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1. Introduction

In this paper we follow a model of DEL PiEro & OWEN [25] in order
to provide a basis for the application of techniques in the calculus of variations
to non-classical deformations of continua. These structured deformations of
continua are suitable for describing deformations of materials whose kine-
matics warrants analysis at both the macroscopic and microscopic levels.

The motivation for this work lies in the study of equilibrium configura-
tions of crystals with defects. In a defective crystal, the macroscopic defor-
mation together with the referential (Bravais) lattice configuration do not
suffice to describe fully the configuration of a deformed body; phenomena
such as slips, vacancies, and dislocations may be present in the deformed
(Bravais) lattice basis, thus preventing the use of the Cauchy-Born hypoth-
esis, as described below.

In a perfect crystal, it is postulated that the crystal lattice consists of
identical atoms located at all positions vectors

X =ma; + mya; + msas,

where a; € R® and m; € Z. The q; are called lattice vectors and the matrix L,
whose columns consist of the a;, is referred to as the lattice matrix or lattice
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basis. For the continuum theory, we assume that at each point x in the crystal
there exists a tensor L(x) representing average values over microscopic re-
gions of lattice vectors which define locally the position of the atoms. The
Cauchy-Born hypothesis (see ERICKSEN [26]) establishes the behavior of the
lattice basis field under an elastic deformation, and it asserts that an orien-
tation-preserving map u : Q — Q" leads to a new lattice basis L* given by

L*(u(x)) = Vu(x)L(x) xeQ, (1.1)

where Q@ C R represents the referential position of the crystal, and Q* = u(Q)
is the deformed configuration.

Suppose that we start with a perfect, cubic crystal whose lattice basis field
is identically the identity matrix [. It often happens that, after undergoing
some deformation, a new lattice basis is observed which does not coincide
with the basis (1.1) (see for example HiLL [37]). This discrepancy is viewed as
the creation of defects. In [18, 19, 20], Davint & PARRY proposed a con-
tinuum model for defectiveness and introduced the notion of defect-pre-
serving configurations. They studied pairs

(u(Q), L(x)),

where L(x) stands for the matrix of lattice vectors at u(x). A complete list of
measures of defectiveness, including a generalization of the classical Burger’s
vectors, was given in [20]. These measures consist of line, surface, and bulk
integrals of certain functionals depending on L(x) and on its spatial deriva-
tives; as it turns out, these functionals agree on configurations which are
elastically related, in the sense of (1.1). These measures of defectiveness
partition the set of configurations, or equivalently, deformations, into
equivalence classes, and the equivalence class containing the perfect cubic
crystal (€, [) is called the class of neutral deformations. This class was found
to be strictly larger than the class of elastic deformations {(u(Q), Vu(x))} of a
perfect cubic crystal. Indeed, the lattice basis field of a neutral deformation
may include a ‘“plastic” part, accounting for the discrepancy between L and
Vu, in spite of the fact that the deformation is defect-preserving. FONSECA &
PARRY [36] pursued this idea and found that neutral deformations may be
represented as

(u(Q), vu{vu}*‘), (1.2)

where u and v belong to some appropriate Sobolev spaces, and det Vo = 1
a.e. The function u is interpreted as the macroscopic deformation and v as the
plastic part of the deformation, or, simply, the s/ip. Within this framework,
the use of variational principles on neutral deformations was undertaken in
[36], under the assumption that, among all neutral deformations of a perfect
cubic crystal (Q,1), equilibria correspond to minima of some appropriate
energy. The energy functional studied in [36] is given by

E(u,0) = / W (Vu(e) (Vo)) ) d, (1.3)

Q
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where the bulk energy density W is the Helmholz free energy satisfying ap-
propriate symmetry properties, as considered by CHIPOT & KINDERLEHRER
[15] in the study of nondefective elastic crystals. In [17], variational problems
consisting of minimizing E(u,v) over some appropriate subclass of neutral
deformations were referred to as variation of the domain since, formally, if v is
invertible, then (1.3) can be written as

/ W (Vw(y)) dy.

v(Q)

where w := uov~!. Several mathematical and physical difficulties were en-
countered within this model. That Sobolev functions with nonzero Jacobians
are not necessarily locally invertible prevented the use of the direct method of
the calculus of variations; in addition, bounds on L = Vu{Vv} ' in no way
imply bounds on Vu and Vv. Moreover, lower semicontinuity with respect to
an appropriate notion of weak convergence was established only under cer-
tain restrictive growth conditions on W (see [32]). Using different analytical
methods, DACOROGNA & Fonseca [17] addressed the case where W =|-|".
Existence of minima was obtained for » = N (N being the dimension of Q),
but for r < N =2 it was shown that

inf{E(u,v) :u € W', v € W, u(x)|yq =x,detVo=1 a.e.} =0;

hence, the infimum is not attained in spite of the convexity of 7. Note also that
this model associates zero energy to a rearrangement of a natural state of the
crystal, which is a particular type of neutral deformation where u is invertible,
v =u, so that L = [, and the lattice vectors retain their orientation. We take
these results as an indication that the energy defined in (1.3) is “too low”, in
that it neglects terms which may account for the presence of microscopic slips.

In physical terms, FONSECA & PARRY [36] studied stress in equilibrium
configurations in the case where neutral deformations were admissible. Via
the theory of Young measures, it was shown that certain symmetry properties
of W imply that the average stress associated with an infimizing sequence is a
hydrostatic pressure; hence, the crystal is weak at equilibrium, since it cannot
sustain non-zero averaged shear stresses. This result had been previously
obtained by CHIpoT & KINDERLEHRER [15] in the case where only elastic
deformations were allowed to compete (see, also, a similar result of ERICKSEN
[27] for elastic crystals). When defective configurations are admissible, the
latter result is regarded as an indication that frictional effects due to slips
should be represented in the energy functional to be minimized (see PARRY
[39]). The question now is: how should we introduce an energy penalization
due to slips, or to more general defects? Intuitively, we expect that the total
energy should include a measure of the discrepancy

/ L(x) - Vu(x)| dx,
Q
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or, more generally, some functional of (L(x) — Vu(x)), depending on the
interaction between W and some surface energy associated with slips. Our
goal in this paper is to obtain specific information on the total effective
energy which incorporates bulk and surface terms accounting for slips. We
provide a description of the energy functional that should be minimized, in
the hope that this information will help determine the (meta)stable states, or
(local) minimizers (see Corollary 5.4, Proposition 5.6, and the subsequent
discussion for some partial results in this direction).

In recent years much attention has been given to variational methods
addressing discontinuous classes of functions with energies which include
both bulk and interfacial terms. Consider the functional

E(u) ::/W(Vu) dx + /l,b([u],v) dHV !, (1.4)
Q

crack site

where HV~! denotes the (N — 1)-dimensional Hausdorff measure, v stands for
the unit normal to the crack (jump discontinuity) site, and [u] is the size, or
amplitude, of the jump discontinuity. Here there is a direct penalization of
jump discontinuities in u, and a precise energy is assigned to a macroscopic
slip via the density . Functionals having this form have been studied in
relation to problems in fracture mechanics, phase transitions, image seg-
mentation and pattern recognition (see for example, [22, 31]). In this paper,
we discuss a mechanism for taking into account microscopic defects via limits
of configurations with (small) interfaces which diffuse in the limit, disappear
at the macroscopic level, and contribute in some way to the effective “bulk”
energy. This approach rests on a model proposed by DEL PiEro & OWEN [25],
which we now outline.

The theory of DEL PIERO & OWEN deals with three types of deformations.
For simplicity, we take the reference configuration Q to be a bounded, open
subset of RV and rephrase slightly the definitions in [25].

o Simple deformations are pairs (K, g) where K C Q consists of a finite union
of Lipschitz sets of Hausdorff dimension N — 1, and g|q,x is a one-to-one
differentiable function. We set Vg := (Vglg k) - 1o\

e A triple (K, g, G) is a limit of simple deformations if K C Q, g € L(Q, R"),
G € L®(Q,M"N), and there exists a sequence of simple deformations
(Ky, fn) such that

[eele ] .
K=U N K,  limlg—/fil~qr)=0
p=In=p =00 ’

(1.5)
llm |G - Vf,,|L0¢<QMNx,\r> = 0

n—oo

o A triple (K,g,G) is a structured deformation if (K,g) is a simple defor-
mation, G : Q\K — M"*" is continuous and there exists m > 0 such that
for all x € Q\K,m < det G(x) < detVg(x).

Here, and in what follows, M?*" stands for the vector space of d x N ma-
trices. One of the central results of the theory of DEL PIERO & OWEN is that
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every structured deformation is a limit of simple deformations (see Theorem
5.8 of [25]). We give two simple examples from [25] illustrating the conver-
gence in (1.5). First, we consider the so-called broken-ramp sequence. Let
N=1,Q=(0,1), K=10, g(x) =2x, and G(x) = 1. This structured defor-
mation can be approximated by

k+1

k k
Sulx) =x+-— for - £ x< , k=0,....n—1,
n n n

because f,(x) — 2x and Vf,(x) — 1 in L>(0, 1); hence, (0,2,10) is a limit of
simple deformations. In terms of the total distributional derivative, we have
Df,, — Dg in the sense of distributions, and

n—1
1
Dfy =1+ ~8/m,
="

where J, is the Dirac mass at x = a. Thus, the part of Df, corresponding to
jumps converges, in the sense of distributions, to the difference between G
and Vg which, in this case, is the constant function 1. Note the relation
between Z,’Z;} %51;/;1 and the Riemann sum for f(x) = L.

The second example is particularly illuminating in the context of the
microscopic slip mentioned in (1.2), and is referred to as the deck of cards. Let
N=3, Q=(0,1)7, K=0, g(x) be the simple shear g(x) = g(x1,x2,x3)
= (%1 +x3,x2,x3), and G(x) = [. An approximating sequence is given by

k k k+1
fulx) := <x1+—,x2,x3> for - S x3< + , k=0,...,n—1.
n n

n

Within the framework adopted in [18-20, 36], (g, 1) represents a particular
type of rearrangement of the crystal, namely a s/ip, and it is a neutral de-
formation in the sense of (1.2), with u = g and v = g. The notion of micro-
scopic slip has the interpretation of a limit of decreasing displacements along
glide planes which are diffusing throughout the body.

As the last example suggests, one may consider g as the macroscopic
deformation of a defective crystal with cubic symmetry, K as the macroscopic
crack site, and G(x) as the referential description of the averaged lattice basis
field in the deformed configuration. The constructions of DEL PiErRo & OWEN
support the interpretation of Ge; ({ej,...,ey} denotes the standard ortho-
normal basis in RY) as being a limit of averages of discrete lattice bases. To
see this, approach a purely microscopic structured deformation (0, id, G) (id
stands for the identity deformation) by simple deformations (K, f,) such that
{fn} are piecewise affine, and so Vf,e; is interpreted as a set of discrete lattice
bases for all atomic sites in the deformed state determined by (K, ;). Then,
for every x € Q,

Jo(eninyty VIn0v) ecdy

;}Loc gN( (,(n—|—1) 1)) :G(x)eiv (16)
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where B(x,a) denotes the ball with center x and radius @, and #" is the N-
dimensional Lebesgue measure. See Section 7c of [25] for details. In the
phenomenological theories of plasticity (see, for example [37]), G corresponds
to the elastic component F°¢ of the total deformation gradient Vg, i.e., G
represents the deformation of the lattice basis. The well-known elastic-plastic
decomposition takes the form

F=Vg=G(G'Vg)=FFP,

where FP is the plastic component of the macroscopic gradient F.

In this paper we consider a framework for structured deformations which
encompasses the use of modern techniques in nonlinear analysis and the
calculus of variations. In particular, the principal fields are allowed to os-
cillate, in contrast with the notions of convergence considered in (1.5). We
work in the space SBV of functions of special bounded variation, introduced
by DE Giorai & AMBROsIO [21], which consists of integrable functions u
whose distributional derivatives are Radon measures y = u, + p,, where u,, is
absolutely continuous with respect to #", and y, is absolutely continuous
with respect to (N — 1)-dimensional Hausdorff measure HV~! restricted to
the set where the function u experiences jump discontinuities. We denote p,
by Vu#", Vu being the Radon-Nikodym derivative of Du with respect to
PN A structured deformation is represented by a pair (g,G), where the
macroscopic deformation g is in SBV(Q,R?) and G is an integrable tensor
field in Q. A theorem of ALBERTI [1] allows us to recover the Approximation
Theorem of DEL PIERO & OWEN (Theorem 5.8 of [25]). That is (see Theorem
2.12), given any structured deformation (g, G) there exist deformations u,, in
SBV (Q,RY) such that

U, —ginL',  Vu, = Gin.#(Q), (1.7)

where .#(Q) denotes the space of Radon measures on Q. Given the lack of
information on the convergence of the jump set of u,, this is a weaker
statement than the theorem of DEL PiEro & OWEN (see (1.5) and Theorem 5.8
in [25]). Assume, for simplicity, that g € W!, i.e., there are no macroscopic
cracks. Du, consists of a part Vu,Z" absolutely continuous with respect to
Lebesgue measure, and a singular part J(u,) which is supported on the jump
set of u,, denoted by S(u,). From (1.7) we have that Du,, — Dy in the sense of
distributions; hence, J(u,) — Vg — G in the sense of distributions, and so the
difference between macroscopic and microscopic “bulk™ is achieved by a
limit of singular measures. However, under certain additional conditions, a
compactness theorem of AmBRosio [2] for SBV guarantees that Vg = G a.e.
in Q, unless HV=!(S(u,)) — oo, i.e., unless there is a diffusion of cracks whose
amplitude is tending to zero (see Remark 2.13 for details; also see Theorem
5.10 of [25]). This fact prevents the energy density y from being bounded
away from zero, if we are to consider Vg=+G on a set of positive measure,
together with the convergence (1.7).

With a function u € SBV, we associate an energy functional of the form
E(u) introduced in (1.4). We define the energy of a structured deformation
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(g9, G) as the most economical way to build up the deformation using the
approximations in SBV, i.e.,

1(g,G) = {inﬁ{li{n infE(u,) : 4y — (g,G) in the sense of (17}, (1.8)
Uy n—

Clearly, this class of admissible sequences includes the limits of simple de-

formations in the sense of (1.5) provided g and G are sufficiently smooth (see

[25, Theorem 5.8]).

The energy (1.8) is in relaxed form due to its own definition, and the first
question we ask concerns the description of the resulting interaction between
the initial interfacial and bulk densities,  and W, appearing in E. For ex-
ample, if the macroscopic deformation g is smooth and Vg = G, as mentioned
above, this discrepancy is realized by the diffusion of jumps in the approxi-
mating sequences. Thus, the resulting energy should involve a new bulk
density depending on Vg and G, via some combination of the initial densities
W and . Characterizing this new function amounts to finding an integral
representation for 7. Integral representations for similar relaxed energy
functionals have been the focus of extensive research in the calculus of
variations over the past decade; for example, see [5, 7, 9, 12, 14, 34, 35]. In
these cases, relaxation of E is taken with respect to the L' (BV weak) to-
pology, whereas in our present situation we relax with respect to a more
restrictive topology where gradients are constrained.

In the context of defective crystals, we interpret (1.7) and (1.8) as a means to
realize the deformed crystal by piecing together elastic crystals at a finer and
finer scale; that is, the creation of the non-trivial microstructure is achieved
naturally by rearrangements within the crystal at a very fine scale. We expect
that associated with this process there is an interfacial energy, in addition to the
bulk (Helmholz free) energy, and we prescribe that the overall energy of the
deformation should be lowest among all such possible rearrangements which
give rise to the same macroscopic and microscopic configuration. In this paper,
we characterize this total energy. In doing so, we are not taking the particular
view that the integral in (1.4) which contains i corresponds to energy which is
dissipated during the structured deformation, nor are we ruling out such an
interpretation. The functional (1.8) is the energy associated with deforming the
crystal, and it may be that energy corresponding to small interfaces is stored in
the deformed configuration. For now, we leave open these possibilities.

It is well known that the bulk energy W (the Helmholtz free energy)
associated with a crystal may have potential wells (at matrices where W
vanishes) centered at matrices of a material-symmetry (point) group (see [15,
26, 30]). Thus, it is desirable not to impose a coercivity condition on W but
only a growth condition, 0 < W(4) £ C(1 + |4[f) for some p = 1, for some
constant C, and for all 4 € M For p > 1, we require admissible sequences
to satisfy Vu, — G in LP. This, of course, follows from (1.7) if W is
p-coercive, i.e., if there exists a constant ¢ such that c|4’ < W(4) for all
A€ MPN and if lim, E(u,) < co. On the other hand, if p = 1, and even
under the coercivity hypothesis, the sequence {Vu,} may develop concen-
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trations. To accommodate this fact, we assume that Vu, — m, where
me #(Q) and di’,ﬁ’ G. Based on the above considerations, for
W MPN —[0,00) and ¢ : R? x S¥=! — [0, 00) continuous functions, where

SV=1:= {x € R : |x| = 1}, we consider the following energies:

/WVu,, dx+/l,b U], v, ) dHN™ 1]

S(u,)NQ

Iy(g,G,Q) := inf { lim inf

{un} n—o00

‘u, € SBV(Q,RY),

. * d
up — g in L'(Q,R), Vi, = m,m € /%(Q),% = G},

and forp = 1,
I,(9,G,Q) := {int}‘{liminf l/ W(Vu,) dx + / W ([un], va,) dHNI]
’ Q S(uy)NQ

S u, € SBV(Q,RY),

u, — g in L'(Q, RY), Vu, — G, sup |Vu, @My < oo}.

The main results of this paper are the following (see Theorems 2.16 and
2.17). Assume that the initial bulk density is Lipschitz continuous, p = 1, ¥
has linear growth, is subadditive, and is homogeneous of degree 1. Then the
following integral representations for /; and 7, hold:

1(9.G.Q) = / H(Vg(x), G(x)) dx + / n(lg vy) dHY,

S(g)nQ
10(9.G,Q) = / Hi(Vg(x), G(v)) d + 1,(Q), (19)

for some Radon measure p, absolutely continuous with respect to
#N1|S(g). The new bulk and crack density are defined below. If p > 1, then,
under some additional hypotheses, the following representation for /, holds:

I,(g,G,Q) = /H Vg(x dx+/ h([g]) dHN, (1.10)

where, for 4,B € MV, J e R, v e S¥1,

H,(4,B) = inf{ / W (Vu) dx + / ¥ ([u],v) aHN !
S(u)nQ
cu € SBV(Q,RY), uly, = Ax,

|Vu| ELP(Q),/VM d)c:B}7
0
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h(4,v) iill}f{/Woo(Vu) dx + / ([ul, va) dHY!
0 s(

u)NQ

tu € SBV(Qy, RY), |y, = sy, / Vu dx = 0},
0O,

h(2): = inf{ / Y([u],v,) dH" ™" :u € SBV(Q,RP),
S(u)nQ

ulpg = ey, Vu(x) =0 N —a.e.}.

Here v denotes the normal to the jump set S(u), ey is the standard basis
vector (0,...0, 1) € R, O denotes the open unit cube (-1, %)N, and Q,, u;,, are
defined in (2.1) and (2.2). The recession function W of W (see (2.11)), cap-
tures the linear behavior of W at infinity. The new bulk density H, is es-
sentially the same for all p = 1, and it exhibits the interaction between the
initial bulk density # and the initial interfacial density (4, v). This is hardly
surprising in view of the fact that at points away from the macro-fractures
S(g), the jumps in the u, are diffusing as their amplitudes tend to zero (see
Remark 2.13). If admissible sequences are taken so that {|Vu,|} is bounded
in L?, p > 1, then the new crack (interfacial) density 4 is independent of .
Loosely speaking, in these cases it is cheaper to approximate jumps with
jumps rather than with sharp gradients. If p = 1 and if we only require L'
bounds on {|Vu,|}, then there is a contribution of W, via W, in the new
crack density #;.

Just as it was important not to assume coercivity on W, coercivity and
homogeneity of iy may rule out certain important physical settings. If we
include the extra condition on admissible sequences that they must remain
bounded in the BV norm, then we do not have to assume coercivity, while, if
p > 1, we may also relax the homogeneity assumption. In this case, in the new
bulk H the density y is replaced by ,, where

Wo(4,v) = lim sup M '

t—0*

It is the linear behavior in fixed directions at (amplitude equal to) zero of the
initial interfacial energy density iy which contributes to the new bulk density.

As it turns out, using our results we may recover some of the recently
obtained integral representations for relaxed energies (in the L! topology) of
functionals consisting of bulk and interfacial terms. In particular, by taking
the infimum over all G € L'(Q, M®*¥) on both sides of (1.9) and (1.10), we
obtain some of the representations of [7, 12]. Also, in the context of crys-
talline solids, for a given macroscopic deformation g € W''(Q, R?) the en-
ergy associated with the optimal microstructure is given by the relaxation of
E(g) in the L' (BV weak) topology. Moreover, if we assume coercivity on W,
the direct methods of the calculus of variations can be implemented to show
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that the infimum over all microstructures is achieved (for details, see Sec-
tion 5).

Lastly, we remark that in the SBV setting, we have the following analogue
of (1.6). If Vu, — G in L7, then there exists a sequence m(n) such that for a.e. x

. fB(x‘n*‘) vum(") (y)ei dy
lim X =
noo - LY(B(x,n )

(x)eia

and so, as before, we interpret the lattice basis G(x) as a limit of averages of
lattice bases resulting from elastic deformations.

This paper is organized as follows: in Section 2 we briefly review prop-
erties of functions of bounded variation, we introduce the notion of struc-
tured deformations (see Definition 2.11), we state the main representation
theorems, Theorems 2.16 and 2.17, and we prove that /,(g,G,-) is a finite
Radon measure (see Proposition 2.22). Section 3 is dedicated to the charac-
terization of the effective bulk energy H,,, i.e., the Radon-Nikodym derivative
of I,(g, G, -) with respect to #", while in Section 4 we identify the (N — 1)-
dimensional part of that measure; precisely, we obtain a characterization of
the new surface energy density /,. Finally, in Section 5 we study some
properties of H, and #,, and we relate our relaxation result to others previ-
ously obtained (see Corollary 5.4 and Proposition 5.6).

2. The Spaces BV, SBV, and SD. Statement of the Main Results

Let N and d denote positive integers. Let Q be an open, bounded subset of
RY, Qits closure, and let O denote the open unit cube (—1,1)" and Q(a, r) the
open cube centered at a with side length 7, i.e., O(a,r) = a + rQ. We identify
the space MV of d x N matrices with R?””, |x| denotes the standard Eu-
clidean norm of x, and |f/,, is the L? norm of a function f. For integrable
functions u,,u : Q — R?, u, ~ u stands for weak star convergence in the

sense of measures, i.e., for any ¢ € Cy(Q),
[ ¢ e — [ gtouts) ax.
Q Q

Let .#(Q) stand for the space of Radon measures on Q. We allow for the fact
that u € .#(Q) may be matrix valued, and denote by ||u|| its total variation
measure. Throughout this paper, C (or C’) is a generic constant which may
vary from line to line. Let v € S¥~!, and let O, be an open unit cube centered
at the origin with two of its faces normal to v, i.e.,

O ={xeR" :x-v| <} xv<li=1,...,N-1} (2.1)

for some orthonormal basis {vi,va,...,vy_1,v} of RY. We write
Ova,r):==a+rQ,, ac RY, r>0. Given 1 € R, let u;, be the R?-valued
function defined in Q, by
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0 if-1<x.v<o,
Uiy (x) = {A if 0 2§; v < (22)

We state some basic definitions and properties of the space BV of func-
tions of bounded variation and of the space SBV of functions of special
bounded variation, which will be needed in the sequel. For more details, see
AMBROSIO [2], EvaNs & GARIEPY [28], FEDERER [29].

Definition 2.1. A function u € L'(Q; R?) is said to be of bounded variation,
u € BV(Q;RY), if for all i € {1,...,d}, j€{l,...,N}, there exists a finite
Radon measure y;; such that

[ w5 ) de=— [ i) du,
Q Q

for every ¥ € C}(Q). The distributional derivative Du is the matrix-valued
measure with components ;. We denote by ||Dul| the total variation of the
gradient measure, i.e., ||Du||(Q) := Z?’:] [|Du;||(Q) where

[|Du;||(Q) := sup /u,- div y dx: € CHQ,RY), Y|, =1
" o
The space BV is a Banach space equipped with the norm
lulgyrey = Ul o) + [[Dul|(€),

and it is well known that C{°(Q; R?) is dense in BV in the following sense.
Proposition 2.2. Let u € BV (Q). There exist u, € C°(Q) such that

lim [ |uy —ul dx =0, lim ||Du,||(Q) = ||Dul|().

Q

Definition 2.3. A set 4 C Qs said to be of finite perimeter in Qif y, € BV(Q),
where y, denotes the characteristic function of A. The perimeter of 4 in Q is
defined by

Perq(4) := [|Dy,4][(Q) = sup /div Vo (x) dv g€ GIQRY), ], <1
A

Given u € BV (Q;RY), the approximate upper and lower limit of each
component u;, i € {1,...,d}, are given by

<
-
—

=
~

I

1
inf{t eR: ]ir(r)LF—NEN({u,' >t} NO(x,e)) = 0},

u; (x) == Sup{t € R: lim %S’N({ui <t}NQOx,e) = 0}.

e—0T &
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The set
d
S(u) = U {xeQ:u (x) <uf(x)}
=1

is called the singular set, or jump set of u, and the value #(x) := 3(u™(x)
+u~(x)) is defined for every x € Q. It is well known that S(u) is (N — 1)-
rectifiable, i.e.,

S(u) = JK. UE,
n=1
where H¥~!(E) = 0 and K,, is a compact subset of a C! hypersurface for each
n. If u € BV (Q; RP), we write
Du = Vu¥" + Dgu,
where Vu is the Radon-Nikodym derivative of Du with respect to #", and
Dyu and £V are mutually singular.
Theorem 2.4. If u € BV (Q;RY), then
() for #N-ae. x € Q,

N—1
N

tim 4 [ )~ ) - V) - 9P =0
O(x,)

(i) for HN '-a.e. x € S(u), there exists a unit vector v(z) € SV, normal to S(u) at
x, and there exist vectors u_(x),u(z) € R, such that

1 N
lim ) — )T dy =0,
(€0 (x.8):(y—x)v(x)>0}
1 N
lim [ ) -wwra=o

{V€0\ (v (x,6):(y—x)v(x) <0}
(i) for HY -a.e. xo € @\ S(u)
1
lim — / lu(x) — ii(xo)| dx = 0.

e—0+ eV
O(x0,¢)

We remark that, in general, (u;)" % (us),. We denote by [u](x) the jump of
u at x, defined by

] (x) := uy(x) — u_(x).
If u € BV(Q;RY), then the measure Du may be represented as
Du=Vu?" + (uy —u_) @ vEY ' S(u) + C(u), (2.3)
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where Vu is the density of the absolutely continuous part of Du with respect
to Y, and C(u) is the so-called Cantor part. The three measures in (2.3) are
mutually singular: if H¥~!(B) < 400, then ||C(u)||(B) = 0, and there exists a
Borel set E such that #V(E) =0 and ||C(u)||(X) = ||C(u)||(X NE) for all
Borel sets X C Q.

The following subspace of BV was introduced by DE GiorRGI & AMBROSIO
[21].

Definition 2.5. A function u € BV (Q,R?) is said to be of special bounded
variation if |C(u)| = 0. We write u € SBV(Q; R?).

Next we state a generalization of the Besicovitch Differentiation Theo-
rem, due to AMBROSIO & DAL Maso ([5, Proposition 2.2]).

Theorem 2.6. If 4 and p are Radon measures in Q,u = 0, then there exists a
Borel set E C Q such that u(E) = 0, and for every x € supp u\ E

dA LA C

— (x) := lim Mx+eC)

dp a0+ p(x + &C)
exists and is finite whenever C is a bounded, convex, open set containing the
origin.

The following SBV compactness theorem of AMBROSIO (see [2]) will im-
pose restrictions on the growth conditions of bulk and interfacial energies
that we will consider in the sequel (see Remark 2.13).

Theorem 2.7. Let @ : [0,00) — R and ® : (0,00] — R be respectively convex
and concave, be nondecreasing, and satisfy

lim%:oo lim%:oo

t—oo ’ —0t

Let {u,} be a sequence of functions in SBV(Q,RY) NL>(Q RY) such that
sup,, ||, < oo and

sup /(D(|Vun|) dx + /@(Hun“) dHN !} < 0.
" Q S(un)

Then there exists a subsequence {u,,} and a function u € SBV (Q, RY) such that
u,, — u strongly in L', Vu, — Vu weakly in L.
The next theorem was obtained by ALBERTI [1].

Theorem 2.8. Let f € L'(Q, RVN). There exists u € SBV(Q,R?) and a Borel
function g : Q@ — RPN such that

Du=f - 4g-H"'S(u), /|g| dHN™' < CIf|pqpeny,  (2.4)

S(u)nQ
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where C depends only on N.

The next lemma is a simple corollary of the co-area formula (see Evans &
GARIEPY [28]), and a similar result may be found in[12, Proposition 3.1, Step 1].

Lemma 2.9. Let u € BV(Q,R?). There exist piecewise constant functions u,
(thus u, € SBV) such that u, — u in L'(Q, R?) and

1Dal(@) = fim |1D,1(@) = fim [ [0 atr* ! o).

S(“/l)

Proof. By Proposition 2.2 we may assume, without loss of generality, that u
is a C{° scalar-valued function. Further, suppose that u is nonnegative; the
general case follows by considering the positive and negative parts of u. Let
E, :={x € Q:u(x) >t} and define

1
izl
- E
(z+//n)
i=0 j= n

This sum is finite, and it is easy to check that u, — u in L'(Q). Also,

n—1

o0
||Dun|| < ;/:ln /E,+//n

(),

where the right-hand side of this formula is simply a Riemann sum for
1o 1Dy, ||(Q) dr, which, by the co-area formula, equals ||Dul|(Q). Thus, by
the lower semicontinuity of the total variation and the fact that u € C*(R"),
we have

IDul|(@) < liminf|Du,|(©) < [IDuf|(©). O

Lemma 2.10. Let u € BV (Q,RY) satisfy ulpg = uo for some uy € C(0,RY).
Then, for every ¢ > 0 there exists 0 < r, <1 such that r, — 1~ as ¢ — 0, and
/ |u(x) — uo(x)| dHV ' (x) < e.
aQ(Q’"s)

Proof. Without loss of generality, assume that d = 1. Let tr u denote the trace
operator. If u € BV(Q), then we have (see ZIEMER [41, Theorem 5.10.7])

[ el ¥ < Cluly = l0l@) / a] @9
90

for some constant C. Fix ¢ > 0. Since ||Du|| is a Radon measure, we may
choose ¢ such that C > 6 > 0 and

ClIDul|(Q\Q(0. 1 = 25)) < e (26)



Bulk and Interfacial Energy 51

Let @5 € C*(Q) be such that 0 < @5 < 1, @s(x) =0 if x € 0(0,1— ),
@s(x)=1 if x€00, and |Vo,|;. =0(5"). Given 1€ (0,1) define
u)(x) = u(ix) for x € Q. Clearly, for a.e. x € Q, it follows that u(ix) — u(x)
as A — 17. This, combined with the fact that |u,|,, is uniformly bounded,
implies that u; — u in L'. Now, choose A = A(d,¢) € (0,1) such that

1-26
A> max{m721/1v}, / |u0(lx) — uo(x)| dHN71 < 2,
20
c . (2.7)
3/ |u(2x) —u(x)] dx < 1

o
We have

/\tru ) —up(x)| dHV 1= V" /\truix)—uo( Jx)| dHN!

00(0,2)

< / tr (@y(u(x) — uo(x)))] dHN!
90

+ N / |uo (Fx) — uo(x)| dHV .

00

CH1ID(@s(ur — u))[|(Q |u(Ax) — u(x)| dx A
{ +f =

C{HDWH(Q\Q(O: 1 =0)) +|Dul|(Q\Q(0, 1 - 6))

By (2.5) and (2.7), we have

/ [tr a(x) — up(x)| dHN !

90(0,%)

IIA

IIA

&

[u(Ax) — u(x)| dx} + 3 (2.8)

{x:1-0<x|<1}

+

SO

and by (2.7),,

[1Duz|[(Q\0(0, 1 = 8)) = 27| Dul|(Q(0, )\ Q(0,

M1 =9)))
= 2[|Dul|[(Q\Q(0, 1 - 29)).

Hence (2.6), (2.7); and (2.8) yield

lu(x) — uo(x)| dHV ' <e. O
00(0,2)

Now we introduce the space of structured deformations within the SBV
framework.
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Definition 2.11. The space SD(Q) of structured deformations consists of pairs
(g9, G) where

g € SBV(Q;RY), G e L'(Q;MPM).

We use the result of ALBERTI (Theorem 2.8) to recover the Approximation
Theorem of DEL PiEro & OWEN (Theorem 5.8 of [25]).

Theorem 2.12. Let (g,G) € SD(Q). Then there exist u, € SBV(Q,RY) such
that

u, — g in L'(QRY),  Vu, — G in M (Q). (2.9)

Proof. We construct a sequence {u,} such that for every n, Vu, = G PN-ae.
By Theorem 2.8, there exists 7 € SBV(Q, RY) such that

Vh=G $Mae.

Let {it,} be a piecewise constant, L'-approximation of g—/ on a rectangular
grid, so that

iy, — g —h in L'(Q, RY), Vii, =0, $Mae.

Set u, := i, + h. Clearly u, € SBV(Q,R?), u, — g in L'(Q, R?), and for all n,
Vu,=Vh=G %N -ae. [

Remark 2.13. Note that we must have Du, — (Vg — G)Z" 4 Dyg in the
sense of distributions and so, if Vg =+ G, we are forced, regardless of whether
or not g € Wh!, to consider in (2.9) functions u, € SBV\W"!. Moreover,
suppose that |Vu,| are uniformly bounded in L7, p > 1. This is the case when
{u,} is an admissible sequence for the energy I, with p > 1 (see (2.10)). Then
Theorem 2.7 implies that in any open subset E of Q such that Vg(x) +G(x)
for a.e. x € E,

HY Y (S(u,) NE) = 00 as n — oc.

The jump discontinuities of u, diffuse throughout the part of the body where
Vg(x)#G(x) which, in the spirit of DEL PIERO & OWEN [25], we call the
micro-fractured zone. Moreover, Theorem 2.7 and Lemma 2.20 prevent us
from considering surface energy densities with sublinear growth in the case
where W has superlinear growth. Due to these considerations, in this paper
we restrict our attention to interfacial energy densities i with linear growth at
infinity.

Definition 2.14. Let W : M?Y — [0,00) and ¥ : R? x SV~ — [0,00) be
continuous functions. Given (g, G) € SD(Q), we define the following energies:
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t/wv% /%W&mﬂﬂﬂ”]

I(g,G,Q) := 1nf { lim inf
S(un)NQ

un n—00

‘u, € SBV(Q,RY),

. * d
w, — g in L'(Q,RY), Vu, = m,m € M(Q),~ =G .
7
Forp = 1, set

I,(g,G,Q) :=inf { lim inf

{un} n—00

/W(Vun) d +/¢([u,,],vun) dHN—l]

S(uy)NQ
‘u, € SBV(Q,RY), u, — g in L'(Q, R?),

Vity = G, Sup [Vity| 1y g pgovy < oo}, (2.10)

and if p > 1, g € SBV(Q,RY) N L*(Q, R?), we define

1(9,G,Q) := inf{liminf[/W Vuy,) dx—|—/lﬁ U], vy, ) dHN ™ 1]

{un} n—oo
S(un)NQ
‘u, € SBV(Q,RY), u, — g in L'(Q, RY),

*
SUP [ty | 1 (o ety < 00, Vity — G, sup |Vity |y pa-v) <00 }
n n

Remark 2.15. The uniform L” bounds on admissible sequences {Vu,} allow
us to consider bulk densities W which may not be coercive, and for p > 1 they
are equivalent to requiring that Vu, — Vu in LP, while, in view of the
Principle of Uniform Boundedness, these bounds are redundant in the case
p = 1. The uniform L* bounds for {u,} are useful for proving that the energy
is a Radon measure (see Lemma 2.21 and Proposition 2.22). However, using
a truncation argument in Lemma 2.20 for p>1 and with
g € SBV(Q,RY) NL*(Q,RY), we have I,(9,G,Q) = I;C(g, G,Q), and so we
may work simply with /,. Also note that, by virtue of the particular con-
struction of {u,} in Theorem 2.12, y,I,, and ;¢ are well defined. Finally, we
may avoid a coercivity assumption on y (cf. (#2)) by requiring admissible
sequences to satisfy sup, ||Du,||(Q) < oo (see Remark 3.3 for details).

Let p=1, W: MY — [0, +00) and y: R x S¥~! — [0, +00) be contin-
uous functions satisfying the hypotheses:

(#1), There exists a constant C such that

() = WB)| < Cld =B (1+ 4P + 15"
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for any 4, B € MY,
(#2) There exist constants ¢;, C; > 0, such that for all (4,v) € RY x SN-1,

clAl £ ¥(4,v) = Cil4].

(A3) Y (-, v) is positively homogeneous of degree 1:
YA, v) = ty(4,v)

for all £ > 0, (4, v) € R? x SN-1,

(A 4)  is subadditive, i.e., for all 11,4, € RY and v € SV,

lp(;“l + ;”27 V) é l//(/117‘]) + lp(i% V)'
We recall that the recession function of W is defined by

. W (tA
W>(4) :=lim supg. (2.11)
t—+00 t
If p = 1, then we assume further that
(#'5) There exist constants ¢,L > 0, 0 < m < 1, such that

W(t4 1
e -1 <
t m
for every 4 € MV with |4| = 1, and for all # > 0 such that ¢ > L.

It can be shown that if W is Lipschitz continuous, then W is Lipschitz
continuous and positively homogeneous of degree 1 (see [35]).
We now state two of the main results of this paper.

Theorem 2.16. Let (g, G) € SD(Q) and assume that W and  satisfy hypotheses
(A1), (A2)—(AS). Then

1(0.6.9) = [ Hi(Vg(x),60) dv [ nllglvy) di¥ ',
Q S(g)

where, for A,B € M4V

H\(4,B) := irL}f{ / W(Vu) dx + / Y ([u],v) dHY ' 1 u € SBV(Q,RY),
0 S(u)nQ

”|0Q :Ax,/Vu dx:B}7
0

and for ). € R?, v e SN-1,
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hi(4,v) :=inf { / W™ (Vu) dx—f—/t//([u],vu) dHV ! (2.12)
o S()
u € SBV(Qy, RY),ulyp. = sy, /Vu dx = 0}. (2.13)
Moreover, ¢
Io(g,G,Q) = / Hi(Vg(x),G(x)) dx + 1, (Q) (2.14)
)

for some Radon measure u, absolutely continuous with respect to HY='|S(g).

Theorem 2.17. Let p > 1, let (9,G) € SD(Q) with G € LP(Q, M¥*N), and let W
and  satisfy hypotheses (#1),, (H#2)~(#4). Then

1,(9.G.Q) = / H,(Vg(x), G(x)) dv + / W(g) dHY, (215)
Q S(g)

where, for A,B € M4V

Hy(4,B) = irl}f{ / W (V) dx—l—/lﬁ([u],v) .
o S(u)nQ
cu € SBV(Q,RY), ulyy = Ax,

IVl ELP(QL/Vudx:B}, (2.16)
0
and for ). € RY,

h(2) := igf{ / W([u),v,) dHY™' :u € SBV(Q,RY),
S(u)

Ulpg = Usey, Vu(x) =0 $N-a.e.}. (2.17)

Note that in the definition of 4, Q may be replaced by any Q,, for
ve SV-1 ie., for p> 1 the new relaxed crack density is isotropic. As was
mentioned in the Introduction, it is possible to relax the assumptions of
coercivity and homogeneity on , still obtaining the representation of The-
orem 2.17. For simplicity, we prove the theorem under the original hypoth-
eses and refer the reader to Remark 3.3 for the appropriate modifications.

We divide the proofs of Theorems 2.16 and 2.17 into several parts found
in the remainder of this section, as well as in Sects. 3 and 4. First, using
properties of /° we show that Iy(g,G, ) and I,(g,G,-) are non-negative
Radon measures, absolutely continuous with respect to " + |D,g|. Then,
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using techniques such as the blow up method (see for example, [7, 34, 35]), we
proceed to characterize the densities
deN 7 d(lgt — g |HN[S(g))

The next lemma provides an upper bound for the energies. Let 7 denote either
I, (p 2 1) or Iy

Lemma 2.18. Let W : MY — [0,400) be a continuous function, and let
Y R x SN — [0, +00) be continuous with 0 < y(i,v) < C|i| for some
constant independent of A,v. Then for every (g,G) € SD(Q) and p > 1

1(9,G,Q) = C{/ W(G) dx + |Gl q e + IDQII(Q)},
Q

where C is a constant independent of €.

Proof. By Theorem 2.8 there exists & € SBV(Q,R?) such that Vi=G
PN-ae. and ||Dh]|(Q) £ C1]|G||,i. By Lemma 2.9 there exist {ii,} piecewise
constant such that

tn =g —h, |[Diy||(Q) — [|Dg — Dhl[(Q).

Define u, := i, + h. Clearly Vu,(x) = G(x) for #" -a.e. x and u, — g in L'.
Thus

1(9,G,Q)

lIA

lirr;inf{/W(Vu,,(x)) dx+/xp([un](x),vun(x)) dHN—](x)}
Q

S(un)

lIA

Climinf / W(G) dx + ||Du,||(Q)
n
Q

A

< Climinf /W(G) dx + ||Diiy|[(Q) + |G,
Q

_c / W(G) dx + ||Dg — Dhl|(Q) + |Gl
Q

<c /W(G) dx + |Gl + |IDgl|(@) . O
Q

Remark 2.19. Lemma 2.18 implies that for all (g,G) € SD(Q),
I,(9,G,Q) < oo (and also Iy(g, G, Q) if p = 1) provided that [, W(G) dx < cc.
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Before we establish that I,(g,G,-) and Iy(g,G,-) are traces of Radon
measures, we prove that, for g € L®(Q, R?), the additional L* bounds on
admissible sequences do not increase the energy 7,, p > 1.

Lemma 2.20. Let p > 1, g € SBV(Q,RY) N L>(Q, RY), and assume that (A1),
and (#2) hold. If (g, G) € SD(Q), then
[P(ga G7 Q) = 1;0(61’ Ga Q)

Proof. Clearly, it suffices to prove that I;jo(g7 G,Q) < I,(9,G,Q). We apply a
truncation argument in the same spirit as in [7] (see Lemma 3.7) and [31] (see
Proposition 2.8). Let ¢, € Cgo(Rd, RY) be such that

fx iflx< e,
¢i(x) == {O if [x|= e,

and [V¢,[; < 1. Since g € L>(Q, RY), there exists an iq such that for i > i,
lgl., < € and ¢;(9) =g £V ae. Let i = iy and define w' (x) := ¢;(un(x)),
where u, — ¢ in L', Vu, — G in I?, and

li,rln{/W(Vu,,) dx+/ W ([un] (x), vy, (x)) dHNl} < I1,(9,G,Q) +¢
Q (it

for fixed ¢ > 0. Clearly, [w'|,. < €, S(W)) C S(u,), and by the chain rule for
C* functions composed with BV funcnons it follows that Vw! = V¢, (u,)
Vu, #"-a.e. Moreover, we have

wi () = 9@ = 1y (un(x)) = Gi(g()r = Junlx) — g(x)]-
Next, we consider the convergence of Vw/ as n— oco. Note that
VW (x)],, £ |Vua(x)|,, £ C, for C independent of n. Let & € Cp(Q); then

/5(wi (x) dx = / E() Vi (x) dx + / E() Vi (1) Vit (x) dx

N e! n
{x:|uy|<e'} {xel <|uy|<et1}

— / £(x)Vitn(x) dx + En,
Q

where |E,| < 2[¢|,~ f{x p[>el}
due to the equi-integrability of the {Vu,} we have

Vu,(x)| dx. Since |g|;~ < €' and u, — g in L,

|E,| — 0 asn— oo,

and we conclude that

/f Vw dx—>/§ ) dx as n — oo,

ie, Vv L Gasn — oo Finally, we compare the energies. Using (%1)p and
(2) we have
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/W(VW;) dx + /‘//([Wﬁ;](x),vw,n(x)) JEN

Q S(wi)
= W (Vu,(x)) dx + / W (Ve (un) Vuy(x)) dx
{x:|un|<e'} {xeei <|u,|<ei*1}
b [ e [ wme @) art
{x:fu, [>e 1} S(un)N{x: || <€}

+ / (W), v () dEY!

S ()N {x:6! <|uy | <e 1}

[Ty d [ i) o)., ) a4 Clely

et+l
Q S(un)

lIA

e /(1+|Vu,,\p)dx

{x:el <|u,|<e*1}

+ C / |[un]| dH" !,
S(up )N {x:e! <|uy|<ett1}

where we have used the fact that #V ({x : |u,| > *'}) < e *D|u,|,,. Next
for M > iy,

_ZO+IZ{/WVW dx + / Y([w vwi(x))dHN_l}

/WVun ) ds + / U ([a] (), Ve, (x)) dEV!

10+1{Z 5 / LVl dx

1=l

+ / [un]|dHN1}. (2.18)

S(un)
Clearly, the term inside the parentheses in the last two lines of (2.18) is bounded

independently of n, and so we may choose M so large that these last two lines in
(2.18) are less than ¢. Hence, there exists some i € {i,..., M} such that

[y @ [ )
Q i

[ e [ b, ) i
Q

S(un)NQ
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and we conclude that

1°(9,G,Q) < I,(9,G,Q) + 2.
The result follows by letting ¢ — 07. [

Next, we obtain a subadditivity condition for /, and I.

Lemma 2.21. If(,'/fl)p and (#2) hold, p > 1, and if A, B, C are open subsets of
Q such that A CC B CC C, then

1,(9,G,.C) < I,(9,G,B) + I,(9, G,C\A)
for all (g,G) € SD(Q) with g € L*(Q,R?). If p =1, then

10(97 G7 C) < 10(9 GaB) +10(g7 G7 C\"‘I)7
]l(g7 G7 C) < ]1( G B)+[l(gv Ga C\A_)

Sfor all (g,G) € SD(Q).

Proof. Fix ¢ > 0 and let 7 denote I, if p > 1, and either I, or [; if p = 1. Let
u, € SBV(B,R?%) and v, € SBV(C\4, R?) be “almost minimizing” sequences
for I, that is,

hm/W (Vu,(x)) dx + / Y ([un] (x), vy, (x)) dHY ™' < 1(9,G,B) + ¢

S(u,)NB
(2.19)
lim /W(VU,,( / Y ([0 (x), vy, (x)) dHY ™' < 1(g,G,C\A) + ¢
o\d S(va)NC\A
(2.20)

uy — g in L'(B,R7), v, — ¢ in L'(C\4, R), {|V“n|u(3)}v{|an|LP(C\A’)} are
bounded, and

dm;
dJN

Vi, — my in 4 (B), Vv, — my in 4(C\A) with =G, i=12.
In the case where / = 1,, p = 1, we have m; = 13GLY and my = xC\A*G‘,S”N.
Moreover, by Lemma 2.20 if p > 1, we may assume that the sequences
{un},{vs} and {Vu,},{Vv,} are uniformly bounded in L* and L?, respec-
tively.
Consider - . _
A:={xeB: dist (x,4) < d},

where, by virtue of the countable additivity property of the Radon measures,
o is chosen such that ||m;||(04) = 0. Define

1/4p

Uy = |uy — Un|_l/2p* and 1= H|un |L'(B\A Rd)”

L'(B\4,R%)
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where [[-]] denotes the greatest integer function. For i =0,...,k, — 1, define

S o it
Vi”::{xeB\Azé———% L dist (v, d) < 6 — — 4+t }
Oy OnKn Oy Ky

For each i we introduce cut-off functions which are either 1 or 0 on the
complement of V", that is, we consider ¢} € Cz(RY,[0,1]) such that
[Vo!|~ = C(ayx,) and

;i (x

(x) = 1 if dist (x,4) <& —1/oy, + i/otyKs,
Tl0 ifdist (x,d) >0 — 1/, + (i + 1) /oK.

For eachi=0,...,x, — 1 define
2= M, + (1 — ¢)og,

where we have extended u, by 0 on the complement of B and v, by 0 on the
complement of C\A. It is clear that for each i

‘Ziz(x) - g(x)|L1(C7IR") — O as n — oQ.

Using (#1),, and (#2), we have

[y ac + [ R a
C

s(z)nc

< / W (Viun(x)) dx + / W () (), v, () V!

S(un)NB

+ / W (Vu,(x)) dx
o\d

' / Y ([oa) (x), v, (x)) dHN !
S(a)NC\A

+ C/(l + |[Vu, ()7 + [V, (x)|P) dx

yn

i

+C(oc,,;c,,)p/ |t () — v, ()P dx
i

+C / )| dHN ' + C / |[va]| dHV1.
S(u,)NV" S(v,) v

i

Thus, summing over i and using (2.19), (2.20), we obtain
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K,—1
23 [ dc / PN, v () !
c (zi)nC
< I(g, G,B)+1(g,G C\A) + 2¢

{/ (1 +|Vu,|”) dx. + /(1+|Vv,,|")dx

B o\d

c/ |[un]| dHV ' + C / |[va]| dHV!

S(uy)NB S(U,,)ﬂc\/{
 Clorn)lun — v, (B\ARL,)}. (2.21)

If p > 1, the L* bounds on {u,} and {v,} yield

p,p—1 _ _
< CoBxb™ |uy, Un|L1(B\A,Rd)

- (‘xn’cn)p|un — vl
n

= C|un — U”|Z](B\A:Rd)’
where a > 0. This, combined with the uniform bounds for {Vu,}, {Vuv,},
(#2), and (2.19), (2.20), implies that the last three lines of (2.21) tend to 0 as

n — oo. Hence, we may choose i, € {0,...,k, — 1} such that, setting
w, := 2", we have w, — g in L'(C,R?) and

1(9,G,C)

lIA

lim sup/ W (NVw,(x)) dx + / Y ([wa] (x), v, (x)) dHV !

n—oo

S(w,)NC

[IA

as long as we show that sup, [Vwy|;,cge) < 00 and that
Vw, — ymi + Levimz in A (C),
since, by definition of A,
d (XA""I + XC\A"”Z) dm dmy
dL™ ~ g T g

To this end, we recall that

/|VW PP dx < /|Vun|pdx+/ Vo, dx + (0,,) / [, — valf dx

o\d B\A

=G $Nae xecC.

and so sup, |[Vwy|,cre) < 00. As for the convergence, let ¢ € Co(C) and
consider an increasing sequence of open sets 4, CA such that dist
(A, 04) = m~". Let 0,, € Co(C, [0, 1]) be a sequence of cut-off functions such
that 6,,(x) = 1 if x € 4,, and 6,,(x) = 0 if x & 4,,,+1. Then
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n—oo

lim [ &Vw, dx = lim /(éqsigvun + E(1 = ¢V, + E(uy — v,) @ Vi) dx
C C

m—0o0 n—00

= lim lim {/é@mVu,, dx+/é(¢>;’; —0,,)Vu, dx
B B

+ / (1 —6,)Vu,

c\4
/ E(Om (f)i”)vvn dx} + lim E,,
co\d

where

|En == / 6(“;1 - Un) ® Vd);” dx é |6|LOC (O(nkn)|un — U”lLl — 0
i
Thus

lim [ éVw,dx = lim lim {/60 Vu, dx+/ &1 —6,)Vu, }
C c\d
+ lim lim £,

m—0o0 n—00

zlim{/ge dml—&-/fl— dm2}+lim lim F,,,

= /fdl’m + Edmy + lim lim Eom,

m—0o0 n—00

c\d
where
/ % = 0%, de [ €0, 9V, d

o\d
Finally, we note that lim,, lim, F, ,, = 0. Indeed, recalling the definition of q’)i;,

for each m we may choose n so much larger than m that ¢ (x) = 1 if x € 4,,,
and so

lim hmsup/|qb — 00| Vitn| dx < 2 lim ||my||(A\dp) =0
m— n— m—00

A similar argument gives

lim lim [ &0, — ¢")Vv, dv=0. [

m—0o0 n—o0

o\d
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Using Lemmas 2.18, 2.20, and 2.21, we show that if (g,G) € SD(Q),
G e I?(Q,MN), and g € L™(Q,R?) for p > 1, then I,(9,G,-), p =2 1, (also
Iy(g,G,-) if p=1) is a Radon measure, and

Ip(ga G?)( also IO(ga G7 ) lfp = 1) < gN + ||Déq||

Proposition 2.22. Assume that (#'1), and (#2) hold and let g € L>(Q, RY) if
p> 1. Then, for p = 1, I,(g,G,-) (also Iy(g,G,-) if p=1) is the trace on
{U C Q: U is open} of a finite Radon measure on B(Q).

Proof. We proceed separately for /, and /. First we consider [,, p = 1, and
we use an argument introduced by Fonseca & MALY [33].

Step 1. We assume coercivity, i.e., that there exists a constant C > 0 such that
W(4) = C|A|f for all 4 € MV In this case, by means of a diagonalization
procedure we can find a minimizing sequence for /,(g, G,Q), that is, there
exist u, € SBV(Q,R?) such that u, — g in L', sup, |Vu,|,, < oo, Vi, — G in
L7, and

I,(9,G,Q) = lim {/W(Vun(x)) dx + / W ([un] (x), vy, () dHNl}.
Q

n—oo
S(u,)NQ

After passing, if necessary, to a subsequence, we find that thereis a u € .#(Q)
such that

W (Vuan (x)) dx + 9 ([ua)(x), v, () AV [S(un) = o, in 4 (Q),
and, in particular,
u(@) = 1,(9.G.,). (2.22)
Let V C Q be open. We must show that u(V) = 1,(g, G, V). We always have

L,(g,G,V) < llmlnf/W Vu,(x

n—oo

/ Y ([ (x), v, (%)) dHN ' < (7). (2.23)

u,, ﬁV

Let ¢ > 0 and take W CC V such that u(V\W) < e. By Lemma 2.21, (2.22),
and (2.23),

IA

uw) +e

W(@) — @) + ¢

IP(g ) (g> Gv Q\W) +e
Ip(g7G V) +e.

u(v)

lIA1IIA

Letting ¢ — 0", we obtain
uv) = I(g,G, V). (2.24)
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On the other hand, Lemma 2.18 implies that
(9,G,) £ C(1+|GP)ZY +||Dgll.

Denote by 4 the Radon measure on the right-hand side. Let K CC V be a
compact set such that A(V\K) <e¢ and choose W open such that
K cc W cc V. Using Lemma 2.21 and (2.23), we have

IP(g7 G» V) IP({J? Ga W) +[p(g7 Ga V\K)

u(W) + A(V\K)
u(V) + e,

which, together with (2.24), yields the result by letting ¢ — 0.

Step 2. We remove the coercivity assumption. Considering in Step 1 the bulk

density Wé:=W()+e¢ P, we obtain measure representations p, for
I;(g, G,Q), where [; is the energy in which W is replaced by W*. Let {u,} be

an admissible sequence ie., u, — gin L', Vu, — G in I”. Then, by Step 1,

A NIATIA

1.(Q) = I,(9.G, Q)
< liminf{/W (Vuy(x)) 4+ |V, | dx + /l,b U] (x), vy, (%)) dHNl}
S(un)NQ
< 00,

and so, after extraction of a subsequence, there exists pu € .#(Q) such that
u, — u, and for every open set V' C Q,

L(9,G,V) £ I}(9,G, V) = (V) £ . (V);
hence,
L(9,G, V) = u(V). (2.25)

Conversely, given ¢ > 0, there exists a sequence {v,} admissible for 7, such
that

n—oQ

Mmam+szhm{/Wﬂm@Dﬂ+ / wwmmwm»ﬂﬂl}
V

S(va)NV
and so, for n sufficiently large,

w(r) = timine { [ wwo,) ars [ w0 a )

S(v,)NV

A

lIA

1(9,G. V) +g+e/ IV, | dx

lIA

1,(9,G,V) + Ce.
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Letting ¢ — 0" we obtain
u(V) = lim inf w,(V) < (9, G, V).
&—

It remains to prove that u(V) = I,(g, G, V). This follows by using the upper
bound on 7, (Lemma 2.18) and (2.25), and proceeding exactly as in the last
part of Step 1.

Step 3. The method used in Steps 1 and 2 to prove that /, is a Radon measure
may fail for [y, as we are not able to show that Iy(g, G, Q) is realized by some
admissible sequence {u,}. Thus, we use the De Giorgi-Letta criterion (see
[23]) to establish that [y(g, G, -) is a measure. The following four conditions
are necessary and sufficient for guaranteeing that Iy(g, G, -) is the trace of a
Borel regular measure on the set of open subsets of Q. Let B,C be open
subsets of Q.

(a) If BC C, then Iy(g,G,B) < Ih(g,G,C).

(b) If BNC =0, then Iy(g9,G,BUC) = Iy(g,G,B) + Ip(g, G, C).
(C) [0(97 GvB U C) é IO(Q»GvB) +[0(gv Ga C)

(d) Iv(g,G,B)=sup{l(g,G,C): C CC B}.

Conditions (a) and (b) hold trivially. Condition (d) follows by using the upper
bound measure A for 7y (Lemma 2.18) and the subadditivity (Lemma 2.21).
This brief argument is given in the last part of Step 1. To prove (c), it suffices
to follow Proposition 2.10 of [31], noting that we have already established the
subadditivity property Lemma 2.21. []

3. The Bulk Density

We recall the definition of the density function H,(4,B),p = 1, intro-
duced in (2.16),

H,(4,B) = inf{ W(Vu) dx+ | y([u],v,) aH !
[reoe ]
u € SBV(Q,RY), Ulpg = Ax,

|Vul| GLP(Q),/Vudx:B},
0

where 4, B € MV, We give the following limit characterization for H,.

Proposition 3.1. Let p = 1 and assume that (#'1),, (#2), and (#4) hold.
Then
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H,(4,B) = {lilﬁ{l‘?ié?f l/W(Vun) dx + /lﬁ([u,,},vun) dHN_]]
o S(“H)“Q
‘u, € SBV(Q,RY),

Uy — Ax in L', Vu, = B,sup [Vu,|, < 00}
n

— :H,(4,B).

Proof. Step 1. We prove that H,(4,B) £ H,(4,B). Fix u € SBV(Q,R) such
that uly, = Ax, [Vu| € LP(Q), and [, Vudx = B. We write u(x) = Ax + ¢(x),
where ¢ € SBV (0, R?), }lopo =0, and

Q/v¢(x) dr =B A.

Extend ¢ periodically, with period one, to R and define u,(x):=
Ax + L ¢(nx). Then

Up(x) — Ax in L', Vu, = B, sup|Vu,|, < co.

Thus, using (#2) we obtain

H,(4,B) < liminf{ W(Vu,) dx+ | Y([un](x), vu,) dHNl(x)}
[ |

n—00
S(un)NO

= liminf{ /W(A + Vo(nx)) dx
0

o [ (G s0mn) dHN-%x)}

MQQ

= liminf{nLN/ WA+ Vo)) dv

n—0o0
nQ

+o [ w@im) dHN*@)}

S(¢)nnQ

= [warvom) ae [ wgl) ) @),
0 S(¢)NQ
Taking the infimum over all such ¢ € SBV we obtain H,(4,B) < H,(4,B).
Step 2. We claim that H,(4,B) = H,(4,B). Let {u,} be an admissible se-
quence in SBV(Q, IR"), ie., u, — Ax in L', Vu, — B, and sup,, |Vuy|,, < 0.
Let Ok be the cube (—1+1.1 -1V Using the argument given in Lemma

K2k
2.21, for each k we can find @, such that Q; CC @, CC Q, and ! such that
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uﬁ(x) =Ax forx € 0Q, uﬁ(x) = u,(x) for x € O,
and for each £,
uﬁ%Ax,Vuﬁi;(QkB—F (;{Q—XQ;)A as n — oo,
Vidly £ C(I Vil + 14]) + 1.

Thus, we may take a diagonal subsequence vy := u”‘l(k> such that v a0 = Ax,

vy — Axin L', Vo, — B, and
/ W([Ukvak) dHN_]}

S(v)NO

k—o0

lim sup{ W (Vu(x)) dx +
/

:liminf{ W (Vu,(x)) dx + U ([un], va,) dHN_‘}. (3.1)
ey

n—0o0
S(u,,)ﬁQ

Without loss of generality we may assume, upon extracting a subsequence,
that limsup; in (3.1) is lim,. Lastly, we modify v; to accommodate the
condition on the average gradient, and we consider two cases.
Case 1 (p > 1): By Lemma 2.10, there exists ry — 1~ such that

/ ok (x) — uo(x)| dHV " (x) < %, (3.2)

00(0,r%)

where uy(x) := Ax. Define

wi(x) 1= {MO(X) ifx € O\O(0, ).
FY7 1 o) + Gee ifx € 00, 1%),

where C; is chosen such that fQ Vwy(x) dx = B, that is,

1

= T 00

B— / Vordx — ALY (0\0(0, 7)) |-
0(0,r%)

Using the equi-integrability of the sequence Vv, and the fact that Vo, =B,
we have

Cr — 0 as k — oo. (3.3)

Clearly wy — up in L', and by (#1),,, (#72), we have
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/W(Vwk) dx + / W ([we](x), vi,) dHN’l(x)
o S(we)NQ
< / W(Ver) dv+ C(AP +1)2Y(0\0(0, 7))
[¢)

+ |Ck|{1+/|Vvk|p1dx+/|Vwkpldx}
0o (¢

b [ we.) d )
S(vk)
+ C / |tr vx(x) + Crx — uo(x)| dHY ' (x).
00(0,7x)

Using (3.2), (3.3), and the fact that {Vu;} and {Vw;} are uniformly bounded
in 27(Q, RP), we obtain

]}Lngo{ [wem s [y de(x)}
0 (wi)

S

/ V(o] (), viy) dH“(x)}.

S(vx)

k—o00

< lim{ W(Voi) dx +
/

Case 2 (p =1): Using (3.1), (s#2), and the fact that sup, |Vu|,1 < oo, and
after extracting a subsequence, we find a Radon measure f such that
||Dui|| = B. Thus, for all but a countable number of & > 0,

BOO0,1 ) =0, [IDull(Q(0,1 — &) — BQ(0,1—#))  as k — oo.
(3.4)

Fix such an ¢, and define

_ Juo(x) if x € 0\Q(0,1 —¢),
Wi e (x) 1= { v,(:(x) +Crex  ifxe Q0,1 —¢),

where Cy, is chosen so that fQ Vwie(x) dx = B, i.e.,

Cre = ! ) [B— / Ve dx — ALY (0\0(0,1 —¢))|.

N0, 1 —¢
0(0,1—¢)

The weak star convergence (in the sense of measures) of Vv, to B implies that
lim lim |Gy .| = 0; 3.5
e—01 k—o0 ‘ k’L| ' ( )
hence,

lim lim - =0.
e—0F k—o00 |Wk’s u0|LI(Q) 0
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Using (#1),, (#£2), we obtain

/WVW}H ) dx + /lp Wil (X), Vi, () dHN’I(x)

S(Wk.e)

< /W Voe + Cr) dx+/ W([oe] () vy () Y (x)
S(ve)
+C(J4] + 1) 2V (0\0(0,1 — &)
+C / |tr o (x) + Crox — Ax| dHV !
80(0,1—)
/ka dx+C|Cke|+/ V([0 (), ve, () dHY ()
S(ve)
+C(J4] + 1) 2V (0\0(0,1 —¢))
+ C|Cro[HY1(00(0,1 —¢))

lIA

+C / |tr vx(x) — Ax| dH" . (3.6)
0(0,1—¢)

Next, in the spirit of Lemma 2.10, we address the asymptotic behavior of the
last term in (3.6). Let ¢;5 € C°(Q) be a sequence of cut-off functions such
that, 0 < ¢5 <1, ¢s=0 if x€0(0,1 —e—20), ¢ps;=1 if xe€ O\
0(0,1 —¢—9), and |V¢;|,« = O(1/5). By (2.5)

/ |tr v (x) — Ax| dHV ™! = / |tr ¢s(x)(vg (x) — Ax)| dHV !
0(0,1—¢) 0(0,1—¢)
< / dID(gs - (v~ )|
0(0,1—¢)
/|¢5 (05 — )|
0(0,1—¢)
=< d(||Dvel| + |4]2™)

0(0,1-6-6)\0(0,1-6-20)
/|vk—Ax\ dx.

Thus, from (3.4) we obtain
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lim lim / |tr vy (x) — Ax| dHN !
e—0" k—oo

90(0,1—¢)

e—0t

< lim llron lim {||ka||(Q(O7 1 —e—0)\0(0,1 — & —20))

+ 4|2 (0(0,1—& —8)\O(0, 1 —&—26)) /\uk—Ax| dx}

< lim lim {ﬁ(Q(o, 18§>\Q(07 163(5))

+ |A|$N(Q(O,1aé)\Q(O,lszé))}
= lilg)g B(00(0,1 —¢)) = 0. (3.7)

Finally, setting ¢ = 1//, we take a diagonal sequence of wy,, w; := W k(1>
satisfying '

w;(x)|pp = Ax, / Vw;(x) dx = B,
0
and, by (3.5), (3.6), and (3.7),

limsup{ / W(Vw,) dx + / Y ([wi](x), v, (x)) dHNl(x)}
0 (%))

Jj—oo
hmmf{/WVvk dx + / W ([ve] (x), v, (x)) dHN_](x)}. O

The following characterization of the relaxed bulk density holds for
I,,p = 1, as well as for I,.

Theorem 3.2. Let p = | and W, satisfy (#1),, (#2)—(#4). Then for
(¢9,G) € SD(Q), with g € L™ if p > 1, we have

dl, 9, Ga :
%(x) = Hp(VQ(x)7 G(x)) PNoae. X,

where H, is given by (2.16). If p = 1, then for all (g, G) € SD(Q) we have
dlo(9, G, ")

4PN (x) = Hi(Vg(x), G(x)) PNoae. x.

Proof. Step 1 (Lower Bound). Let 4 C Q be an open set and let I(g, G, ")
denote either Iy(g,G,-) or Ii(g9,G,-) if p=1, and I(g,G,-) =1,(9,G,-) if
p > 1. We prove that
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(g, G, 4) /H Vg(x), G(x)) dv. (3.8)

From (3.8) and from Proposition 2.22, it follows that
dl(ga G7 )
A

Let ¢ > 0 and let u, be an admissible sequence for / such that

(x) = H,(Vg(x),G(x)) ZN-ae. x.

n—oo

e+1(g,G,4) = lim {/WVun dx—|—/¢ ) (x), vy, (%)) dHNl(x)}7

(3.9)

where wu, — ¢ in L', sup,|Vu,|, < oo, and Vu, —m in .#(4), with
m=G-L" +m;, mg L #N. By Theorems 2.4 and 2.6, for #V-a.e. xo € Q,
we have

. 1
i [ o) glow) ~ Vo) G- de =0, (310)
O(x0,¢)
1
lim — / G (x) — Glxo)[Pdx = 0, (3.11)
O(xo,2)
. dmg

Choose such a point xo. Upon extraction of a subsequence, which we do not
relabel, there exists a non-negative Radon measure u such that

W(Vuy) dx + Y ([un], v,) dHN™! LS (un) = H.

We claim that proving
du
deN

(x0) = Hp(Vg(x0), G(x0)) (3.13)

implies the lower bound. Indeed, from (3.9) and (3.13), for all 4’ CC 4 we
have

¢+ 1(g, G, 4) /d /W( ) dx = /H,,(Vg(x),c;(x)) d,
J

and (3.8) follows by letting A’ / A and ¢ — 0". It remains to prove (3.13).
Using the countable additivity property of u, choose radii ¢ > 0, ¢ — 0%, such
that u(0Q(xo,€)) = 0. By Theorem 2.6 we have



72 R. CHoksI & 1. FONSEcA
du —
az™ ™ =1 ,}L“;‘o{ v [ )

mt/ R,

S(un)NO(x0,¢)

= lim lim {/W(Vun(xo +¢y)) dy.

e—0T n—oo

1
+E / ¥ ([un] (xo + &¥), V4,) dHN_l(J/)}~
S(unz—xomQ
Define

n (X0 + &) — (o)

ug(y) == Vg(xo)y, un.(y):=

By (3.10) we have

lim lim [u,.(y) — uo(¥)|p1 0 =0,

e—0t n—oo
and, due to the homogeneity of ,
i) = Tim lim /W(v ) d
dsN ¥/ = £—0t n—oo UnelV
0

/ Y ([tne] V), Vur,, () dH"! (J’)}

S(ttn,e)

(3.14)

Case 1. We assume coercivity, i.e., there exists a constant C such that
ClA| < W(4) for all A € M?*N. Then (3.14) implies that

sup sup |V,
& n

Let ¢ € Cyp(Q). By (3.11) and (3.12) we have

lim lim | [Vu,(xo + &y) — G(x)]o(y) dy

£—0t n—oo

0
~ lim { (Gt - GEanew) v+ [ ¢(’“;x°)dms<x>}
0 Oxo,2)
i A
O(x0¢)
< |pl. my(Qxo,8)) _ o

R LY(0(xo,¢))

By virtue of the separability property of Co(Q), we may extract a diagonal
subsequence v; € SBV(Q,R?) such that
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u(y) = uo(y) in L'(Q,R’),  Vue(y) = Glxo), Sup |Vl < 00,

diZfN {/WVvk ) dx + / Y ([ve] (x), v, (%)) dHNl(x)}.

S(v)NQ

(3.15)
The inequality (3.13) follows from Proposition 3.1 and (3.15).
Case 2. Next, we remove the coercivity assumption. To this end, let
We(:) == W(-)+¢| - | and let {u,} be an admissible sequence for 7 satisfying
(3.9). Let A C Q be open and let u, € .#(A4) be such that
W (Vun)d LN+ (), va,) dHY[S(un) = .

By Case 1 we have

du, .
o x0) Z Hi(Vg(x), Gw) 2 H,(Vg(x), Glx)).
where H is given by (2.16) with W* replacing /. This, combined with (3.9)
and the uniform Z” bound on {u,}, gives for all 4’ CC 4,

e+1(g,G,A) =z lim | W(Vu,) dx+ / W ([un], vu,) dHN !

n—oo

4 S(u)NA

\Y

lim [ W,(Vu,) dx + / W ([un), v,) dHN !

n—oo
S(u,)NA4

v
bz\
U
F
|
a2}
a

G(x)) dx — eC.

1\
ﬁi\
&
<
Q

Letting A’ /* 4 and then ¢ — 0", we conclude that
1(g,G,A) / Hy(Vg(x), G(x)) d.
Step 2 (Upper Bound). Fix ¢ >0 and consider an admissible sequence

u, € SBV(Q,R?) for H,(4,B), i.e., u,(x) — uo(x) := Vg(xo)x in L', Vu, =
G(xo), sup,, |un|;, < oo, and
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[ vt dHN-l}.

S(un)ﬁQ

n—oo

e+ H,(Vyg(xo),G(xp)) = lim {/W(Vun) dx +
0

(3.16)

Using the argument given in Proposition 3.1, Step 2, we may assume, without
loss of generality, that u,|,, = uo. Thus, we may write u,(x) = uo(x) + {,(x)
where

1 <00, V{, 2 (Gxo) — Vg(xo)).

Cn'@Q =0, {,—0in Ll, sup |V¢,

We extend {,, periodically to all of RV, with period Q. By Theorem 2.8 there
exist i, € SBV(Q(xo, ), RY) such that

Vh,(x) = G(x) — G(xo) + Vg(xo) — Vg(x) for £V-ae. x € Q,

DR[| (00, ) < CN) / 1G(x) — Glxo)| + [Va(xo) — V()] dx = e),
O(x0.¢)

where x, 1s chosen such that

1
—N{ | 166 = G +9gtx) - vQ<x0>|de} ~0ass— 07,
O(x0.¢)
d|lgllH" " S(9)
T(xo) =0.
Hence,
%HO as ¢ — 0. (3.17)

By Lemma 2.9, there exist piecewise constant functions 4, , such that for each
&,

hew — —he in L' (Q(x0,€), RY),  [|Dheu||(Q(x0,8)) — || Dhe||(Q(x0,)) (3.18)
as n — o0o. Now define
X — X0

Wen(x) = g(x) + SC,,(

For each ¢ > 0, w,, — g in L', sup, [VWenl 1o
n

)+ Bt o

) < 00, and

X0,€

Vwea¥) = V(o) + VG, (F—

) +G(x) - Glw) = Glx)

in O(xp,¢) as n — oo. Thus {w,,}, is an admissible sequence for I for each
¢ >0, and by (#4) we have

I(ga G, Q(x078))
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e—0+ T

1
< limsuplim inf{ v / W(NVw,,) dx
O(x0,8)

X0,E

b [ vl dHN‘<x>}

S(Wen)NO(x0,2)

< limsup lim inf{BLN / W(Vg(xo) + V¢, (x - xo) + G(x) — G(xo)) dx

£—0t n—0o0 €
O(x0,¢)

+8LN / lﬁ(s[Cn](x;xo),Vgn) dHN !

(xo+eS(L,))NO(x0.¢)

+eiN / (g (x), vg(x)) dHN! +8iN / W([he)(x), v,) dHV!

S(9)NQ(xo,¢) S(h:)NO(x0,¢)

+ iN / w([hs,n](x)y th) dHNl}

&
S(hen)NQ(x0,)

< limsup liminf{ / W(Vg(xo) + V¢, () dy+ / (W (Vg(xo) + VE.(»)
0t n—oo
0(0.1) 0(0,1)

+Gxo + &) — G(x0)) — W(Vg(xo)+ V()] dy

‘*‘%N / lﬂ(s[(n] (x—(qx())’m) dHN !

(xo+e S(£:))NQ(x0,)

by [ el @

T / lp([hé:](x),vhn) dHN*1

S(he)NO(x0,4¢)

v [ v dHNl},
S(he)NO(x06)

On the other hand, by (s#°3) we have
1 _
lim sup lim inf — / w(s[gn]()%),v;,) dHN-!

gm0t M0
(xo+2 S())NQ(x0,¢)

< tmint [ W(GI0) 5,00 @),
SN0, 1)

and so, by (%”l)p and (3.18) we conclude that
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dI(g, G, -
%(m) < liminf / W (NVuy(y)) dy
0(0.1)

+ limsupliminf / |G(xo + ev) — G(xo)|
e—0+ n—0oo

0(0,1)
« (1+19g50) + V5, () + Gl + 29) - Glan) P

+ [Vg(xo) + VE,0)P ) v

+ lim inf / Y ([tn], v, (x)) dHV !

n—oo
S(u,)NQ(0,1)
+ lim sup N / W([g](x), vy(x)) dHN!
0 9)NO(x0,¢)

+ Climsup ol Dh(QGo, ).

Since {V{,} are uniformly bounded in L?, (3.16), (3.17) and (#°2) imply
that

di(g,G,- c B
295 () < o H(Ta), Glaw)) +limswp s [ [l ar* .
S(g)NQ(xo,2)

The result follows by letting ¢ — 07, [

Remark 3.3. 1f p > 1, we may replace hypotheses (#72) and (#3) by
(A#2)" There exists a constant ¢ > 0 such that

0 < () < dldl

for all (4,v) € RY x V-1,
(A'3)" There exist constants C,/, & > 0 such that

i) - <

t =
for every (4,v) € RY x S¥~! with |4 = 1,0 < ¢ < I, and where v, is the pos-
itively homogeneous function of degree 1 defined as
. A,
Yo(4,v) :=lim suplﬂfv).

t—0t

In doing so, we must redefine the energy I, as follows:
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/ W(Vu,) dx + / U ([ta), va,) dHN‘]

L,(g,G,Q) := Eng { lim inf
S(u,,)

n—oo

n

tu, € SBV(Q,RY),
u, — g in L'(Q, RY), Vu, = G,

Sup(|Vu,,|L,,(QdeN) + |un|BV(Q$Rd>) < OO}

The integral representation for I, provided in Theorem 2.17 holds, except
that the new bulk density (Theorem 3.2) involves i, in place of , that is,

H,(4,B) 1nf{/WVu dx + / Wo(ul,v) dHY"" . u € SBV(Q,RY),
S(u)

Ulap = Ax, [Vu| € L”(Q),/Vu dx = B}.

The proof of Theorem 3.2 is carried out with the obvious adaptions. As an
example, (3.15) would read

du

@mhm{ [ wue) des s [ . vnm) dHN-‘<x>},

S(v)NQ

with vy — ug in L', Vo — G(xo) in LP, and sup, ||Dvi||(Q) < co. Using the
truncation argument introduced in the proof of Lemma 2.20, for all 6 > 0 we
may find a new sequence wy = wy(d), with the same convergence properties as
vr and satisfying

Slip|Wk|Loc = C(9), Sup{|VWk|u + [|Dwi|[(Q)} < o0,

digN (xo) 2 0+ lim { / W(Vw(x)) dx
o

L / W ([ (), v () de(x)}.

&k
S(we)NQ
Since wy are uniformly bounded in L™, by virtue of (#3), we have
du .
m(xo) ) —&—]{ILIIOIC W (Vwi(x)) dx
0

+ / Yo (Wil (x), v, (x)) dHNl(x)}
S(wr)NO
= 0+ H,(Vg(xo), G(xo))-
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It suffices to let 6 — 0" to conclude that

du

asv
We remark that replacing (A#2),(#3) by (#2)",(#3)" admits surface
densities y which appear naturally in fracture mechanics, for example,
functions (A,v) which are sublinear in A and approach a constant as
|| — oc.

(x0) = H,(Vg(x0), G(xo)).

4. The Interfacial Density
We will need the following limit characterizations of the functions /; and 4.

Proposition 4.1. Let (A1), (#2), (#4), and (A’5) hold. Then

hi(Z,v) = inf { liminfl/ W (Vuy,) dx + / W ([unl, va,) dHNI]

{un} | n—o0
0O, S(un)NOy

Cuy € SBV(Qy, RY), u, — uy, in L'(0,(0,1),RY), Vi, — o}.

Proof. The proof of Proposition 4.1 is identical to that of Proposition 3.1. ]
Proposition 4.2. Let p > 1. If (A1), (#2), (#4), and (A'S) hold, then

h(2)=inf { lim inf / W([tn), vi,) dHY " 2w, € SBV(Q,, RY),v € SV,

{un} | =00
S(un)NOy

Uy — Uy in Ll(Qv(O, 1), Rd), Vu, — 0 in LP}

Proof. To prove that h <h we consider u= Ujey + ¢ with
Plap =0,V = 0 £"-a.e. Extending ¢ periodically to all of RY with period
O, and setting u, = u;, +n 'P(nx), we easily see that u, — u;,, in L',
Vu, =0 £V -ae., and

/ W ([up], vy,) dHV ' — / W ([u),v,) dHY™' as n — oo.
S(Ll”)ﬁQ S(“)QQ
Conversely, let v € S¥~! and let u, € SBV(Q,, R?) be such that u, — u;,, in L'
and Vu, — 0 in L? strongly. By Theorem 2.8, for each n we choose
fu € SBV(0,(0,1),R?) such that Vf, =Vu, £Y-ae and |Df]/(0))

< C|Vu,| 11(0,)- By Lemma 2.9, there exist piecewise constant functions g, ,
such that g, yfn and |[Dgym||(Oy) - 1Df:]|(QOy). Let
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Wpm = Up _fn + In.m-

Clearly, Vw,,, =0 #N-a.e. and lim,, lim,, [Wym — u;v],0 = 0. Moreover, using
(2) and the fact that

IDl[(Q2) + 1Degnnl [(01) < c/ V] dv — 0 as 1 — oo,

Oy
we have
lim lim / V([Wamls Vw,,) dHY! < lim / W ([un], vu,) dHN L,
S(Wnm)NQy S(un)NQy

Hence, we may extract a diagonal sequence in m, n, say vy, such that vy — u,,
in L'(Q,,R?), Vo, =0 a.e., and

Jim / W([ve], ve,) dHYV < lim / W([uy],vy,) dH L

S(vr)NOy S(up)NQy

Next, we amend the sequence v, to equal u; , on 9Q,. To this end, by Fubini’s
Theorem there exists 7, — 1~ such that, upon extracting a subsequence,

/ | tr v, — ui,v| dHN ! 7 0. (4.])
90,(0,1—r)

Define

Ujy if 0,(0, D\Q,(0, 1 — 7).
Clearly Vo, =0 a.e., and by (4.1), (#2), we have

Jim / Y([Bx),vs,) dHY' < lim / W ([un],vy,) dHY . (4.2)

B (x) = {Uk if x € 0,(0,1 —ry),

n—oo

S(0x)NOy S(un)NOy

Let R be a rotation such that Rey = v, and set 6; := ;(Rx). It follows that
{6} is an admissible sequence for 4 and

(0 vo) " = [ () va) a
S(0:)NQ S(6)NOy
which, together with (4.2), concludes the proof. []

We will also need the following continuity property for 4; and A.

Proposition 4.3. Let W, satisfy (#'1), — (A'S). Then there exists a constant
C such that
(2 v) = i (2, )] < it p=1, [h(2) —h(V)| < Cli—2]ifp> 1.

Also, if p =1, then hy is upper semicontinuous with respect to v.

Proof. We start by proving that
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h(4v) £ h(X,v)+ClA= 7). (4.3)
Fix ¢ > 0. Using Proposition 4.1, let {u,} be a sequence in SBV (Q,, R?) such

that u, — uy, in L'(Q,,R?), Vu, — 0, and
/ W (ln], va,) dHY! }

S(un)NOy

n—oo

b+ (J,y) 2 1im{/W°°(vu,,) dx +
O,

By Lemma 2.9 we can find a sequence of piecewise constant functions {v,}
such that

Un = Ujpy — Uy, |[D,|[(Qv) — [ID(usy — ”).’,v)”(QV) =|1- /1/|~
Then
Wy 1= Uy + Uy — ), In L'(0y,RY),  Vw, =0,
and so, by Proposition 4.1,
hi(2,v) £ liminf / Y([Wal, ) dHY ' + &
S(wn)NOy
< liminf{ / W ([un],vy,) dHY " + / Y ([va], v,) dHNl} +e
S(uy)NO, S(v,)NQ,
< m(,v)+e+ClA— 2,

where we have used the subadditivity of . The inequality converse to (4.3) is
proved in the same way. This argument is also valid for A.
Next, we show that, for fixed A,

v — hi(4,v) is upper semicontinuous.

We follow the proof of Proposition 3.6, iv, in [7]. By (2.12) we have

h(,v) = inf{ / W (VuRT) d + / Wl ve) dHY!
0 S()nQ
: R is a rotation, Rey = v,

u € SBV(Q,RY), ulyp = tt) ey, /Vudx = 0}.
0o

Let v, — v and choose a rotation R such that Rey = v. Fix ¢ > 0 and let
u; € SBV (O, RY), u; = s ¢ [y Vitodx = 0 and

< &.

h(A,v) — / WOO(VuSRT) dx + / W ([ug], va,) dHN !
0 S(u};)ﬁQ

Considering a sequence of rotations {R,} such that R, — R and R,e, = v,, we
use the Lipschitz continuity of W to conclude that
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/ W ([ue], vur) dHN—l}

S(u,,)ﬁQ

Nl
—~
R

<
=

IA

n—oo

< liminf{ / W™ (Vu,RT) dx +
0

_ / W (TuRT) d + / W (lus], va,) dEN!
0 S(u:)NO
< h(0v) + .

It suffices to let e — 0. [

Theorem 4.4. Let W, satisfy (H#1),, (H#2), (H4) and (A’S). Then
dIl (ga G7 ) 1

N-1_ X
d(|[g][HY'[S(9)) X) = hi([g](x), vg(x)) H a.e. x € S(g),

(4.4)
where hy is given by (2.12).

Proof. Step 1 (Lower Bound). Fix ¢ > 0 and assume that xo € QN S(g) sat-
isfies the equalities in Theorem 2.4 (ii) with respect to g and, in addition,

gl (S(9) N Ovy))

. 1
T ~lgtlll,  Jim < [ 1G] ax=0.

0,(x0,0)

lim
0—0

(4.5)

It is well known that (4.5) can be guaranteed for V! -a.e. xo (see Ziemer
[41]). Let 4 be an open subset of Q and let {u,} be an admissible sequence for
I, such that

e+1(9,G,A) = lign/W(Vu,,(x)) dx + / W ([tn] (x), v, (%)) dHV 1 (x),
4

S(uy)NA4
(4.6)

u, — ¢gin L' and Vu, ~G. Up to extraction of a subsequence, which we do
not relabel, there exists a non-negative Radon measure p such that

W (Vi) LY + (), va,,) dHY (S (uy) -

By (4.6), the inequality

du 1
d(|lg* — g~ [Hv-1|S(9)) (x0) 2 mhl([g](xo)ﬂ’g(xo))
for HY '-a.e xo € S(g) 4.7)

yields the lower bound, after letting ¢ — 0. Choosing a sequence ¢ — 0"
such that u(9B(xp,€)) = 0, we have
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1 1
0~ G i | [ W o

Oy(xy) (X0,€)

S TR A

S (1n)Qy(xg) (¥0,6)

|
=———1lim 1 { /WVunxg—l—sy))d

[Tg(xo)][ 0" n
0y

+ / Y ([un] (x0 + ), va) dHNl(y)}'

000,

Define
Une(V) = ua(xo +&y) — g~ (xo).

By Theorem 2.4(ii) we have

lim 11m|uns y) — u[g](xo).v(X())(y)|L1<Qv(x0)): 0,

¢—0t n—oo
and

du
d(|[g]|HV-[S(9))

(x0) = (19 )

! &
[
0

v(xp)

+ / W ([t () V. () dHNl(y)} (4.8)
S(uVlﬁ)mQ\'(xO)
Now let ¢ € Co(Qy(x,)(0,1)). Using (4.5) we deduce that

lim lim / $0) Vs () = Tim Tim —— / ¢(x_8x0)Vu,,(x) dx

e—0t n—oo e—0t n—oo SN 1

Oy(x) (0,1) Oi(xg) (¥0,€)
. 1 X — X0
Oy(xg) (X0,8)

Case 1. Assume that W is coercive, i.e., there exists a constant C > 0 such that
ClA| £ W(4) for all 4 € MV, Using (#°5) and the fact that coercivity
implies a uniform L' bound for {Vu,.}, we may follow the arguments given
in the proof of Theorem 4.1, Step 3, of [7], to obtain (4.8) with equality
replaced by greater than or equal to, and ¢ (-/¢) replaced by W (-). Next,
we choose a diagonal sequence in ¢ 7, and a countable dense collection of

functions in Cy(Qy(x,)(0, 1)) to obtain v; such that
) in Ll, Vo = 0,

Uk = Ug)(xo),v vy (xo
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du
d(|lg]|Hn-11S(g))

o .
(x0) 2 o fim { / W (Vi (x)) e

v(xg)

+ / (o)), v () dHN%y)}.

S(vk)

The result now follows from Proposition 4.1.
Case 2. Proceeding as in Step 1 (Case 2) of Theorem 3.2, we may remove the
coercivity assumption. The argument is the same except #" is replaced by

9]l ™" HY 1S (9).
Step 2 (Upper Bound). In view of (4.5), we only need to prove that given
(¢9,G) € SD(Q), for any open 4 C Q,

h(o.6.4) £ [ o0+ 166 dot [ (oo, vi) di )
4 S(g)n4

(4.9)
Moreover, we claim that it suffices to prove (4.9) for g of the form g = Ay,
where y; is the characteristic function of a set of finite perimeter E. This
follows from an argument of AMBROSIO, MORTOLA, & TORTORELLI given in
Proposition 4.8 of [6], which will require continuity and semi-continuity
properties of 4 (see Proposition 4.3.).
Case 1. Suppose that E is a polygon and W is coercive. We use a Besicovitch
covering argument introduced by BrAIDEs & PiaT [13]. Let g = 1y, and
G e L'(Q, M), Fix A € Q open, § > 0, and let xy be a Lebesgue point for
the function /;(Z,v(-)) with respect to HV~!|S(g). Then there exists &, < J
such that for every 0 < ¢ < &,

1 \ _
(2, v(x0)) < e / h (2, v(y)) dHY 1 (y) + 6. (4.10)
S(g>mQ\'(X(J)(XO78)

By the definition of 4, (see (2.12)), there exists u,, such that

Uy, |6Q"(X0)(0’1> = U v(xo0)> / vuxo dx =0, (41 1)
Qi) (0,1)

B (3 v(x)) = / (Tt (v)) dy + / V() )) dEY () — 5.
Oy(xy)(0,1) Sty )NOs(xg)
(4.12)
Let

X:={xeAnS(g): (4.10),(4.12) hold at x}.
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Note that HV=1((4 N S(g))\X) = 0. Let
"= U{Q\,(x>(x, £):x €X,0 <& < e, Oylx,e) CA}

The set of cubes O, (x, &) covers 4’ finely, and so by Besicovitch’s Covering
Theorem there exist x; and ¢;, i = 1,..., such that 4’ is the disjoint union of
{0y (xi &)}, up to a set of #"-measure zero. For simplicity of notation, set
up =y, v; == v(x;), Q; := 0,,(x;, &), and let O] be the projection of O; onto
the hyperplane perpendicular to v;, passing through x;. Extend u;(-,yy) by
periodicity to the strip < x: [(£X) -v;| < 2<2,2 I } with period Q.. Let

&
1
D,‘ = i e A// : Dz
,k Qﬂ{x <2(2k+ }7 P 'I k-

X — X;
.Vl
&

Note that, due to the polyhedral nature of E, for every k& we have
S(g)NA C 4].Forye O, let y= (y/,yy) where yy € R is the component of y
along v;, and define

A ifx ¢4}, x€E,
us (x) == ((Zk +1)== V’) if x € Dy,
0 ifx ¢4}, x ¢E.
We have
IR CIEDS / Jusax) — g(x)] dv
< |},|Zsl. Y / () dx,  (413)
i i Di
where

ST <0 e < oHM (4N S(g)) = 000), (4.14)
i i L
202k+1)

)3 / 40 e =3 ! / [l 15k )]

2(2k+l) 2(0.1)
1
ZE{VW(—&—I/ / lu;((2k + 1))/, z)| dV'dz,
-1 00,1

where z := (2k + 1)yy. Since the inner integral tends to
IR
0;(0.1)
as k — oo, and in view of (4.13) and (4.14), we conclude that

tim fim 154 (x) = 9(3)] 1) = 0.



Bulk and Interfacial Energy 85

Next we show that, for each ¢ > 0, Vusy 2.0 as k — oo. To this end, fix
0 >0 and let ¢ € Cy(4).

/Vu(s,k(x)qb(x) dx
A
-> ijlwi((zkﬂf“‘x") - B) d
i Bix i i
=Y [ @k DV D)0+ ) d

0:(0,1)n {MN@QHU}
@
=> &M / / 2k + 1)Vu((2k + 1)y, 2k + D)yy)
' e 200
X ¢(xi + &), xi + eyn) dVdyy
= Z&N 1/ / Vu(2k + 1)y, 2)p(xi + &, xi + ez(2k +1)7") d/dz.

Sgi(0.1)

Let
M;(z) = / Vu,(y',z) dv.
0/(0.1)

Due to the periodicity of Vu;(-,z) and the fact that ¢(x; — e/,
x; — &z(2k +1)") converges uniformly, as k — oo, to ¢(x; — &)/, x;), we have

12
R N—1 : . 1 v /
/Vuo,k(x k—»oczgl / i Z) / d)(xl + &y 7xl> dy dz
4 —1/2 0,(0,1)
12
—Z&N : / M;(z) dz / P(xi + e, xi) dy'.
“1)2 0/0,1)

By (4.11), fl/z i((z)dz =0, and so Vu;y 20 as k — oo. Using Theorem
2.8, we can find / 6 SBV (4, RP) such that

Vh =G, |[Dhl[(4) = CN)|G|i vy, (4.15)

and, by virtue of Lemma 2.9, we consider piecewise constant functions
vy € SBV (A4, RP) such that vy — hin L' and ||Dvi||(4) — ||Dh||(4). Set

Wi k(%) = us(x) + h(x) — ve(x).
By the definition of /;, (#°2) and (#4), we have
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[1 (g7 G A

11m1nf11m1nf{ W(Vwsi(x)) dx + / Y([wsx(x)]) dHNl(X)}

IA

0—0t  k—oo
S(W;k)ﬂA

IA

0—0t  k—oo

lim inflim inf /WVuok dx+C/|G| dx
y

+ U ([usi(x)]) dHY ' (x)
S(usx)N4

+ C|[h)(x)| dHN ' (x) + / C|ox] ()] dHNl(x)}
S(h)n4 S(ve)nd

[IA

c(v) / 1G(x)] dx

A

+11{>n11nf11m1nf2[/ ((Zk%l)vui<(zk+1)<x;x")>>dx
D

ik

- / w([ui]((zk+1>(x;Xi>>) dHNl(x)]

3T

o Qk+1)_ .
+11§1l(1)1+1f111£112101f{2i:s?’/ /W<&Vul((2k+1)y) dy'dyy,

—1 Q:

20k+1)

e (2K + 1)) dHN-‘w}

2k+lQO{y bl = 2(2k+l)}

— ) / 1G()| dx

A

(2k+1)
N—1 . / /
—&—hmlnfhmmf{g & 2k+1//W< Vu; ((2k+l)y,z)> dy'dz
-4 0

&

T /o dH“(y)}. (4.16)

S(u)nk+1)oN{ | <t}
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Next, we note that, for each i, ¢(5) — 0" as 6 — 0", and, due to the coer-
civity of W, {(2k + 1)Vu;((2k + 1))/, z)} are uniformly bounded in %; hence,
using (#'5), we may replace

(k1,9

2k+1 g
in (4.16) by
2k—1+1W°°((2k+ DVui((2k +1)y/,2)) = W (Vui((2k + 1)y, 2)).

Using the periodicity of the u;, (4.12), and then (4.10), we obtain

Ii(g,G,4) £ C(N) / [Gx)| dx + liminf {eé“ / W (Vui(y)) dy
A ! O

+& / Y ([w)()) dHNl}

S(u,)ﬂQ,
Cv) [ 1669] ds -+ timin Y & (g]x), ) )
Y i

[IA

IA

) / G(x)| dx
A

lim inf
+1§159{Z

1

h([g)(x), v(x))dH" ™" (x) — 5] -8y &t }
s@no; :

By (4.14), 65", ¢M ! = O(8) and thus we conclude that

1(g.G.4) < C(N) / G(x)| dx + / i ([g)(x), v(x)) a1 (x). (4.17)
A S(g)ﬂA

Case 2. Let E be an arbitrary set of finite perimeter, and assume that W is
coercive. The proof of inequality (4.9) for g = Ay follows from the argument
given in [7] (Step 2d of the proof of Proposition 5.1), and from the lower
semicontinuity of I(g,G,Q) for coercive W (see Proposition 5.1). Indeed,
consider a sequence of polygons E, such that Perq(E,) — Perq(E),
PN (E,ANE) — 0, and XE, — Xg in L'. In view of the upper semicontinuity of
hi(4,-) (Proposition 4.3), we may apply Proposition 3.6 in [7] to obtain a
sequence of continuous functions 4" : RV — [0, 00) such that

hi(Z,y) £ W"(y) < Cly| for every y € RY,
hi(%,y) = inf A" (y),

where /(/, ) has been extended to R" as a homogeneous function of degree
one. Thus, setting g, = Ay , using (4.9) and the fact that PN(E,AE) — 0,
Per(E,) — Per(E), we have
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I(g,G,4) < hmlnfl(gn,G A)
< /|G )| dx +lim / h(2, v, (x))dHY " (x)
OE,N4
<

N) / |G(x)| dx+ lim / B (v, (x)) dHN 1 (x)
4 OE,NA4
< cw) [16wl et [ w0 d ).
4 OENA
Letting m — 400 and using the Monotone Convergence Theorem, we obtain
1(g,G,4) /|G )| dx + / h(2,v(x)) dHY " (x).
S(g)n4

Case 3. To complete the proof of the upper bound, we remove the coercivity
assumption on W. Let W*(-) = W(-) + ¢| - |. Then, by (4.9) we have

Il(g7GﬂA) é If(g>G>A)
< c/1+|G(x)\ dx+/h‘1’([g],vg) dHN !, (4.18)

and given 6 > 0, by definition of &, we may find u € SBV(0,(0, 1), RY) such
that uly, = u,, fQ Vudx = 0, and

5+ hi(4,v) /W“’Vudx—i—/xﬁ ) dHNTL
Thus S(u)

lIA

hi(4,v) /W‘”(Vu) dx + &|Vu| + / W ([u], v,) dHV !

S(u)

A

< (k) + 6+ 6| Vuly,

and we conclude that limsup, #{(4,v) < h;(4,v) + J, from which we obtain

1(9.6.4) £ € [(14+160) v+ [ hn(al.v,) dr .

4 4
It suffices tolet 6 — 0T, [

Theorems 3.2 and 4.4 reduce to Theorem 2.16. We now state and prove
the counterpart result to Theorem 4.4 for p > 1.

Theorem 4.5. Let p>1 and W,y satisfy (A1), (A2), and (A#4). If
g € L=(Q,R?), then

dl,(g,G,") 1
d(lgt —g-|HN=1[S(g))
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where h is given by (2.17).

Proof. The proof is very similar to that of Theorem 4.4 except at the fol-
lowing points, where the growth of W and the convergence of admissible
sequences {u,} become relevant.

Step 1. For the lower bound, we apply the same argument to construct u,
and to find a finite, nonnegative Radon measure u such that

an = 71 im lim l u
= s = o im e [ () @

v(x)

s [ Wm0, o0 0

un & I'TQ\ (x0)

Assuming that W is coercive, i.e., there exists a constant C > 0 such that
ClA]P < W(A) for all 4 € M?*V and using the fact that the density is finite
HY '.ae. (see Theorem 2), we extract a diagonal subsequence v; from
Une(¥) == un(xo + &v) — g~ (xo0) such that

1i1£n|vk(y) - u[g](xo),v(xo)(y)|LI(Q‘_(XO)): 0, Vuy —0in Lp(Qv(xo)(Oa 1))

du
d(lg*t — g~ |HN"1[S(g))

(%) = ——liminf / W 0), v () dHY ().

| | k—00

The lower bound now follows by Proposition 4.2. Removal of the coercivity
assumption can be achieved by means of an argument identical to the one
used in Step 1, Case 2, of Theorem 3.2.

Step 2. For the upper bound, we proceed with the construction of us(x) as in
(4.11), (4.12), noting that, in this case, Vus(x) = 0 a.e. By Theorem 2.8, let
h € SBV(4,R?) be such that

Vh = G,||Dh]|(4) £ CN)|Gy1qppoen)-
By Lemma 2.9 there exist piecewise constant functions v, € SBV (4, R”) such

that vy — A in L' and ||Duv||(4) — ||Dh||(4), and we define

W k(%) = us(x) + h(x) — ve(x).
Then

I1(9,G,A4) = C/ +|Gx)P) d
4
+libm(i)£1f1i]£n inf / W ([Wor) (x), vy, ) dHY 1 (x).
S(wsx)NA4

The arguments carried out in (4.13)—(4.17), except now involving only the
interfacial energy, allow us to conclude that
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1@GA>§c/a+wavw+ / h(g)(x) Y (x)
A S(g)n4

for the case when g = Ay and E is a polygon. Since /4 does not depend on the
normal to the jump set, the inequality for £ of finite perimeter follows directly
by assuming coercivity of W, and applying Proposition 5.1, and then the
Lebesgue Dominated Convergence theorem to y; — yz. To remove the
coercivity assumption, we proceed, as in the case where p = 1 (Case 3 of Step
2 for Theorem 4.4), to obtain (4.18) with I} and A° corresponding to
We(-):=W(-)+e¢|-|°. For p> 1, h* = h and the proof is complete. []J

From Theorems 3.2 and 4.5, we have Theorem 2.17 for the case when
g € L®(Q,R?). To complete the proof of Theorem 2.17, we remove this re-
striction.

Proof of Theorem 2.17. Define

1(0.6,9) = [ H(Tg),G0) v+ [ lg)) at*.
Q S(g)

By Theorems 3.2 and 4.5, we know that I,(gy,G,Q)=J(g,G,Q) if
g € L®(Q,RY). Let g € SBV(Q, R?) be arbitrary.

Step 1 (Lower bound). Fix 6 > 0 and let {u,} be an admissible sequence such
that u, — ¢ in L', Vu, — G in L?, and

n—oo

0+1,(9,G,Q) = lim {/W(Vu) dx + / U ([tn], va,) dHN—l}.
Q S(up)

After extracting a subsequence, we may assume that

*

W (Vu)d LY + i ([un)], vy, )dH" " = p, (4.19)

where p is a finite Radon measure. The arguments of Theorem 3.2, Step 1,
and Theorem 4.5, Step 1, allow us to conclude that

d
y ;N (x0) = H,(Vg(xo), G(xo)) LV -a.e. xo € Q,

w1
A5 ™ Z Talto)

Clearly, (4.19), (4.20) yield
0+ ]p(ga Ga Q) = J(g7 G7 Q)

h(lg),vy) HN '-a.e. xo € S(g). (4.20)

Letting 6 — 0T, we conclude that
Ip(ga Ga Q) g J(qv G7 Q)

Step 2 (Upper bound). Conversely, let n € N and consider ¢,, as in the proof
of Lemma 2.20, i.e., ¢, € C*(R? RY) such that |[V¢,(x)|,. < I and
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x iy < e,
d’n(x) T {0 if |x| > en+l.
Let W be coercive. Since ¢,(g) — ¢ in L', Proposition 5.1 implies that
Ip(9,G,Q) = liminfl,(¢,(9), G,Q) = liminfJ(¢,(9),G,Q),  (4.21)
n—od n—o0

where we have used the fact that I,(g, G,Q) = J(g, G, Q) whenever g € L.
Next, we note that by (#72), we have for all 4 € R4,

W) < / V(e o) d
S(u)

and we claim that there exists a constant C such that for all 4, B € MV, we
have

H,(4,B) < C(1+ |4 + |B"). (4.22)
Assuming that (4.22) holds, let

Q,:={xeQ:|g_(x)] > or|g;(x)| > "}
N{xeQ:lg_(x)] < e or |gs(x)| < e}
We have

J($4(9),G,Q) = J(9,G,Q) +C / (14 1V(¢,(9))] +[GI) dx

{x:lg(x)|>e"}

+C/| (x)| dHN ! (x). (4.23)

It can be shown (see (3.19)—(3.22) of [7]) that
2n
Z/| ()] b (x) /| ()]t (),

and so there exists i(n) € {n,...,2n} such that

/| ()] a0 :%/| (o) ™ ).

Qi(n)

Using the fact that the first integrand in (4.23) is bounded independent of n,
and that #V{x : |g(x)| > ¢"} — 0, we conclude from (4.23) that

Hi0):6,9) = J(0.6.9)+0(1)

which, together with (4.21), yields
Ip(g; Ga Q) é J(g7 G7 Q)



92 R. CHoksI & 1. FONSEcA

Removal of the coercivity assumption follows the arguments given in Step 2,
Case 3, of Theorem 4.4. Here, we apply these arguments to both the densities
H, and h.

It remains to prove (4.22). By virtue of Theorem 2.8 and Lemma 2.9, there
exist h € SBV(Q,R?) and piecewise constant functions i, such that Vi = B
PN-ae., ||Dh||(Q) £ C|B|, it, — (Ax — h) in L', and

|| Dty ||(Q)—14 — B| + [|Dsh||(Q) = C(|4] + |B]).
Let u, := i, + h. By Proposition 3.1 and (#1),,, we have
H,(4,B) £ liminf | W (Vu,) dx + / W ([tn], va,) dHN !

n—oo
0 S(un)

< W(B)+ lim [|Dyu||(Q)
< C(1+ 4+ |BP). O

5. Some Properties of the Energy

In this section we discuss certain properties of the energy /. We start with
lower semicontinuity with respect to the appropriate topology, under the
assumption that W is coercive.

Proposition 5.1. Assume that there exist constants C,c, such that
C(lA| —¢c) £ W(4) for all A€ MPN. Let (g,,G,),(g,G) € SD(Q) with
gn — g in LNQ,RY), and G, — G. Then, for p = 1,

I,(9,G,Q) < liminfl,(g,, G,, Q).

Proof. Without loss of generality, assume that liminf, 7,(g,, G,, Q) =
lim, I,(gn, Gn, Q). Due to the coercivity of W, we can find a minimizing se-
quence for 1,(g,, Gy, Q), u)', such that

I(gn, Gy) = lim E(u™), u" —g,in L', Vu" = G,(x).

Coercivity of W yields a uniform bound on {Vu/'}, and so we may extract a
diagonal subsequence in n,m, say vy := u,", such that vy — g in L', Vv, — G,
and !

E(Uk) = ]p<g”k7 Gﬂkv Q) + % .

Thus
I,(9,G,Q) < liminfE(vy) < liminfl,(g,, G, Q). O

k—o0

Proposition 5.2. Assume that (#1),,(#2), and (#'4) hold. Then H,(4,B),
defined by (2.16), is uniformly continuous in A and B.
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Proof. Let 4,, — A. By Lemma 2.9, for each m there exists a sequence of
piecewise constant functions v, defined on Q such that
Uy — (Ap —A)xin L', lim||Dv,||(Q) = |4m — A|.
Let {u,} be an admissible sequence for the limit description of H,(4, B) given
in Proposition 3.1. Then the sequence {u, + v,} is admissible for H,(4,,, B),

and using the subadditivity of v, (#4), together with the linear growth as-
sumption, we obtain for some constant C, independent of n, m,

E(uy + vn) — C||Dva||(Q) = E(un) £ E(un + va) + C||Dv,l|(Q).

Taking the limit in » and then the infimum over all admissible sequences u,,
we obtain

Hy(Am, B) — C|d — Ay| < Hy(4,B) < Hy(Ay,B) + C|d, — 4|,

and continuity in 4 follows by letting m tend to infinity. To prove continuity
with respect to B, consider B,, — B. By Theorem 2.8 and Lemma 2.9, for each
m there exists & € SBV(Q, R?) such that

and there exist piecewise constant functions v, such that v, — —#in L'(Q, Rd)
and lim, ||Dv,||(Q) = ||Dh||(Q). Let {u,} be an admissible sequence for
H,(4,B). Then the sequence {u, + h + v,} is admissible for H,(4,B,), and,
proceeding as before, we obtain

HP(AvBm) - C|B _Bm| é HP(AaB) é HP(AaBm) + C|Bm _B|
and the result follows. [

In the following proposition we use the notion of inf-convolution, pre-
cisely, the inf-convolution of W and i is given by

(WVY)(A) == inf{W(4 —a®b)+y(a,b) :a € R" beS"'}.

Also, given f : MP*Y — R, Of denotes the quasiconvex envelope of f, that is,

. | N
Of(4) = inf W(Q)Q/f(A F V) dr: ¢ € W0, RY)

Proposition 5.3. Assume that (#'1),, (#2)—(A#4) hold, and that there exist
constants C,c, such that C(|A —c) < W(A) for all A€MV, Let
(9,G) € SD(Q) and p = 1. Then

inf /H (Vyg(x),G(x)) & :/ inf H,(Vg(x),B) dx.

GeLr (Q,MN) BeM®V

In addition, if p =1, then
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inf H,(4,B) = 0(WV)(4).
BeM>V
Proof. For fixed 4 € M?*", the definition of H, implies that
inf H,(A4,B)

BeM®N

= inf{ W(Vu) dx +
/

which reduces to Q(WV)(4) when p = 1, as was established in [7]. Hence, it
suffices to construct for each ¢ > 0 a function G € L'(Q, M“*") such that

/ W([u]) dHY ™' 2 u € SBV(Q, Rd),u|aQ :Ax},

S(u)

H,(Vg(x),G(x)) =< i%pr(Vg(x),B) +¢ for #N-ae x € Q.

To this end, let f;, be a sequence of simple functions which converges in L' to
Vg, satisfies |f,(x)| < [Vg(x)|, and such that f,(xo) — Vg(xo) for #V-a.e.
xo € Q. Assume that xj is such a point. For every n, choose G"(xy) € MPN
such that

H,(fu(x0),G"(x0)) < inf H,(fu(x0),B) + ¢, (5.1)

BeM®N
and G"(-) is a simple function. Define

G(xg) := limsup G" (xo),

n—oo

where, upon extracting a suitable subsequence, the lim sup is taken compo-
nentwise. Note that for every n, G"(+) is measurable, and so G(-) is measur-
able. In order to show that G(-) is integrable, let u be an admissible function
for Hy,(f(x0), G"(x0)) such that

E(u) = Hy(fu(x0), G"(x0)) + &

By (1), and (5.1) with B = f,(xo), we have
E() = Hy(fulx0), G"(x0)) + ¢

Hy(fu(x0), fu(x0)) + 2¢
Clfu(xo0) P + 2e.

A IA A

Thus, by Jensen’s inequality and the coercivity of W, we deduce that

»
< / |Vuldx
0

< CE(u) = C'(falxo)l’ +26) = C'(IVg(xo)” + 2e).

6"t =| [ ua
(¢

Hence, for almost every xg,



Bulk and Interfacial Energy 95

IG"(x0)| < C'(|Vg(xo)” +28)'7,

and we conclude that G € L'(Q, M), Finally, by Proposition 5.2 and by
virtue of (5.1), for every B € M*" we have

Hy(Vg(x0), Glx0)) = lim Hy(f,(x0), G"(x0))
< lim Hy(f,(x0),B) +¢

= H,(Vg(x),B) +¢,
and so
H,y(Vg(x0), G(x0)) = infH,(Vg(xo),B) +¢ [

As a corollary, we obtain integral representations for the relaxation in the L'
topology of

E@:/me»w+/w@wmm»MMW)
Q S(g)

Set
F(g) = inf{liminfE(un) Lty € SBV ,uy — ¢ in L'(Q, [Red)}.

{Mn} n—o0o

Corollary 5.4. Assume that (#1), , (#2)—(H4) hold, and that there exist
constants C, ¢, such that C(|4|" — cf < W(A) forall A € MPN_ Ifp > 1, and if
g € SBV(Q,RY), then

f(g)z/ inf H,(Vyg(x),B) dx + / h(lg]) dHV !,

BEMdXN
S(g)

where H, and h are defined by (2.16) and (2.17), respectively. If p =1, and if
g € WhH(Q,RY), then

%@z/émwwwww.
Q

Remark 5.5. A representation of % (g) for p =1 and for all g € BV(Q, R?)
was obtained directly in [7], precisely,

f@z/@mwwwmw+/gmvwﬂmm
Q Q

Proof. Let p > 1 and assume that u,,g € SBV(Q,R?), g € LP(Q,R?), {Vu,}
is uniformly bounded in Z?, and u, — g in L'. Then, upon extracting a
subsequence, there exists G € L7(Q, M?*V) such that
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Vu, — G in IF(Q,M*N)

and so
. < 7
Inf 1,(g9.G) = 7 (g).

Hence,
] — I
Inf 7,(9,G) = 7 (9),

and the result now follows by virtue of (2.15) and Proposition 5.3. If p =1
and if Vu, are uniformly bounded in L!, then, up to a subsequence, there exist
m e .#(Q) and G € L'(Q, M) such that

* di
Vu, — m, _mN =G.
d¥%
Thus
inf Iy(g,G) < F(g).
Inf 1o(g,G) = 7(9)
Hence

inf Iy(g,G) = F
[Inf lo(g.G) = 7 (9),

and the conclusion follows from (2.14), Lemma 2.18, and Proposition 5.3. [

Next, we search for relations between /(g, Vg, Q) (I, or Iy) and the relaxed
energy

h/ oW (Vg) dx.

By Theorem 3.2 and Lemma 218, if ge Wh(Q,RY), then
Iv(9,Vyg) =1i(g9, Vg). Let I denote I,.

Proposition 5.6. (i) The function A € M@V —H,(4,A4) is quasiconvex and
H,(4,4) £ OW(A). In particular, if g € W' (Q,RY), then

1(g.¥9,Q) = / H,(Vg(x), Vg(x)) dx < / OW (Vg(x)) dx.
Q Q

(i) Let g € WhH(Q, RY). Suppose either that W is convex, or W is quasiconvex
with linear growth i.e., c|[A| £ W(4) < C|A| for some constants c,C, and
W(A,v) = WX(A® V). Then
1g.V9) = [ (o)
o

(iii) 4 € MY is such that W**(4) < QW (A) if and only if there exist a con-
stant o € R such that

I(g,Vg) < / OW (Vg(x)) dr,
Q



Bulk and Interfacial Energy 97
where g(x) = Ax and y(-) = o - |.

Proof. (i) By definition of H,, (see (2.16)) we have
H,(4,4) < inf{ / W(Vu) dc:u=Ax+ ¢, ¢ € Wol‘oo} = OW(A).
0

Therefore, if g € W!(Q, R?), then by Theorems 2.16 and 2.17 we obtain

1(9,Vg) :/ »(Vg,Vg) dx /QW Vy(x

Q

In order to prove that 4 — H,(4,4) is a quasiconvex function, it suffices to
apply Theorems 2.16 and 2.17 to I,(g, Vg), to conclude that

I,(9,Vyg) = /I:Ip(Vg,Vg) dx + / ft([g],vg) dHN !,
Q S(g)nQ

where we have used the lower semicontinuity property of I, (see Proposition
5.1), and where H and h are associated with A, and with h (or m if p=1),
through the formulas in Theorems 2.16 and 2. 17 Thus

HP(AvB) = ﬁP(A’B)v

and, in particular,

H,(4,4) = H,(4,4) < inf{ /Hp(Vu,Vu) dx:ue WP(0,R),uly Ax}
0

= OH)(4,4).

(ii) For g € W, I1(g, G, Q) = Iy(g, G, Q), and hence it suffices to consider
I,,p =z 1. Suppose that W is convex, and let u, — g, Vu, — Vg. Then, using
Jensen’s inequality we conclude that

liminfE(u,) = liminf | W(Vu,) dx = /W (Vg) d

n—oo n—oo

Q

Taking the infimum over all such sequences {u,}, we obtain
1,(9,Vg) = [, W(Vg) dx, and the result follows by part (i).
Next, assume that W is quasiconvex with linear growth, and that
Y(2,v) = We(L®v). Take u, — g, Vu, — Vg. Then
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\

liminfE(u,) = liminf{/WVu,, ) dx + / W ([u,] @ v,,) dH~ 1}

n—00 n—00
S(un)

=: liminf % (u,).

n—oo

By a result of Fonseca & MULLER (see [35]), %(u,) is lower semi-continuous
with respect to the L' topology, and so

liminfE(u,) = %(g) = / W(Vg) dr

n—oo

This yields /(g9,Vg) = [, W(Vg) dx, and the converse inequality follows
from (i).

(iii) Let ¢(-) = «| - | and suppose that W**(4) < QW (A4). Then there exist
an 4 € M7V and f € L'(Q, M**) such that

/ f) dx =0, / WA+ () de < OW(4) ¢
0 0

for some ¢ > 0. Let Q5 := Q(0,1 — 9), where 0 is chosen sufficiently small so
that

W(4) LV (0\0s) < e
Set

1
C6 —W/f(x)dx, Co—>0 as (S—>O+

By Theorem 2.8, there exists ¢ € SBV(Qs, RY) such that V¢ = f, Jo, ®
I1D|[(Qs) = Cl|f]y:, and by (2.5) we have

[ ol an < ciply
005
Define

a 0 lfx ¢ Q 5
u(x) = Ax + { ¢(x) + Csx if x € Qi

Clearly u| so = Ax, and from the fact that /" has zero average over Q, it follows
that [, Vudx 4. Thus, by definition of H,(4,4) and by (#1),,

Hy(4,4) < /W(Vu) dx + o / ]| dHY!

IIA

L / W(A + f(x)) dx+ C(Cy) +aC'|f],

lIA

OW (4) = 3+ C(C3) +aC'|f |-
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Choosing o and ¢ sufficiently small so that

C(Cs) +aC'|f | < Le,
we obtain
H,(4,4) < QW (4).
Conversely, if
I,(g.Vg) < LN(4)0W (4),
then
Hy(A,4) < OW(4)

and so

W (4) = inf{

inf {

[IA

W(Vu) dx + W([u],v) dHN !
S(u)nO

ZMESBV(Qde),vu:A—FQD,/(pdx:O,M(?Q:AX}
o

W(A+(p)dx:Q/(pdx—O}
/

@\ Q\

= Hy(4,4) < QW(4). 0O

We note that Corollary 5.4 has the interpretation that, for a given mac-
roscopic deformation g € W' (Q, R?), the energy associated with the optimal
microstructure is given by the relaxation of E(g) in the L' topology (BV
weak). Precisely, by Theorem 2.17, Proposition 5.3, and Corollary 5.4, we
have

inf  1,(9,G,Q) = [ Q(WVY)(Vg) dx + h(lg), vg) aH™"!
o | /

GeLr(Q,MP*N)
S(g)nQ

- / O(WVY)(Vg) dx.
Q

Moreover, if we assume W to be coercive, then the direct method of the
calculus of variations can be implemented to show that the infimum over all
microstructures is achieved. Indeed, let

inf  I,(g,G,Q) = lim I,(g,G,, Q).
GeLr(QMP ) v ) n—00 vl )
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For every n choose v, such that |g — vs|;,qrei) < 1/n and Iy(g,G,, Q) =
E(v,) — 1/n. Then {Vu,} is bounded in L?, and, upon extracting a subse-
quence, we have Vv, — ¢ in L? for some ¢ € L7(Q,MP*Y). Finally, by
Proposition 4.3 we conclude that

IP(g7 é)

lIA

liminf 7, (v,, Vv,)

n—oo

IA

lim inf E(v,)

n—oo

= inf  I,(g,G,Q).
GeLr(QMPN)

There are cases in which
[0(g7 Ga Q) é [0(97 an Q)a

for all G € L'(Q, M), e.g., if W is quasiconvex with linear growth and
W(A,v) = W*(A®v). Hence, if variational principles are accepted for this
model, we may interpret this result as evidence that for this particular crystal
it is energetically more costly to form defects. On the other hand, there are
simple examples in which

inf [0(g7 Ga Q) < ]O(Q, Vg? Q)
GelL!

Consider W(-) = |- | and y(-,v) = a| - |. Using Corollary 5.4, Proposition 5.6
(ii), and Theorem 2.14 in [7], we have

[ 1¥6)] v = 1. Vo) = inf 10,69
Q

=ﬁ@=/mmwwmwu
Q

Hence, if o = 1, this inequality is in fact an equality, and if « < 1, then the
inequality is strict.
We end with the conjecture that for fixed p,

H,(4,B) = Fi(B) + F2(4 — B)

for some functions F] and F>. Note that the conjecture is trivially satisfied in
the case where only surface energy is present, i.e., when W = 0. This situation
may occur when the sample is so small that interfacial energy overtakes the
bulk contribution. It is also easy to check that it is satisfied when W is convex,
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regardless of Y. Proving this conjecture would confirm what was postulated
in the Introduction. Precisely, the energy functional associated with a
structured deformation of a crystal should involve a measure of the dis-
crepancy between the macroscopic and microscopic strains Vg , G, respec-
tively. Such a result could motivate the use of H, as the total free (stored)
energy in computing stress at equilibrium. Work in this direction has already
begun (see [24, 38 and 16]).
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