b(xx — x4,—1) = 0, xx—x1=1-—c. (4.44)
Lemma4.1. If X = (x1, xo, ..., xx) is a critical point of O under the constraint&t.44), then
2a
2(x2 - xl) = X4 — X3 ="' =X[—2 — X3 = 2(xk — xk_]_) = kTZ’ (445)
2b
X3 T2 T NG X4 = Nl — M2 = (4.46)

Proof. We calculate the derivatives f.

2 X3
/ ¢>dx——|:b/ wdx —a wdx+~~:| (a—i—b)w(xz,x)—i—/ o(x; de
3)62 ox2 ox2 x1 X ox2
Denoting the Green function ef A by G we find that
dw(x; x a [t B] X2 x3
2 ot eigdy= - [o [T ety —a [Tt vay--
X2 ax2 Jo 0x2 X1 X2
= (a+ b)G(x — x2).
Now we return to find
BQ
T2 = (Bl X) + (a +b) / G(x — x2)p(x; X) e = 2(a + bYu(xz; X).
Similar calculations applied tes, x4, . . ., x;—1 Yield that
20 : .
— =2(-1Y(a+Db)w(xj;x), j=23,...,k—1 (4.47)

ox



114 R. Choksi, X. Ren / Physica D 203 (2005) 100-119

Small differences appear whehis differentiated with respect to, andx. We find that

20

.
= 2w x). 22— (). (4.48)
0x1 ox,

Every critical pointx of 0, or of Q, must satisfy the equations

2@+ bwi;iX)+ (@+b)r=0 (j=2.3.....k—1),

(4.49)
2bw(x1;X) +bA+u =0, and 2wl X)+br+u=0

wherei andu are the Lagrange multipliers from the constraif@tgi4)

Sincew solves—w” = ¢ andw e C1[0, 1], the fact thaiw(x;; x) isthe same foj = 2, 3,..., k — 1implies that
all the B-microdomains are of the same length and all the A-microdomains, excluding the first one and the last one,
are also of the same length. Algdgx1; X) = w(xx; X) andw” = 0 on the C-macrodomain imply that(x; x) = O on
the C-macrodomain and particulaly(x1; X) = w’(x; X) = 0. The length of the first and the last A-microdomains
is exactly half of the length of the other A-microdomains. Therefore, the length of each A-microdomain, excluding
the first and the last, isiZ (k — 2); and the length of each B-microdomain is/& — 2). O

We remark why the pattern we consider is CABABABA, not CABAB ... AB. If instead we study the
CABAB ... AB pattern, therk is odd and the second equation#4h48)becomes

STQJC = —2aw(xk; X). (4.50)
Also we have—a in front of (x; — xx—1) in (4.44)and the last equation i@#.49)is changed to

— 2aw(xg; X) —ai +u = 0. (4.51)
Thenw(x1; X) # w(xg; x) andw’ = 0 on (Q x1) U (xx, 1). We can still prove that

X3 — X2 = X5 — X4 = =Xf_D— Xk_3, X4 — X3 = X6 — X5 =+ = Xg_1 — Xf_2. (4.52)

However,xo — x1 is not half of the second quantity (#.52)andx; — x;_1 is not half of the first quantity i4.52)
The exact values d#1.52) xo — x1 andx; — x;_1 may be determined from, b andk in a way more complex than
(4.45, 4.46)

We use an indirect argument to show that the soluido#5, 4.46)s a strict local minimizer, modulo translation.
Forx associated with any in the admissible s€#.32) we defineQ by

. Xk
O(xz. .. xp1) = / (@) d, (4.53)
X1
wherew is the solution of

— " = ¢in(xy, x), Wlx1) = Wlxr), W' (x1) = W' (xx), /Xk wdx = 0. (4.54)

Note that in the construction @, we have deleted th@&-macrodomain, identified the points andxy, and solved
(4.54) Clearly Q depends ony, x3, . .., Xf—1.

Lemma 4.2. For X = (x1,x2, ..., x;) of every u in(4.32) we haveQ(x1, x2, ..., x) > O(x2, x3, ..., xx1). If
X = (x1, ..., x¢) is acritical point ofQ, thenQ(x1, ..., xx) = O(x2, ..., xg—1).

Proof. Recallw = bva — avg defined on (01). Let w be given in(4.54) which is defined onx, x;). Since
w” = @” on (x1, x;) there exists a constabtso thatw = w + D on (x1, x¢). Then
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1 X X
é(xl,xz,...,xk)=/ (w’)zdxz/ K(w’)zdx=/ ‘(@ + D) dr
0 X1 X1

Xk Xk
= / (@')?dx + 2D / W' dx + (xx — x1)D?
X1 X

1
= Q(x2, ..., xk—1) + (L — )D?* > O(x2, ..., x4—1)

since . @' dv = d(x) — @(xl) =0.

If x is a critical point ofQ, the argument in the proof dfemma 4.1shows thaiww’ = 0 on the C-macrodomain.
Becausefo1 w dx = f;f w' dx = 0 by the periodicity ofw andw andw’ = @’ + D on (x1, x;), we deduce that
w’ = @' on (x1, x;). Therefore O(x1, ..., x) = O(x2, ..., xk—1). O

Lemma 4.3. Anyx given by(4.45, 4.46)s a strict local minimum of2, modulo translation

Proof. Because okemma 4.2we will show that {2, ..., x;_1) of anyx of (4.45, 4.46)s a strict global minimum
of 0 modulo translation. The lemma then follows easily.

To study Q0 at x associated with any in (4.32) we translatex so thatx; =0 andx; = 1—c. Then
X2,x3,...,xk—1 € (0,1 — ¢) andw is defined on (D1 — ¢). The techniques used jA5] to study a diblock copoly-
mer system can be applied here becagsis really a diblock copolymer problem. As in the proof lodmma
4.1

10)

= 2(-1Y(a+ byw(x;), j=2,3,....,k—1. (4.55)
Xj
Moreover, if (2, ..., xx_1) is a critical point on, then
2a
l—C—xk71+xz=X4—X3=~~=Xk72—Xk73=kTZ, (4.56)
2b
x3—x2=x5—x4=~-~=xk,1—xk,2=m, (4.57)

andw’ is given explicitly by

—b<x— xz”"‘;_ 1+C> if xe(0,x)
a (x — xz—iz—m) if xe(x2,x3)
b (x Bk "4> it x e (xax2)
W' (x) = 2 (4.58)
a (x — &Zxk_l) if xe(xr—2, xx-1)
—b <x— xk_1+x;+1—c) if xe(p-1,1—c¢).
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At this (x2, ..., xx_1) we obtain from(4.56) to (4.58Yhat
1-c
Ox2, ..., x¢-1) = /0 (@)% dx

k 2 [ x2+x3) 2 [ x3+x4)\°
TR P

_ a?h*(a+b)
T 3k-22 (4.59)

If the global minimizer ofQ is not achieved at a point given I§4.56, 4.57) then it must be on the boundary
since every (interior) critical point o is given by(4.56, 4.57) A boundary point can be viewed as a point
(x5, x5, ..., x,,_,) for some everk’ < k. We are now dealing with a diblock copolymer problem with- 2
interfaces. We ask whether in this— 2 interface problem the global minimizer of is achieved at an interior
point. If so, at such a global minimizer, ..., x;,_,),

a®b?(a + b)
3k —2)y2°
This is a contradiction because(@59, 4.60and @?b*(a + b)/3(k' — 2)%) > (a®b*(a + b)/3(k — 2)?). Otherwise

we continue the induction process. Eventually we end up with the diblock copolymer problem with only two

interfacesy;, andxj. Therexs — x5 = b, Q is constant. Moreover every, x3) is an interior point and is trivially
a global minimizer. This proves the lemmal]

(. ... Xy_q) = (4.60)

We are now ready to show that the original problgrhas a local minimizer which is close to the local minimizer
of Q given by(4.45, 4.46) We measurelosenesdy the L2(T1) norm which is denoted by - ||».

Theorem 4.4. For every positive even integer k whens small there exists a local minimizer gf with the
CABAB... ABA pattern of k microdomains. More precisely et €(4.32)be given by(4.45, 4.46)For sufficiently
smalle there exists a local minimizer, of I, such that

llue — uoll2 — 0 and a_lls(us) — Q(ug)ase — 0.

Theorem 4.4s proved using the notion af-convergence (cfi8,21,4,15). The proof will easily follow from
the following lemmas. The domains of the functional@ndQ are trivially extended to the same set

{u = (up, ug, uc) : um € LZ(Tl)(m =A,B,C),uan+ug+uc=21up—a=ug—b=uc—c=0}4.61)
by settingl,(u) = oo if uisin (4.61)but notin(4.31) andQ(u«) = oo if uisin (4.61)but not in(4.32)
Lemma 4.5. I.I"-converges to Q in the sense that
1. For u, and u in(4.61)with lim [luz — ull2 = 0, liminf e 1L (us) = O(u).
e—0 e—0

2. For every u in(4.61)there exist, in (4.61)such thatlim0||u€ — ull2 = 0 andlim supe 1L, (u.) < Q(u).
&= e—0

Proof. We viewe 11, as the sum of a local part and a nonlocal part. The local part is

1
u— ./0 [g(Ku', u'y + %W(u)] dx; (4.62)



R. Choksi, X. Ren / Physica D 203 (2005) 100-119 117

the nonlocal part is

1
4 / (=AY Y2 — ), (— A Y2(u — 7)) dy; (4.63)
2 Jo

It was proved if1] that the local parf"-converges to the functional
U — ‘L’ABNAB + ‘L’BCNBC + ‘L’CANCA (4.64)

which is the local part o). The nonlocal par{4.63) appears in botl, andQ. It is considered as a continuous
(with respect to the.?(T1) norm) perturbation of the local par(4.62, 4.64) It follows from the definition of
I'-convergence that the-convergence property is not affected by such a perturbation. Herlde I'-converges
toQ. O

In order to exploit the™-convergence, we need !/, andQ to satisfy the following compactness condition, the
proof of which may be found if25].

Lemma 4.6. Lete; be a sequence of positive numbers converging &am0{« ;} a sequence i(.61) If 8;118/. (uj)

is bounded above in then{u } is relatively compact in4.61) with respect to the.?(7T'1) norm and its cluster
points belong t¢4.32)

The next lemma is proved ii5]. Because of the translation invariance in our problem, the statement here is a
bit different. Define a manifold of translatesaf

M(ug) := {u € (4.61) :u(-) = uo(- — y), y € TY} (4.65)
and a tube like neighborhood &1 (i)
Ns(uo) = {u € (4.61) : lu(-) — uo(- — y)|l2 < 8, for someyin T2}. (4.66)

Lemma 4.7. Lets > 0 andug in (4.61)be such thaD(ug) < Q(u) for all u € Ns(uo)\M(uo). Then there exist
eo > 0andu, € Ns/2(uo) forall & < eg such thatl,(ue) < I.(u) for all u € Ns/2(ug). In addition under theL 2(7)
norm, u, — ug up to translation ag — 0.

In Lemma 4.7above Q is defined on(4.61) Lastly, one can show as [@5] that we may instead only consider
Qin each(4.33)

Lemma 4.8. If ug in (4.33)is a strict local minimizermodulo translationof Q restricted tq4.33), thenug is also
a strict local minimizermodulo translationof Q defined in(4.61)

We are now ready to provEheorem 4.4

Proof of Theorem 4.4. The existence of a local minimizag follows fromLemmas 4.3, 4.7 and 4.Bemma 4.7
also shows that under tHe&(T1) normu, — ug modulo translation. The convergence I, (u,) — Q(ug) follows
from Lemma 4.5and the fact that, minimizess =11, in a neighborhood afg. [

By (4.34, 4.41, 4.42)_.emma 4.2and(4.59) the reduced free energy of given by(4.45, 4.46)s
y 3 y(a +b)

CA AB > CA AB
Quo) = 2t" + (k— 2)"™" + 5 20752 Qo) =2t + (k— 2)"™" + m (4.67)
If we minimize (4.67)with respect t, we find the optimal number of AB interfaces:
P\ /3
(k—2)~ (’”(“/:; )> . (4.68)
T
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We conclude by noting that we are not able to characterize the global minimizéys e I"'-convergence
theory asserts that as— 0, any global minimizer of,, converges (after translation), under th&71) norm, to
a global minimizer ofQ. One would like to show that any global minimizer @fis given by(4.45, 4.46)with k
being the optimal value given if#.67, 4.68) If every C-macrodomain of a global minimizer @is adjacent to
either two A-microdomains or two B-microdomains, we may argue as in the pra@ioima 4.1and conclude that
on each C-macrodomain’ = 0. It follows that the global minimizer has only one C-macrodomain and is given by
(4.45, 4.46) Unfortunately, we have to worry about the possible appearance ACB ... like combinations. As
discussed irf4.50, 4.51)hey lead to conditions that are not easily analyzed.

Appendix A. General reduction to two order parameters

Finally we mention a simple reduction to two order parameters associated with the form of the nonlocal interaction
term used iff24,18] Because of the incompressibility condition, i@. + ug + uc = 1, only two of the densities
are required to fully describe the system. Ohta and Ito notg2¥inthat the choice &f

¢ =up —up and Y =up+ug=1—uc,

is particularly useful in that the statistics¥fcapture the macrophase separation into homopolymer and copolymer-
rich domains, while that of capture the microphase separation within the copolymer-rich domains. The spatial
average® andyr are some fixed number ir-[1, 1] and [Q 1], respectively. Using these variables, one may readily
check that the long-range interaction term (i.e. the second te(B282) takes the form

fQ /Q G(x, Ma(d(x) — )@0) — ¢) + Bld(x) — D)W () — ¥) + y(W(x) — Y)W () — ¥)] dxdy,

whereG denotes the Green'’s function of the Laplacian with Neumann boundary conditions, an(Bf&xhthe
coefficientsy, g andy are related to the polymerization indices as follows

( 1,1 )2 5 1 1 ( 1 1 )2
a~(—=—+—=) . ~ = - =), ~ = ).
Na N Nﬁ Né v Na N
This agrees with the model adopted24,18]

References

[1] S. Baldo, Minimal interface criterion for phase transitions in mixtures of Cahn—Hilliard fluids, Ann. Inst. H. PeiAnal. Non Lireaire
7 (2) (1990) 67-90.

[2] R. Balian, From Microphysics to Macrophysics: Methods and Applications of Statistical Physics, Two Volumes, Springer-Verlag, Berlin,
1991.

[3] F.S. Bates, G.H. Fredrickson, Block copolymers —designer soft materials, Phys. Today 52-2 (1999) 32—-38.

[4] A. Braides, Gamma Convergence for Beginners, Oxford Lecture Series in Mathematics and Its Applications, 22 (2002).

[5] J.W. Cahn, J.E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys. 28 (2) (1958) 258-267.

[6] R. Choksi, X. Ren, On a derivation of a density functional theory for microphase separation of diblock copolymers, J. Stat. Phys. 113
(2003) 151-176.

5 Note that these variables differ slightly than the ones used in Settion



R. Choksi, X. Ren / Physica D 203 (2005) 100-119 119

[7] P.G. de Gennes, Scaling Concepts in Polymer Physics, Cornell University, Ithaca, NY, 1979.
[8] E. De Giorgi, Sulla Convergenza di Alcune Successioni D’'integrali del Tipo Dell'area, Rend. Mat. 8 (6) (1975) 277-294.
[9] A.Y. Grosberg, A.R. Khokhlov, Statistical Physics of Macromolecules, American Institute of Physics (AIP) Press, New York, 1994.
[10] E. Helfand, Theory of inhomogeneous polymers: fundamentals of Gaussian random walk model, J. Chem. Phys. 62 (1975) 999-1005.
[11] E. Helfand, Z.R. Wasserman, Block copolymer theory. 4. Narrow interphase approximations, Macromolecules 9 (1976) 879-888.
[12] E. Helfand, Z.R. Wasserman, Block copolymer theory. 5. Spherical domains, Macromolecules 11 (1978) 960.
[13] E. Helfand, Z.R. Wasserman, Block copolymer theory. 6. Cylindrical domains, Macromolecules 13 (1980) 994—998.
[14] K.M. Hong, J. Noolandi, Theory of inhomogeneous multicomponent polymer systems, Macromolecules 14 (1981) 727-736.
[15] R.V. Kohn, P. Sternberg, Local minimisers and singular perturbations, Proc. Roy. Soc. Edinburgh Sect. A 111 (1-2) (1989) 69-84.
[16] S. Koizumi, H. Hasegawa, T. Hashimoto, Macromolecules 27 (1994) 6532.
[17] S. Koizumi, H. Hasegawa, T. Hashimoto, Macromolecules 27 (1994) 7893.
[18] A. Ito, Domain patterns in copolymer—homopolymer mixtures, Phys. Rev. E 58-5 (1998) 6158—6165.
[19] L. Leibler, Theory of microphase separation in block copolymers, Macromolecules 13 (1980) 1602-1617.
[20] M.W. Matsen, M. Schick, Stable and unstable phases of a diblock copolymer melt, Phys. Rev. Lett. 72 (1994) 2660-2663.
[21] L. Modica, The gradient theory of phase transitions and the minimal interface criterion, Arch. Rat. Mech. Anal. 98 (2) (1987) 123-142.
[22] Y. Nishiura, I. Ohnishi, Some mathematical aspects of the micro-phase separation in diblock copolymers, Physica D 84 (1995) 31-39.
[23] T. Ohta, K. Kawasaki, Equilibrium morphology of block copolymer melts, Macromolecules 19 (1986) 2621-2632.
[24] T. Ohta, A. Ito, Dynamics of phase separation in copolymer—homopolymer mixtures, Phys. Rev. E 52-5 (1995) 5250-5260.
[25] X. Ren, J. Wei, On the multiplicity of solutions of two nonlocal variational problems, SIAM J. Math. Anal. 31 (4) (2000) 909-924.
[26] H. Tanaka, H. Hasegawa, T. Hashimoto, Macromolecules 24 (1991) 240.



	Diblock copolymer/homopolymer blends: Derivation of a density functional theory
	Introduction
	Notation
	Mean field approximation
	Local minimizers in 1D: the CABAB protect global let OT1	extellipsis .kern �ontdimen 3�ont .kern �ontdimen 3�ont .kern �ontdimen 3�ont OT1	extellipsis ABA lamellar pattern
	Appendix A General reduction to two order parameters
	References


