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1. Introduction

In this paper we follow a model of DELEL PIEROIERO & OWENWEN [25] in order
to provide a basis for the application of techniques in the calculus of variations
to non-classical deformations of continua. These structured deformations of
continua are suitable for describing deformations of materials whose kine-
matics warrants analysis at both the macroscopic and microscopic levels.

The motivation for this work lies in the study of equilibrium con®gura-
tions of crystals with defects. In a defective crystal, the macroscopic defor-
mation together with the referential (Bravais) lattice con®guration do not
su�ce to describe fully the con®guration of a deformed body; phenomena
such as slips, vacancies, and dislocations may be present in the deformed
(Bravais) lattice basis, thus preventing the use of the Cauchy-Born hypoth-
esis, as described below.

In a perfect crystal, it is postulated that the crystal lattice consists of
identical atoms located at all positions vectors

x � m1a1 � m2a2 � m3a3;

where ai 2 R3 and mi 2 Z. The ai are called lattice vectors and the matrix L,
whose columns consist of the ai, is referred to as the lattice matrix or lattice
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basis. For the continuum theory, we assume that at each point x in the crystal
there exists a tensor L�x� representing average values over microscopic re-
gions of lattice vectors which de®ne locally the position of the atoms. The
Cauchy-Born hypothesis (see ERICKSENRICKSEN [26]) establishes the behavior of the
lattice basis ®eld under an elastic deformation, and it asserts that an orien-
tation-preserving map u : X! X� leads to a new lattice basis L� given by

L��u�x�� � ru�x�L�x� x 2 X; �1:1�
where X � R3 represents the referential position of the crystal, and X� � u�X�
is the deformed con®guration.

Suppose that we start with a perfect, cubic crystal whose lattice basis ®eld
is identically the identity matrix I. It often happens that, after undergoing
some deformation, a new lattice basis is observed which does not coincide
with the basis (1.1) (see for example HILLILL [37]). This discrepancy is viewed as
the creation of defects. In [18, 19, 20], DAVINIAVINI & PARRYARRY proposed a con-
tinuum model for defectiveness and introduced the notion of defect-pre-
serving con®gurations. They studied pairs

u�X�; �L�x�� �;
where �L�x� stands for the matrix of lattice vectors at u�x�. A complete list of
measures of defectiveness, including a generalization of the classical Burger's
vectors, was given in [20]. These measures consist of line, surface, and bulk
integrals of certain functionals depending on �L�x� and on its spatial deriva-
tives; as it turns out, these functionals agree on con®gurations which are
elastically related, in the sense of (1.1). These measures of defectiveness
partition the set of con®gurations, or equivalently, deformations, into
equivalence classes, and the equivalence class containing the perfect cubic
crystal �X; I� is called the class of neutral deformations. This class was found
to be strictly larger than the class of elastic deformations �u�X�;ru�x��f g of a
perfect cubic crystal. Indeed, the lattice basis ®eld of a neutral deformation
may include a ``plastic'' part, accounting for the discrepancy between �L and
ru, in spite of the fact that the deformation is defect-preserving. FONSECAONSECA &
PARRYARRY [36] pursued this idea and found that neutral deformations may be
represented as

u�X�;rufrvgÿ1
� �

; �1:2�
where u and v belong to some appropriate Sobolev spaces, and det rv � 1
a.e. The function u is interpreted as the macroscopic deformation and v as the
plastic part of the deformation, or, simply, the slip. Within this framework,
the use of variational principles on neutral deformations was undertaken in
[36], under the assumption that, among all neutral deformations of a perfect
cubic crystal �X; I�, equilibria correspond to minima of some appropriate
energy. The energy functional studied in [36] is given by

E�u; v� :�
Z
X

W ru�x�frv�x�gÿ1
� �

dx; �1:3�
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where the bulk energy density W is the Helmholz free energy satisfying ap-
propriate symmetry properties, as considered by CHIPOTHIPOT & KINDERLEHRERINDERLEHRER

[15] in the study of nondefective elastic crystals. In [17], variational problems
consisting of minimizing E�u; v� over some appropriate subclass of neutral
deformations were referred to as variation of the domain since, formally, if v is
invertible, then (1.3) can be written asZ

v�X�

W �rw�y�� dy;

where w :� u � vÿ1. Several mathematical and physical di�culties were en-
countered within this model. That Sobolev functions with nonzero Jacobians
are not necessarily locally invertible prevented the use of the direct method of
the calculus of variations; in addition, bounds on L � rufrvgÿ1 in no way
imply bounds on ru and rv. Moreover, lower semicontinuity with respect to
an appropriate notion of weak convergence was established only under cer-
tain restrictive growth conditions on W (see [32]). Using di�erent analytical
methods, DACOROGNAACOROGNA & FONSECAONSECA [17] addressed the case where W � j � jr.
Existence of minima was obtained for r 3 N (N being the dimension of X),
but for r < N � 2 it was shown that

inf E�u; v� : u 2 W 1;1; v 2 W 1;1; u�x�j@X � x; detrv � 1 a:e:
� 	 � 0;

hence, the in®mum is not attained in spite of the convexity ofW . Note also that
this model associates zero energy to a rearrangement of a natural state of the
crystal, which is a particular type of neutral deformation where u is invertible,
v � u, so that �L � I, and the lattice vectors retain their orientation. We take
these results as an indication that the energy de®ned in (1.3) is ``too low'', in
that it neglects terms which may account for the presence of microscopic slips.

In physical terms, FONSECAONSECA & PARRYARRY [36] studied stress in equilibrium
con®gurations in the case where neutral deformations were admissible. Via
the theory of Young measures, it was shown that certain symmetry properties
of W imply that the average stress associated with an in®mizing sequence is a
hydrostatic pressure; hence, the crystal is weak at equilibrium, since it cannot
sustain non-zero averaged shear stresses. This result had been previously
obtained by CHIPOTHIPOT & KINDERLEHRERINDERLEHRER [15] in the case where only elastic
deformations were allowed to compete (see, also, a similar result of ERICKSENRICKSEN

[27] for elastic crystals). When defective con®gurations are admissible, the
latter result is regarded as an indication that frictional e�ects due to slips
should be represented in the energy functional to be minimized (see PARRYARRY

[39]). The question now is: how should we introduce an energy penalization
due to slips, or to more general defects? Intuitively, we expect that the total
energy should include a measure of the discrepancyZ

X

j�L�x� ÿ ru�x�j dx;
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or, more generally, some functional of ��L�x� ÿ ru�x��, depending on the
interaction between W and some surface energy associated with slips. Our
goal in this paper is to obtain speci®c information on the total e�ective
energy which incorporates bulk and surface terms accounting for slips. We
provide a description of the energy functional that should be minimized, in
the hope that this information will help determine the (meta)stable states, or
(local) minimizers (see Corollary 5.4, Proposition 5.6, and the subsequent
discussion for some partial results in this direction).

In recent years much attention has been given to variational methods
addressing discontinuous classes of functions with energies which include
both bulk and interfacial terms. Consider the functional

E�u� :�
Z
X

W �ru� dx �
Z

crack site

w��u�; m� dH Nÿ1; �1:4�

where HNÿ1 denotes the �N ÿ 1�-dimensional Hausdor� measure, m stands for
the unit normal to the crack (jump discontinuity) site, and �u� is the size, or
amplitude, of the jump discontinuity. Here there is a direct penalization of
jump discontinuities in u, and a precise energy is assigned to a macroscopic
slip via the density w. Functionals having this form have been studied in
relation to problems in fracture mechanics, phase transitions, image seg-
mentation and pattern recognition (see for example, [22, 31]). In this paper,
we discuss a mechanism for taking into account microscopic defects via limits
of con®gurations with (small) interfaces which di�use in the limit, disappear
at the macroscopic level, and contribute in some way to the e�ective ``bulk''
energy. This approach rests on a model proposed by DELEL PIEROIERO & OWENWEN [25],
which we now outline.

The theory of DELEL PIEROIERO & OWENWEN deals with three types of deformations.
For simplicity, we take the reference con®guration X to be a bounded, open
subset of RN and rephrase slightly the de®nitions in [25].

� Simple deformations are pairs �K; g� where K � X consists of a ®nite union
of Lipschitz sets of Hausdor� dimension N ÿ 1, and gjXnK is a one-to-one
di�erentiable function. We set rg :� ÿrgjXnK

� � vXnK .
� A triple �K; g;G� is a limit of simple deformations if K � X, g 2 L1�X;RN �,

G 2 L1�X;MN�N �, and there exists a sequence of simple deformations
�Kn; fn� such that

K :� [1
p�1
\1

n�p
Kn; lim

n!1 jgÿ fnjL1�X;RN � � 0;

lim
n!1 jGÿrfnjL1�X;MN�N � � 0:

�1:5�

� A triple �K; g;G� is a structured deformation if �K; g� is a simple defor-
mation, G : XnK !MN�N is continuous and there exists m > 0 such that
for all x 2 XnK;m < detG�x� 2 detrg�x�.

Here, and in what follows, Md�N stands for the vector space of d � N ma-
trices. One of the central results of the theory of DELEL PIEROIERO & OWENWEN is that
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every structured deformation is a limit of simple deformations (see Theorem
5.8 of [25]). We give two simple examples from [25] illustrating the conver-
gence in (1.5). First, we consider the so-called broken-ramp sequence. Let
N � 1, X � �0; 1�, K � ;, g�x� � 2x, and G�x� � 1. This structured defor-
mation can be approximated by

fn�x� :� x� k
n

for
k
n

2 x <
k � 1

n
; k � 0; . . . ; nÿ 1;

because fn�x� ! 2x and rfn�x� ! 1 in L1�0; 1�; hence, �0; 2; I� is a limit of
simple deformations. In terms of the total distributional derivative, we have
Dfn ! Dg in the sense of distributions, and

Dfn � 1�
Xnÿ1
k�1

1

n
dk=n;

where da is the Dirac mass at x � a. Thus, the part of Dfn corresponding to
jumps converges, in the sense of distributions, to the di�erence between G
and rg which, in this case, is the constant function 1. Note the relation
between

Pnÿ1
k�1

1
n dk=n and the Riemann sum for f �x� � 1.

The second example is particularly illuminating in the context of the
microscopic slip mentioned in (1.2), and is referred to as the deck of cards. Let
N � 3, X � �0; 1�3, K � ;, g�x� be the simple shear g�x� � g�x1; x2; x3�
:� �x1 � x3; x2; x3�, and G�x� � I. An approximating sequence is given by

fn�x� :� x1 � k
n
; x2; x3

� �
for

k
n

2 x3 <
k � 1

n
; k � 0; . . . ; nÿ 1:

Within the framework adopted in [18±20, 36], �g; I� represents a particular
type of rearrangement of the crystal, namely a slip, and it is a neutral de-
formation in the sense of (1.2), with u � g and v � g. The notion of micro-
scopic slip has the interpretation of a limit of decreasing displacements along
glide planes which are di�using throughout the body.

As the last example suggests, one may consider g as the macroscopic
deformation of a defective crystal with cubic symmetry, K as the macroscopic
crack site, and G�x� as the referential description of the averaged lattice basis
®eld in the deformed con®guration. The constructions of DELEL PIEROIERO & OWENWEN

support the interpretation of Gei (fe1; . . . ; eNg denotes the standard ortho-
normal basis in RN ) as being a limit of averages of discrete lattice bases. To
see this, approach a purely microscopic structured deformation �;; id; G� (id
stands for the identity deformation) by simple deformations �Kn; fn� such that
ffng are piecewise a�ne, and so rfnei is interpreted as a set of discrete lattice
bases for all atomic sites in the deformed state determined by �Kn; fn�. Then,
for every x 2 X,

lim
n!1

R
B x;�n�1�ÿ1� � rfn�y� ei dy

LN
ÿ
B
ÿ
x; �n� 1�ÿ1�� � G�x�ei; �1:6�

Bulk and Interfacial Energy 41



where B�x; a� denotes the ball with center x and radius a, and LN is the N -
dimensional Lebesgue measure. See Section 7c of [25] for details. In the
phenomenological theories of plasticity (see, for example [37]), G corresponds
to the elastic component F e of the total deformation gradient rg, i.e., G
represents the deformation of the lattice basis. The well-known elastic-plastic
decomposition takes the form

F � rg � G�Gÿ1rg� � F e F p;

where F p is the plastic component of the macroscopic gradient F .
In this paper we consider a framework for structured deformations which

encompasses the use of modern techniques in nonlinear analysis and the
calculus of variations. In particular, the principal ®elds are allowed to os-
cillate, in contrast with the notions of convergence considered in (1.5). We
work in the space SBV of functions of special bounded variation, introduced
by DEE GIORGIIORGI & AMBROSIOMBROSIO [21], which consists of integrable functions u
whose distributional derivatives are Radon measures l � la � ls, where la is
absolutely continuous with respect to LN , and ls is absolutely continuous
with respect to �N ÿ 1�-dimensional Hausdor� measure H Nÿ1 restricted to
the set where the function u experiences jump discontinuities. We denote la
by ruLN , ru being the Radon-Nikodym derivative of Du with respect to
LN . A structured deformation is represented by a pair �g;G�, where the
macroscopic deformation g is in SBV �X;Rd� and G is an integrable tensor
®eld in X. A theorem of ALBERTILBERTI [1] allows us to recover the Approximation
Theorem of DELEL PIEROIERO & OWENWEN (Theorem 5.8 of [25]). That is (see Theorem
2.12), given any structured deformation �g;G� there exist deformations un in
SBV �X;Rd� such that

un ! g in L1; run *
�

G in M�X�; �1:7�
where M�X� denotes the space of Radon measures on X. Given the lack of
information on the convergence of the jump set of un, this is a weaker
statement than the theorem of DELEL PIEROIERO & OWENWEN (see (1.5) and Theorem 5.8
in [25]). Assume, for simplicity, that g 2 W 1;1, i.e., there are no macroscopic
cracks. Dun consists of a part runL

N absolutely continuous with respect to
Lebesgue measure, and a singular part J�un� which is supported on the jump
set of un, denoted by S�un�. From (1.7) we have that Dun ! Dg in the sense of
distributions; hence, J�un� ! rgÿ G in the sense of distributions, and so the
di�erence between macroscopic and microscopic ``bulk'' is achieved by a
limit of singular measures. However, under certain additional conditions, a
compactness theorem of AMBROSIOMBROSIO [2] for SBV guarantees that rg � G a.e.
in X, unless HNÿ1�S�un�� ! 1, i.e., unless there is a di�usion of cracks whose
amplitude is tending to zero (see Remark 2.13 for details; also see Theorem
5.10 of [25]). This fact prevents the energy density w from being bounded
away from zero, if we are to consider rg4G on a set of positive measure,
together with the convergence (1.7).

With a function u 2 SBV , we associate an energy functional of the form
E�u� introduced in (1.4). We de®ne the energy of a structured deformation
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�g;G� as the most economical way to build up the deformation using the
approximations in SBV , i.e.,

I�g;G� :� inf
fung

lim inf
n!1 E�un� : un ! �g;G� in the sense of (1.7)

n o
: �1:8�

Clearly, this class of admissible sequences includes the limits of simple de-
formations in the sense of (1.5) provided g and G are su�ciently smooth (see
[25, Theorem 5.8]).

The energy (1.8) is in relaxed form due to its own de®nition, and the ®rst
question we ask concerns the description of the resulting interaction between
the initial interfacial and bulk densities, w and W , appearing in E. For ex-
ample, if the macroscopic deformation g is smooth and rg4G, as mentioned
above, this discrepancy is realized by the di�usion of jumps in the approxi-
mating sequences. Thus, the resulting energy should involve a new bulk
density depending on rg and G, via some combination of the initial densities
W and w. Characterizing this new function amounts to ®nding an integral
representation for I . Integral representations for similar relaxed energy
functionals have been the focus of extensive research in the calculus of
variations over the past decade; for example, see [5, 7, 9, 12, 14, 34, 35]. In
these cases, relaxation of E is taken with respect to the L1 (BV weak) to-
pology, whereas in our present situation we relax with respect to a more
restrictive topology where gradients are constrained.

In the context of defective crystals, we interpret (1.7) and (1.8) as ameans to
realize the deformed crystal by piecing together elastic crystals at a ®ner and
®ner scale; that is, the creation of the non-trivial microstructure is achieved
naturally by rearrangements within the crystal at a very ®ne scale. We expect
that associated with this process there is an interfacial energy, in addition to the
bulk (Helmholz free) energy, and we prescribe that the overall energy of the
deformation should be lowest among all such possible rearrangements which
give rise to the samemacroscopic andmicroscopic con®guration. In this paper,
we characterize this total energy. In doing so, we are not taking the particular
view that the integral in (1.4) which contains w corresponds to energy which is
dissipated during the structured deformation, nor are we ruling out such an
interpretation. The functional (1.8) is the energy associated with deforming the
crystal, and it may be that energy corresponding to small interfaces is stored in
the deformed con®guration. For now, we leave open these possibilities.

It is well known that the bulk energy W (the Helmholtz free energy)
associated with a crystal may have potential wells (at matrices where W
vanishes) centered at matrices of a material-symmetry (point) group (see [15,
26, 30]). Thus, it is desirable not to impose a coercivity condition on W but
only a growth condition, 0 2 W �A� 2 C�1� jAjp� for some p 3 1, for some
constant C, and for all A 2Md�N . For p > 1, we require admissible sequences
to satisfy run * G in Lp. This, of course, follows from (1.7) if W is
p-coercive, i.e., if there exists a constant c such that cjAjp 2 W �A� for all
A 2Md�N , and if limn E�un� <1. On the other hand, if p � 1, and even
under the coercivity hypothesis, the sequence frung may develop concen-
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trations. To accommodate this fact, we assume that run *
�

m, where
m 2M�X� and dm

dLN � G. Based on the above considerations, for

W : Md�N ! �0;1� and w : Rd � SNÿ1 ! �0;1� continuous functions, where
SNÿ1 :� fx 2 RN : jxj � 1g, we consider the following energies:

I0�g;G;X� :� inf
fung

(
lim inf

n!1

"Z
X

W �run� dx�
Z

S�un�\X

w��un�; mun� dH Nÿ1
#

: un 2 SBV �X;Rd�;

un ! g in L1�X;Rd�;run *
�

m;m 2M�X�; dm
dLN � G

)
;

and for p 3 1,

Ip�g;G;X� :� inf
fung

(
lim inf

n!1

"Z
X

W �run� dx�
Z

S�un�\X

w��un�; mun� dH Nÿ1
#

: un 2 SBV �X;Rd�;

un ! g in L1�X;Rd�;run *
�

G; sup
n
jrunjLp�X;Md�N � <1

)
:

The main results of this paper are the following (see Theorems 2.16 and
2.17). Assume that the initial bulk density is Lipschitz continuous, p � 1, w
has linear growth, is subadditive, and is homogeneous of degree 1. Then the
following integral representations for I1 and I0 hold:

I1�g;G;X� �
Z
X

H1�rg�x�;G�x�� dx�
Z

S�g�\X

h1��g�; mg� dH Nÿ1;

I0�g;G;X� �
Z
X

H1�rg�x�;G�x�� dx� ls�X�; �1:9�

for some Radon measure ls absolutely continuous with respect to
HNÿ1bS�g�. The new bulk and crack density are de®ned below. If p > 1, then,
under some additional hypotheses, the following representation for Ip holds:

Ip�g;G;X� �
Z
X

Hp�rg�x�;G�x�� dx�
Z

S�g�

h��g�� dH Nÿ1; �1:10�

where, for A;B 2Md�N , k 2 Rd , m 2 SNÿ1,

Hp�A;B� :� inf
u

�Z
Q

W �ru� dx�
Z

S�u�\Q

w��u�; m� dH Nÿ1

: u 2 SBV �Q;Rd�; uj@Q � Ax;

jruj 2 Lp�Q�;
Z
Q

ru dx � B
�
;

R. CHOKSIHOKSI & I. FONSECAONSECA44



h1�k; m� :� inf
u

� Z
Qm

W 1�ru� dx�
Z

S�u�\Q

w��u�; mu� dH Nÿ1

: u 2 SBV �Qm;R
d�; uj@Qm

� uk;m;

Z
Qm

ru dx � 0

�
;

h�k� : � inf
u

� Z
S�u�\Q

w��u�; mu� dH Nÿ1 : u 2 SBV �Q;RD�;

uj@Q � uk;eN ;ru�x� � 0 LN -a.e.

�
:

Here m denotes the normal to the jump set S�u�, eN is the standard basis
vector �0; :::0; 1� 2 RN , Q denotes the open unit cube �ÿ 1

2 ;
1
2�N , and Qm, uk;m are

de®ned in (2.1) and (2.2). The recession function W 1 of W (see (2.11)), cap-
tures the linear behavior of W at in®nity. The new bulk density Hp is es-
sentially the same for all p 3 1, and it exhibits the interaction between the
initial bulk density W and the initial interfacial density w�k; m�. This is hardly
surprising in view of the fact that at points away from the macro-fractures
S�g�, the jumps in the un are di�using as their amplitudes tend to zero (see
Remark 2.13). If admissible sequences are taken so that fjrunjg is bounded
in Lp, p > 1, then the new crack (interfacial) density h is independent of W .
Loosely speaking, in these cases it is cheaper to approximate jumps with
jumps rather than with sharp gradients. If p � 1 and if we only require L1

bounds on fjrunjg, then there is a contribution of W , via W 1, in the new
crack density h1.

Just as it was important not to assume coercivity on W , coercivity and
homogeneity of w may rule out certain important physical settings. If we
include the extra condition on admissible sequences that they must remain
bounded in the BV norm, then we do not have to assume coercivity, while, if
p > 1, we may also relax the homogeneity assumption. In this case, in the new
bulk H the density w is replaced by w0, where

w0�k; m� :� lim sup
t!0�

w�tk; m�
t

:

It is the linear behavior in ®xed directions at (amplitude equal to) zero of the
initial interfacial energy density w which contributes to the new bulk density.

As it turns out, using our results we may recover some of the recently
obtained integral representations for relaxed energies (in the L1 topology) of
functionals consisting of bulk and interfacial terms. In particular, by taking
the in®mum over all G 2 L1�X;Md�N � on both sides of (1.9) and (1.10), we
obtain some of the representations of [7, 12]. Also, in the context of crys-
talline solids, for a given macroscopic deformation g 2 W 1;1�X;Rd� the en-
ergy associated with the optimal microstructure is given by the relaxation of
E�g� in the L1 (BV weak) topology. Moreover, if we assume coercivity on W ,
the direct methods of the calculus of variations can be implemented to show
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that the in®mum over all microstructures is achieved (for details, see Sec-
tion 5).

Lastly, we remark that in the SBV setting, we have the following analogue
of (1.6). Ifrun * G in Lp, then there exists a sequence m�n� such that for a.e. x

lim
n!1

R
B x;nÿ1� � rum�n��y�ei dy

LN B x; nÿ1� �� � � G�x�ei;

and so, as before, we interpret the lattice basis G�x� as a limit of averages of
lattice bases resulting from elastic deformations.

This paper is organized as follows: in Section 2 we brie¯y review prop-
erties of functions of bounded variation, we introduce the notion of struc-
tured deformations (see De®nition 2.11), we state the main representation
theorems, Theorems 2.16 and 2.17, and we prove that Ip�g;G; �� is a ®nite
Radon measure (see Proposition 2.22). Section 3 is dedicated to the charac-
terization of the e�ective bulk energy Hp, i.e., the Radon-Nikodym derivative
of Ip�g;G; �� with respect to LN , while in Section 4 we identify the �N ÿ 1�-
dimensional part of that measure; precisely, we obtain a characterization of
the new surface energy density hp. Finally, in Section 5 we study some
properties of Hp and hp, and we relate our relaxation result to others previ-
ously obtained (see Corollary 5.4 and Proposition 5.6).

2. The Spaces BV, SBV, and SD. Statement of the Main Results

Let N and d denote positive integers. Let X be an open, bounded subset of
RN , �X its closure, and let Q denote the open unit cube �ÿ 1

2 ;
1
2�N and Q�a; r� the

open cube centered at a with side length r, i.e., Q�a; r� � a� rQ. We identify
the space Md�N of d � N matrices with RdN , jxj denotes the standard Eu-
clidean norm of x, and jf jLp is the Lp norm of a function f . For integrable
functions un; u : X! Rd , un *

�
u stands for weak star convergence in the

sense of measures, i.e., for any / 2 C0�X�,Z
X

/�x�un�x� dx!
Z
X

/�x�u�x� dx:

LetM�X� stand for the space of Radon measures on X. We allow for the fact
that l 2M�X� may be matrix valued, and denote by jjljj its total variation
measure. Throughout this paper, C �or C0� is a generic constant which may
vary from line to line. Let m 2 SNÿ1, and let Qm be an open unit cube centered
at the origin with two of its faces normal to m; i.e.,

Qm :� x 2 RN : jx � mij < 1
2; jx � mj < 1

2; i � 1; . . . ;N ÿ 1
� 	 �2:1�

for some orthonormal basis fm1; m2; . . . ; mNÿ1; mg of RN . We write
Qm�a; r� :� a� rQm, a 2 RN ; r > 0. Given k 2 Rd , let uk;m be the Rd -valued
function de®ned in Qm by
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uk;m�x� :� 0 if ÿ 1
2 2 x � m < 0,

k if 0 2 x � m < 1
2 :

�
�2:2�

We state some basic de®nitions and properties of the space BV of func-
tions of bounded variation and of the space SBV of functions of special
bounded variation, which will be needed in the sequel. For more details, see
AMBROSIOMBROSIO [2], EVANSVANS & GARIEPYARIEPY [28], FEDEREREDERER [29].

De®nition 2.1. A function u 2 L1�X; Rd� is said to be of bounded variation,
u 2 BV �X; Rd�; if for all i 2 f1; . . . ; dg; j 2 f1; . . . ;Ng; there exists a ®nite
Radon measure lij such thatZ

X

ui�x� @w
@xj
�x� dx � ÿ

Z
X

w�x� dlij

for every w 2 C1
0�X�. The distributional derivative Du is the matrix-valued

measure with components lij. We denote by jjDujj the total variation of the
gradient measure, i.e., jjDujj�X� :�Pd

i�1 jjDuijj�X� where

jjDuijj�X� :� sup
w

Z
X

ui div w dx : w 2 C1
0�X;RN �; jwj1 2 1

8<:
9=;:

The space BV is a Banach space equipped with the norm

jujBV �X;Rd � :� jujL1�X;Rd � � jjDujj�X�;
and it is well known that C10 �X; Rd� is dense in BV in the following sense.

Proposition 2.2. Let u 2 BV �X�. There exist un 2 C10 �X� such that

lim
n!1

Z
X

jun ÿ uj dx � 0; lim
n!1 jjDunjj�X� � jjDujj�X�:

De®nition 2.3. A set A � X is said to be of ®nite perimeter in X if vA 2 BV �X�,
where vA denotes the characteristic function of A. The perimeter of A in X is
de®ned by

PerX�A� :� jjDvAjj�X� � sup

Z
A

div w �x� dx : w 2 C1
0�X; RN �; jwj1 2 1

8<:
9=;:

Given u 2 BV �X; Rd�, the approximate upper and lower limit of each
component ui, i 2 f1; . . . ; dg, are given by

u�i �x� :� inf t 2 R : lim
e!0�

1

eN L
N fui > tg \ Q�x; e�� � � 0

� �
;

uÿi �x� :� sup t 2 R : lim
e!0�

1

eN L
N fui < tg \ Q�x; e�� � � 0

� �
:

Bulk and Interfacial Energy 47



The set

S�u� :�
[d
i�1

x 2 X : uÿi �x� < u�i �x�
� 	

is called the singular set, or jump set of u, and the value ~u�x� :� 1
2�u��x��uÿ�x�� is de®ned for every x 2 X. It is well known that S�u� is �N ÿ 1�-

recti®able, i.e.,

S�u� �
[1
n�1

Kn [ E;

where H Nÿ1�E� � 0 and Kn is a compact subset of a C1 hypersurface for each
n. If u 2 BV �X; RD�, we write

Du � ruLN � Dsu;

where ru is the Radon-Nikodym derivative of Du with respect to LN , and
Dsu and LN are mutually singular.

Theorem 2.4. If u 2 BV �X; Rd�, then
(i) for LN -a.e. x 2 X,

lim
e!0�

1

eN

Z
Q�x;e�

ju�y� ÿ u�x� ÿ ru�x� � �y ÿ x�j N
Nÿ1 dy

8><>:
9>=>;

Nÿ1
N

� 0;

(ii) for HNÿ1-a.e. x 2 S�u�, there exists a unit vector ��x� 2 SNÿ1; normal to S�u� at
x, and there exist vectors uÿ�x�; u��x� 2 Rd, such that

lim
e!0�

1

eN

Z
fy2Qm�x��x;e�:�yÿx��m�x�>0g

ju�y� ÿ u��x�j
N

Nÿ1 dy � 0;

lim
e!0�

1

eN

Z
fy2Qm�x��x;e�:�yÿx��m�x�<0g

ju�y� ÿ uÿ�x�j
N

Nÿ1 dy � 0;

(iii) for H Nÿ1-a.e. x0 2 X n S�u�

lim
e!0�

1

eN

Z
Q�x0;e�

ju�x� ÿ ~u�x0�j dx � 0:

We remark that, in general, �ui��4�u��i. We denote by �u��x� the jump of
u at x, de®ned by

�u��x� :� u��x� ÿ uÿ�x�:
If u 2 BV �X; Rd�, then the measure Du may be represented as

Du � ruLN � �u� ÿ uÿ� 
 mH Nÿ1bS�u� � C�u�; �2:3�
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where ru is the density of the absolutely continuous part of Du with respect
toLN , and C�u� is the so-called Cantor part. The three measures in (2.3) are
mutually singular: if H Nÿ1�B� < �1, then jjC�u�jj�B� � 0, and there exists a
Borel set E such that LN �E� � 0 and jjC�u�jj�X � � jjC�u�jj�X \ E� for all
Borel sets X � X.

The following subspace of BV was introduced by DEE GIORGIIORGI & AMBROSIOMBROSIO

[21].

De®nition 2.5. A function u 2 BV �X;Rd� is said to be of special bounded
variation if jC�u�j � 0. We write u 2 SBV �X; Rd�.

Next we state a generalization of the Besicovitch Di�erentiation Theo-
rem, due to AMBROSIOMBROSIO & DALAL MASOASO ([5, Proposition 2.2]).

Theorem 2.6. If k and l are Radon measures in X; l 3 0; then there exists a
Borel set E � X such that l�E� � 0, and for every x 2 supp l n E

dk
dl
�x� :� lim

e!0�

k�x� eC�
l�x� eC�

exists and is ®nite whenever C is a bounded, convex, open set containing the
origin.

The following SBV compactness theorem of AMBROSIOMBROSIO (see [2]) will im-
pose restrictions on the growth conditions of bulk and interfacial energies
that we will consider in the sequel (see Remark 2.13).

Theorem 2.7. Let U : �0;1� ! R and H : �0;1� ! R be respectively convex
and concave, be nondecreasing, and satisfy

lim
t!1

U�t�
t
� 1; lim

t!0�

H�t�
t
� 1:

Let fung be a sequence of functions in SBV �X;Rd� \ L1�X;Rd� such that
supn junj1 <1 and

sup
n

Z
X

8<: U�jrunj� dx�
Z

S�un�

H�j�un�j� dHNÿ1

9=; <1:

Then there exists a subsequence funig and a function u 2 SBV �X;Rd� such that
uni ! u strongly in L1; runi * ru weakly in L1:

The next theorem was obtained by ALBERTILBERTI [1].

Theorem 2.8. Let f 2 L1�X;Rd�N �. There exists u 2 SBV �X;Rd� and a Borel
function g : X! Rd�N such that

Du � f �LN � g � H Nÿ1bS�u�;
Z

S�u�\X

jgj dH Nÿ1 2 Cjf jL1�X;Rd�N �; �2:4�
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where C depends only on N .

The next lemma is a simple corollary of the co-area formula (see EVANSVANS &
GARIEPYARIEPY [28]), and a similar resultmay be found in [12, Proposition 3.1, Step 1].

Lemma 2.9. Let u 2 BV �X;Rd�. There exist piecewise constant functions un

(thus un 2 SBV ) such that un ! u in L1�X;Rd� and

jjDujj�X� � lim
n!1 jjDunjj�X� � lim

n!1

Z
S�un�

j�un��x�j dH Nÿ1�x�:

Proof. By Proposition 2.2 we may assume, without loss of generality, that u
is a C10 scalar-valued function. Further, suppose that u is nonnegative; the
general case follows by considering the positive and negative parts of u. Let
Et :� fx 2 X : u�x� > tg and de®ne

un�x� :�
X1
i�0

Xnÿ1
j�1

1

n
vE i�j=n� � �x�:

This sum is ®nite, and it is easy to check that un ! u in L1�X�. Also,

jjDunjj�X� 2
X1
i�0

Xnÿ1
j�1

1

n
jjDvE i�j=n� � jj�X�;

where the right-hand side of this formula is simply a Riemann sum forR1
0 jjDvEt

jj�X� dt, which, by the co-area formula, equals jjDujj�X�. Thus, by
the lower semicontinuity of the total variation and the fact that u 2 C10 �RN �,
we have

jjDujj�X� 2 lim inf
n!1 jjDunjj�X� 2 jjDujj�X�: (

Lemma 2.10. Let u 2 BV �Q;Rd� satisfy uj@Q � u0 for some u0 2 C�Q;Rd�.
Then, for every e > 0 there exists 0 < re < 1 such that re ! 1ÿ as e! 0; andZ

@Q�0;re�

ju�x� ÿ u0�x�j dHNÿ1�x� < e:

Proof.Without loss of generality, assume that d � 1. Let tr u denote the trace
operator. If u 2 BV �Q�, then we have (see ZIEMERIEMER [41, Theorem 5.10.7])Z

@Q

jtr uj dHNÿ1 2 CjujBV �Q� � C
�
jjDujj�Q� �

Z
Q

juj dx
�

�2:5�

for some constant C. Fix e > 0. Since jjDujj is a Radon measure, we may
choose d such that C > d > 0 and

CjjDujj QnQ�0; 1ÿ 2d�� � < e
16
: �2:6�
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Let ud 2 C1� �Q� be such that 0 2 ud 2 1, ud�x� � 0 if x 2 Q�0; 1ÿ d�,
ud�x� � 1 if x 2 @Q, and jrudjL1 � O dÿ1

ÿ �
. Given k 2 �0; 1� de®ne

uk�x� :� u�kx� for x 2 Q. Clearly, for a.e. x 2 Q, it follows that u�kx� ! u�x�
as k! 1ÿ. This, combined with the fact that jukjBV is uniformly bounded,
implies that uk ! u in L1. Now, choose k � k�d; e� 2 �0; 1� such that

k > max
1ÿ 2d
1ÿ d

; 21=N
� �

;

Z
@Q

ju0�kx� ÿ u0�x�j dHNÿ1 <
e
4
;

C
d

Z
Q

ju�kx� ÿ u�x�j dx <
e
4
:

�2:7�

We haveZ
@Q�0;k�

jtr u�x� ÿ u0�x�j dHNÿ1� kNÿ1
Z
@Q

jtr u�kx� ÿ u0�kx�j dHNÿ1

2 kNÿ1
Z
@Q

jtr ud�u�kx� ÿ u0�x��� �j dHNÿ1

� kNÿ1
Z
@Q

ju0�kx� ÿ u0�x�j dHNÿ1:

By (2.5) and �2:7�2 we haveZ
@Q�0;k�

jtr u�x� ÿ u0�x�j dHNÿ1 2 C
�
jjD�ud�uk ÿ u��jj�Q� �

Z
Q

ju�kx� ÿ u�x�j dx
�
� e
4

2 C
�
jjDukjj QnQ�0; 1ÿ d�� � � jjDujj QnQ�0; 1ÿ d�� �

� 1

d

Z
fx:1ÿd<jxj<1g

ju�kx� ÿ u�x�j dx
�
� e

2
; (2.8)

and by �2:7�1,
jjDukjj QnQ�0; 1ÿ d�� � � kÿN jjDujj Q�0; k�nQ�0; k�1ÿ d��� �

2 2jjDujj QnQ�0; 1ÿ 2d�� �:

Hence (2.6), �2:7�3 and (2.8) yieldZ
@Q�0;k�

ju�x� ÿ u0�x�j dHNÿ1 < e: (

Now we introduce the space of structured deformations within the SBV
framework.
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De®nition 2.11. The space SD�X� of structured deformations consists of pairs
�g;G� where

g 2 SBV �X; Rd�; G 2 L1�X; Md�N �:

We use the result of ALBERTILBERTI (Theorem 2.8) to recover the Approximation
Theorem of DELEL PIEROIERO & OWENWEN (Theorem 5.8 of [25]).

Theorem 2.12. Let �g;G� 2 SD�X�. Then there exist un 2 SBV �X;Rd� such
that

un ! g in L1�X;Rd�; run *
�

G in M�X�: �2:9�

Proof. We construct a sequence fung such that for every n, run � G LN -a.e.
By Theorem 2.8, there exists h 2 SBV �X;Rd� such that

rh � G LN-a:e:

Let f~ung be a piecewise constant, L1-approximation of gÿh on a rectangular
grid, so that

~un ! gÿ h in L1�X;Rd�; r~un � 0; LN-a.e.

Set un :� ~un � h: Clearly un 2 SBV �X;Rd�, un ! g in L1�X;Rd�, and for all n,
run � rh � G LN -a.e. (

Remark 2.13. Note that we must have Dsun ! �rgÿ G�LN � Dsg in the
sense of distributions and so, if rg4G, we are forced, regardless of whether
or not g 2 W 1;1, to consider in (2.9) functions un 2 SBV nW 1;1. Moreover,
suppose that jrunj are uniformly bounded in Lp; p > 1. This is the case when
fung is an admissible sequence for the energy Ip with p > 1 (see (2.10)). Then
Theorem 2.7 implies that in any open subset E of X such that rg�x�4G�x�
for a.e. x 2 E,

H Nÿ1 S�un� \ E� � ! 1 as n!1:

The jump discontinuities of un di�use throughout the part of the body where
rg�x�4G�x� which, in the spirit of DELEL PIEROIERO & OWENWEN [25], we call the
micro-fractured zone. Moreover, Theorem 2.7 and Lemma 2.20 prevent us
from considering surface energy densities with sublinear growth in the case
where W has superlinear growth. Due to these considerations, in this paper
we restrict our attention to interfacial energy densities w with linear growth at
in®nity.

De®nition 2.14. Let W : Md�N ! �0;1� and w : Rd � SNÿ1 ! �0;1� be
continuous functions. Given �g;G� 2 SD�X�; we de®ne the following energies:
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I0�g;G;X� :� inf
fung

(
lim inf

n!1

"Z
X

W �run� dx �
Z

S�un�\X

w��un�; mun� dH Nÿ1
#

: un 2 SBV �X;Rd�;

un ! g in L1�X;Rd�;run *
�

m;m 2M�X�; dm
dLN � G

)
:

For p 3 1, set

Ip�g;G;X� :� inf
fung

�
lim inf

n!1

"Z
X

W �run� dx �
Z

S�un�\X

w��un�; mun� dH Nÿ1
#

: un 2 SBV �X;Rd�; un ! g in L1�X;Rd�;

run *
�

G; sup
n
jrunjLp�X;Md�N � <1

)
; �2:10�

and if p > 1, g 2 SBV �X;Rd� \ L1�X;Rd�; we de®ne

I1p �g;G;X� :� inf
fung

(
lim inf

n!1

"Z
X

W �run� dx�
Z

S�un�\X

w��un�; mun� dH Nÿ1
#

: un 2 SBV �X;Rd�; un ! g in L1�X;Rd�;

sup
n
junjL1�X;Rd �<1;run *

�
G; sup

n
jrunjLp�X;Md�N �<1

)
:

Remark 2.15. The uniform Lp bounds on admissible sequences frung allow
us to consider bulk densities W which may not be coercive, and for p > 1 they
are equivalent to requiring that run * ru in Lp, while, in view of the
Principle of Uniform Boundedness, these bounds are redundant in the case
p � 1. The uniform L1 bounds for fung are useful for proving that the energy
is a Radon measure (see Lemma 2.21 and Proposition 2.22). However, using
a truncation argument in Lemma 2.20 for p > 1 and with
g 2 SBV �X;Rd� \ L1�X;Rd�, we have Ip�g;G;X� � I1p �g;G;X�, and so we
may work simply with Ip. Also note that, by virtue of the particular con-
struction of fung in Theorem 2.12, I0,Ip, and I1p are well de®ned. Finally, we
may avoid a coercivity assumption on w (cf. �H2�) by requiring admissible
sequences to satisfy supn jjDunjj�X� <1 (see Remark 3.3 for details).

Let p31, W : Md�N ! �0;�1� and w : Rd � SNÿ1 ! �0;�1� be contin-
uous functions satisfying the hypotheses:

�H1�p There exists a constant C such that

jW �A� ÿ W �B�j 2 CjAÿ Bj 1� jAjpÿ1 � jBjpÿ1
� �
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for any A;B 2Md�N .

(H2) There exist constants c1;C1 > 0, such that for all �k; m� 2 Rd � SNÿ1,

c1jkj 2 w�k; m� 2 C1jkj:

(H3) w��; m� is positively homogeneous of degree 1:

w�tk; m� � tw�k; m�
for all t > 0; �k; m� 2 Rd � SNÿ1,

(H4) w is subadditive, i.e., for all k1; k2 2 Rd and m 2 SNÿ1,

w�k1 � k2; m� 2 w�k1; m� � w�k2; m�:
We recall that the recession function of W is de®ned by

W 1�A� :� lim sup
t!�1

W �tA�
t

: �2:11�

If p � 1; then we assume further that

(H5) There exist constants c; L > 0; 0 < m < 1, such that

W 1�A� ÿ W �tA�
t

���� ���� 2 c
1

tm

for every A 2Md�N with jAj � 1, and for all t > 0 such that t > L.

It can be shown that if W is Lipschitz continuous, then W 1 is Lipschitz
continuous and positively homogeneous of degree 1 (see [35]).

We now state two of the main results of this paper.

Theorem 2.16. Let �g;G� 2 SD�X� and assume that W and w satisfy hypotheses
�H1�1, �H2�±�H5�. Then

I1�g;G;X� �
Z
X

H1�rg�x�;G�x�� dx�
Z

S�g�

h1��g�; mg� dH Nÿ1;

where, for A;B 2Md�N ,

H1�A;B� :� inf
u

(Z
Q

W �ru� dx�
Z

S�u�\Q

w��u�; m� dH Nÿ1 : u 2 SBV �Q;Rd�;

uj@Q � Ax;
Z
Q

ru dx � B

)
;

and for k 2 Rd , m 2 SNÿ1,
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h1�k; m� :� inf
u

( Z
Qm

W 1�ru� dx�
Z

S�u�

w��u�; mu� dH Nÿ1 : �2:12�

u 2 SBV �Qm;R
d�; uj@Qm

� uk;m;

Z
Qm

ru dx � 0

)
: �2:13�

Moreover,

I0�g;G;X� �
Z
X

H1�rg�x�;G�x�� dx� ls�X� �2:14�

for some Radon measure ls absolutely continuous with respect to HNÿ1bS�g�.

Theorem 2.17. Let p > 1, let �g;G� 2 SD�X� with G 2 Lp�X;Md�N �; and let W
and w satisfy hypotheses �H1�p, �H2�±�H4�. Then

Ip�g;G;X� �
Z
X

Hp�rg�x�;G�x�� dx�
Z

S�g�

h��g�� dHNÿ1; �2:15�

where, for A;B 2Md�N ,

Hp�A;B� :� inf
u

(Z
Q

W �ru� dx�
Z

S�u�\Q

w��u�; m� dH Nÿ1

: u 2 SBV �Q;Rd�; uj@Q � Ax;

jruj 2 Lp�Q�;
Z
Q

ru dx � B

)
; �2:16�

and for k 2 Rd ,

h�k� :� inf
u

( Z
S�u�

w��u�; mu� dH Nÿ1 : u 2 SBV �Q;Rd�;

uj@Q � uk;eN ; ru�x� � 0 LN -a:e:

)
: �2:17�

Note that in the de®nition of h, Q may be replaced by any Qm, for
m 2 SNÿ1, i.e., for p > 1 the new relaxed crack density is isotropic. As was
mentioned in the Introduction, it is possible to relax the assumptions of
coercivity and homogeneity on w, still obtaining the representation of The-
orem 2.17. For simplicity, we prove the theorem under the original hypoth-
eses and refer the reader to Remark 3.3 for the appropriate modi®cations.

We divide the proofs of Theorems 2.16 and 2.17 into several parts found
in the remainder of this section, as well as in Sects. 3 and 4. First, using
properties of I1p we show that I0�g;G; �� and Ip�g;G; �� are non-negative
Radon measures, absolutely continuous with respect to LN � jDsgj. Then,
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using techniques such as the blow up method (see for example, [7, 34, 35]), we
proceed to characterize the densities

dI�g;G; ��
dLN ;

dI�g;G; ��
d�jg� ÿ gÿjH Nÿ1bS�g�� :

The next lemma provides an upper bound for the energies. Let I denote either
Ip (p 3 1) or I0.

Lemma 2.18. Let W : Md�N ! �0;�1� be a continuous function; and let
w : Rd � SNÿ1 ! �0;�1� be continuous with 0 2 w�k; m� 2 Cjkj for some
constant independent of k; m. Then for every �g;G� 2 SD�X� and p > 1

I�g;G;X� 2 C
Z
X

W �G� dx� jGjL1�X;Md�N � � jjDgjj�X�
8<:

9=;;
where C is a constant independent of X.

Proof. By Theorem 2.8 there exists h 2 SBV �X;Rd� such that rh � G
LN -a.e. and jjDhjj�X� 2 C1jjGjjL1 . By Lemma 2.9 there exist f~ung piecewise
constant such that

~un ! gÿ h; jjD~unjj�X� ! jjDgÿ Dhjj�X�:
De®ne un :� ~un � h. Clearly run�x� � G�x� for LN -a.e. x and un ! g in L1.
Thus

I�g;G;X� 2 lim inf
n

Z
X

8<: W �run�x�� dx�
Z

S�un�

w��un��x�; mun�x�� dHNÿ1�x�
9=;

2 C lim inf
n

Z
X

W �G� dx� jjDunjj�X�
8<:

9=;
2 C lim inf

n

Z
X

W �G� dx� jjD~unjj�X� � jGjL1
8<:

9=;
� C

Z
X

W �G� dx� jjDgÿ Dhjj�X� � jGjL1
8<:

9=;
2 C

Z
X

W �G� dx� jGjL1 � jjDgjj�X�
8<:

9=;: (

Remark 2.19. Lemma 2.18 implies that for all �g;G� 2 SD�X�,
Ip�g;G;X� <1 (and also I0�g;G;X� if p � 1) provided that

R
X W �G� dx <1.
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Before we establish that Ip�g;G; �� and I0�g;G; �� are traces of Radon
measures, we prove that, for g 2 L1�X;Rd�, the additional L1 bounds on
admissible sequences do not increase the energy Ip, p > 1.

Lemma 2.20. Let p > 1, g 2 SBV �X;Rd� \ L1�X;Rd�; and assume that �H1�p
and �H2� hold. If �g;G� 2 SD�X�, then

Ip�g;G;X� � I1p �g;G;X�:
Proof. Clearly, it su�ces to prove that I1p �g;G;X� 2 Ip�g;G;X�. We apply a
truncation argument in the same spirit as in [7] (see Lemma 3.7) and [31] (see
Proposition 2.8). Let /i 2 C10 �Rd ;Rd� be such that

/i�x� :� x if jxj< ei,
0 if jxj3 ei�1,

�
and jr/ijL1 2 1. Since g 2 L1�X;Rd�, there exists an i0 such that for i 3 i0,
jgj1 2 ei and /i�g� � g LN a.e. Let i 3 i0 and de®ne wi

n�x� :� /i�un�x��,
where un ! g in L1, run * G in Lp, and

lim
n

�Z
X

W �run� dx�
Z

S�un�

w��un��x�; mun�x�� dHNÿ1
�

2 Ip�g;G;X� � e

for ®xed e > 0. Clearly, jwi
njL1 2 ei, S�wi

n� � S�un�, and by the chain rule for
C1 functions composed with BV functions, it follows that rwi

n � r/i�un�
run L

N -a.e. Moreover, we have

jwi
n�x� ÿ g�x�jL1 � j/i�un�x�� ÿ /i�g�x��jL1 2 jun�x� ÿ g�x�jL1 :

Next, we consider the convergence of rwi
n as n!1. Note that

jrwi
n�x�jLp 2 jrun�x�jLp 2 C, for C independent of n. Let n 2 C0�X�; thenZ
X

n�x�rwi
n�x� dx �

Z
fx:junj<eig

n�x�run�x� dx�
Z

fx:ei<junj<ei�1g

n�x�r/i�un�run�x� dx

�:

Z
X

n�x�run�x� dx� En;

where jEnj 2 2jnjL1
R
fx:junj>eig jrun�x�j dx. Since jgjL1 < ei and un ! g in L1,

due to the equi-integrability of the frung we have

jEnj ! 0 as n!1;
and we conclude thatZ

X

n�x�rwi
n�x� dx!

Z
X

n�x�G�x� dx as n!1;

i.e., rwi
n *
�

G as n!1. Finally, we compare the energies. Using �H1�p and
�H2� we have
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Z
X

W �rwi
n� dx �

Z
S�wi

n�

w��wi
n��x�; mwi

n
�x�� dH Nÿ1

�
Z

fx:junj<eig

W �run�x�� dx�
Z

fx:ei<junj<ei�1g

W �r/i�un�run�x�� dx

�
Z

fx:junj>ei�1g

W �0� dx�
Z

S�un�\fx:junj<eig

w��un��x�; mun�x�� dHNÿ1

�
Z

S�un�\fx:ei<junj<ei�1g

w��wi
n��x�; mwi

n
�x�� dH Nÿ1

2
Z
X

W �run�x�� dx�
Z

S�un�

w��un��x�; mun�x�� dH Nÿ1 � CjunjL1
ei�1

� C
Z

fx:ei<junj<ei�1g

�1� jrunjp� dx

� C
Z

S�un�\fx:ei<junj<ei�1g

j�un�j dHNÿ1;

where we have used the fact that LN �fx : junj > ei�1g� 2 eÿ�i�1�junjL1 . Next,
for M > i0,

1

M ÿ i0 � 1

XM
i�i0

�Z
X

W �rwi
n� dx�

Z
S�wi

n�

w��wi
n��x�; mwi

n
�x�� dHNÿ1

�

2
Z
X

W �run�x�� dx�
Z

S�un�

w��un��x�; mun�x�� dHNÿ1

� C
M ÿ i0 � 1

(XM
i�i0

1

ei�1 �
Z
X

�1� jrunjp� dx

�
Z

S�un�

j�un�j dHNÿ1
)
: �2:18�

Clearly, the term inside the parentheses in the last two lines of (2.18) is bounded
independently of n, and so wemay chooseM so large that these last two lines in
(2.18) are less than e. Hence, there exists some i 2 fi0; . . . ;Mg such thatZ

X

W �rwi
n� dx �

Z
S�wi

n�

w��wi
n��x�; mwi

n
�x�� dHNÿ1

2
Z
X

W �run�x�� dx�
Z

S�un�\X

w��un��x�; mun�x�� dHNÿ1 � e;
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and we conclude that

I1p �g;G;X� 2 Ip�g;G;X� � 2e:

The result follows by letting e! 0�. (

Next, we obtain a subadditivity condition for Ip and I0.

Lemma 2.21. If �H1�p and �H2� hold, p > 1, and if A;B;C are open subsets of
X such that A �� B �� C, then

Ip�g;G;C� 2 Ip�g;G;B� � Ip�g;G;Cn �A�
for all �g;G� 2 SD�X� with g 2 L1�X;Rd�. If p � 1, then

I0�g;G;C� 2 I0�g;G;B� � I0�g;G;Cn �A�;
I1�g;G;C� 2 I1�g;G;B� � I1�g;G;Cn �A�

for all �g;G� 2 SD�X�.

Proof. Fix e > 0 and let I denote Ip if p > 1, and either I0 or I1 if p � 1. Let
un 2 SBV �B;Rd� and vn 2 SBV �Cn �A;Rd� be ``almost minimizing'' sequences
for I, that is,

lim
n

Z
B

W �run�x�� dx�
Z

S�un�\B

w��un��x�; mun�x�� dHNÿ1 2 I�g;G;B� � e;

�2:19�

lim
n

Z
Cn �A

W �rvn�x�� dx�
Z

S�vn�\Cn �A

w��vn��x�; mvn�x�� dHNÿ1 2 I�g;G;Cn �A� � e;

�2:20�
un ! g in L1�B;Rd�, vn ! g in L1�Cn �A;Rd�, fjrunjLp�B�g; fjrvnjLp�Cn �A �g are
bounded, and

run *
�

m1 in M�B�; rvn *
�

m2 in M�Cn �A� with dmi

dLN � G; i � 1; 2:

In the case where I � Ip, p 3 1, we have m1 � vBGLN and m2 � vCn �AGLN .
Moreover, by Lemma 2.20 if p > 1, we may assume that the sequences
fung; fvng and frung; frvng are uniformly bounded in L1 and Lp, respec-
tively.

Consider
~A :� fx 2 B : dist �x; �A� < dg;

where, by virtue of the countable additivity property of the Radon measures,
d is chosen such that jjmijj�@ ~A� � 0. De®ne

an :� jun ÿ vnjÿ1=2p
L1�Bn �A;Rd � and jn :� jun ÿ vnjÿ1=4p

L1�Bn �A;Rd �

h ih i
;
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where ����� denotes the greatest integer function. For i � 0; . . . ; jn ÿ 1, de®ne

V n
i :� x 2 Bn �A : dÿ 1

an
� i

anjn
< dist �x; �A� < dÿ 1

an
� i� 1

anjn

� �
:

For each i we introduce cut-o� functions which are either 1 or 0 on the
complement of V n

i , that is, we consider /n
i 2 C10 �RN ; �0; 1�� such that

jr/n
i jL1 2 C�anjn� and

/n
i �x� :� 1 if dist �x; �A� < d ÿ 1=an � i=anjn,

0 if dist �x; �A� > dÿ 1=an � �i� 1�=anjn.

�
For each i � 0; . . . ; jn ÿ 1 de®ne

zi
n :� /n

i un � �1ÿ /n
i �vn;

where we have extended un by 0 on the complement of B and vn by 0 on the
complement of Cn �A. It is clear that for each i

jzi
n�x� ÿ g�x�jL1�C;Rd � ! 0 as n!1:

Using �H1�p and �H2�, we haveZ
C

W �rzi
n�x�� dx �

Z
S�zi

n�\C

w��zi
n��x�; mzi

n
�x�� dHNÿ1

2
Z
B

W �run�x�� dx�
Z

S�un�\B

w��un��x�; mun�x�� dHNÿ1

�
Z

Cn �A

W �rvn�x�� dx

�
Z

S�vn�\Cn �A

w��vn��x�; mvn�x�� dHNÿ1

� C
Z
V n

i

�1� jrun�x�jp � jrvn�x�jp� dx

� C�anjn�p
Z
V n

i

jun�x� ÿ vn�x�jp dx

� C
Z

S�un�\V n
i

j�un�j dHNÿ1 � C
Z

S�vn�\V n
i

j�vn�j dHNÿ1:

Thus, summing over i and using (2.19), (2.20), we obtain
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1

jn

Xjnÿ1

i�0

Z
C

W �rzi
n�x�� dx�

Z
S�zi

n�\C

w��zi
n��x�; mzi

n
�x�� dHNÿ1

2 I�g;G;B� � I�g;G;Cn �A� � 2e

� 1

jn

(Z
B

�1� jrunjp� dx:�
Z

Cn �A

�1� jrvnjp� dx

� C
Z

S�un�\B

j�un�j dHNÿ1 � C
Z

S�vn�\Cn �A

j�vn�j dHNÿ1

� C�anjn�pjun ÿ vnjpLp�Bn �A;Rd �

)
: �2:21�

If p > 1, the L1 bounds on fung and fvng yield
1

jn
�anjn�pjun ÿ vnjpLp 2 Cap

nj
pÿ1
n jun ÿ vnjL1�Bn �A;Rd �

� Cjun ÿ vnjaL1�Bn �A;Rd �;

where a > 0. This, combined with the uniform bounds for frung, frvng,
�H2�, and (2.19), (2.20), implies that the last three lines of (2.21) tend to 0 as
n!1. Hence, we may choose in 2 f0; . . . ; jn ÿ 1g such that, setting
wn :� zin

n , we have wn ! g in L1�C;Rd� and

I�g;G;C� 2 lim sup
n!1

Z
C

W �rwn�x�� dx�
Z

S�wn�\C

w��wn��x�; mwn�x�� dHNÿ1

2 I�g;G;B� � I�g;G;Cn �A� � 2e;

as long as we show that supn jrwnjLp�C;Rd � <1 and that

rwn *
�

v ~Am1 � vCn ~Am2 in M�C�;
since, by de®nition of ~A,

d v ~Am1 � vCn ~Am2

� �
dLN � v ~A

dm1

dLN � vCn ~A
dm2

dLN � G LN -a:e: x 2 C:

To this end, we recall thatZ
C

jrwnjp dx 2
Z
B

jrunjp dx�
Z

Cn �A

jrvnjp dx� �anjn�p
Z

Bn �A

jun ÿ vnjp dx;

and so supn jrwnjLp�C;Rd � <1. As for the convergence, let n 2 C0�C� and
consider an increasing sequence of open sets Am � ~A such that dist
� �Am; @ ~A� � mÿ1. Let hm 2 C0�C; �0; 1�� be a sequence of cut-o� functions such
that hm�x� � 1 if x 2 Am and hm�x� � 0 if x 2j Am�1. Then
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lim
n!1

Z
C

nrwn dx � lim
n!1

Z
C

n/in
nrun � n�1ÿ /in

n �rvn � n�un ÿ vn� 
 r/in
n

ÿ �
dx

� lim
m!1 lim

n!1

�Z
B

nhmrun dx�
Z
B

n�/in
n ÿ hm�run dx:

�
Z

Cn �A

n�1ÿ hm�rvn dx

�
Z

Cn �A

n�hm ÿ /in
n �rvn dx

�
� lim

n!1En;

where

jEnj �
�����
Z
V n

i

n�un ÿ vn� 
 r/in
n dx

����� 2 jnjL1�anjn�jun ÿ vnjL1 ! 0:

Thus

lim
n!1

Z
C

nrwn dx � lim
m!1 lim

n!1

(Z
B

nhmrun dx�
Z

Cn �A

n�1ÿ hm�rvn dx

)

� lim
m!1 lim

n!1 Fn;m

� lim
m!1

(Z
B

nhm dm1 �
Z

Cn �A

n�1ÿ hm� dm2

)
� lim

m!1 lim
n!1 Fn;m

�
Z
~A

n dm1 �
Z

Cn ~A

n dm2 � lim
m!1 lim

n!1 Fn;m;

where
Fn;m :�

Z
B

n�/in
n ÿ hm�run dx�

Z
Cn �A

n�hm ÿ /in
n �rvn dx:

Finally, we note that limm limn Fn;m � 0. Indeed, recalling the de®nition of /i
n,

for each m we may choose n so much larger than m that /in
n �x� � 1 if x 2 Am,

and so

lim
m!1 lim sup

n!1

Z
B

j/in
n ÿ hmjjrunj dx 2 2 lim

m!1 jjm1jj� ~AnAm� � 0:

A similar argument gives

lim
m!1 lim

n!1

Z
Cn �A

n�hm ÿ /in
n �rvn dx � 0: (
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Using Lemmas 2.18, 2.20, and 2.21, we show that if �g;G� 2 SD�X�,
G 2 Lp�X;Md�N �, and g 2 L1�X;Rd� for p > 1, then Ip�g;G; ��, p 3 1, (also
I0�g;G; �� if p � 1) is a Radon measure, and

Ip�g;G; �� also I0�g;G; �� if p � 1� � �LN � jjDsgjj:

Proposition 2.22. Assume that �H1�p and �H2� hold and let g 2 L1�X;Rd� if
p > 1. Then, for p 3 1, Ip�g;G; �� �also I0�g;G; �� if p � 1� is the trace on
fU � X : U is openg of a ®nite Radon measure on B�X�.

Proof. We proceed separately for Ip and I0. First we consider Ip, p 3 1, and
we use an argument introduced by FONSECAONSECA & MALYALY [33].
Step 1.We assume coercivity, i.e., that there exists a constant C > 0 such that
W �A� 3 CjAjp for all A 2Md�N . In this case, by means of a diagonalization
procedure we can ®nd a minimizing sequence for Ip�g;G;X�, that is, there
exist un 2 SBV �X;Rd� such that un ! g in L1, supn jrunjLp <1, run * G in
Lp, and

Ip�g;G;X� � lim
n!1

(Z
X

W �run�x�� dx�
Z

S�un�\X

w��un��x�; mun�x�� dHNÿ1
)
:

After passing, if necessary, to a subsequence, we ®nd that there is a l 2M�X�
such that

W �run�x�� dx� w��un��x�; mun�x�� dHNÿ1bS�un�*� l; in M�X�;
and, in particular,

l�X� � Ip�g;G;X�: �2:22�
Let V � X be open. We must show that l�V � � Ip�g;G; V �. We always have

Ip�g;G; V � 2 lim inf
n!1

Z
V

W �run�x�� dx

�
Z

S�un�\V

w��un��x�; mun�x�� dHNÿ1 2 l�V �: �2:23�

Let e > 0 and take W �� V such that l�V nW � < e. By Lemma 2.21, (2.22),
and (2.23),

l�V � 2 l�W � � e

� l�X� ÿ l�XnW � � e

2 Ip�g;G;X� ÿ Ip�g;G;XnW � � e

2 Ip�g;G; V � � e:

Letting e! 0�, we obtain

l�V � 2 Ip�g;G; V �: �2:24�
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On the other hand, Lemma 2.18 implies that

Ip�g;G; �� 2 C�1� jGjp�LN � jjDgjj:

Denote by k the Radon measure on the right-hand side. Let K �� V be a
compact set such that k�V nK� < e, and choose W open such that
K �� W �� V : Using Lemma 2.21 and (2.23), we have

Ip�g;G; V � 2 Ip�g;G;W � � Ip�g;G; V nK�
2 l�W � � k�V nK�
2 l�V � � e;

which, together with (2.24), yields the result by letting e! 0�.
Step 2. We remove the coercivity assumption. Considering in Step 1 the bulk
density W e :� W ��� � ej � jp, we obtain measure representations le for
I e
p�g;G;X�, where I e

p is the energy in which W is replaced by W e. Let fung be
an admissible sequence, i.e., un ! g in L1, run * G in Lp. Then, by Step 1,

le�X� � I e
p�g;G;X�

2 lim inf
n!1

�Z
X

W �run�x�� � jrunjp dx�
Z

S�un�\X

w��un��x�; mun�x�� dHNÿ1
�

<1;
and so, after extraction of a subsequence, there exists l 2M�X� such that
le *

�
l, and for every open set V � X,

Ip�g;G; V � 2 I e
p�g;G; V � � le�V � 2 le�V �;

hence,

Ip�g;G; V � 2 l�V �: �2:25�
Conversely, given e > 0, there exists a sequence fvng admissible for Ip such
that

Ip�g;G; V � � e 3 lim
n!1

�Z
V

W �rvn�x�� dx�
Z

S�vn�\V

w��vn��x�; mvn�x�� dHNÿ1
�
;

and so, for n su�ciently large,

le�V � 2 lim inf
e

�Z
V

W e�rvn�x�� dx�
Z

S�vn�\V

w��vn��x�; mvn�x�� dHNÿ1
�

2 Ip�g;G; V � � e� e
Z
V

jrunjp dx

2 Ip�g;G; V � � Ce:
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Letting e! 0� we obtain

l�V � 2 lim inf
e!0�

le�V � 2 Ip�g;G; V �:

It remains to prove that l�V � 3 Ip�g;G; V �. This follows by using the upper
bound on Ip (Lemma 2.18) and (2.25), and proceeding exactly as in the last
part of Step 1.

Step 3. The method used in Steps 1 and 2 to prove that Ip is a Radon measure
may fail for I0, as we are not able to show that I0�g;G;X� is realized by some
admissible sequence fung. Thus, we use the De Giorgi-Letta criterion (see
[23]) to establish that I0�g;G; �� is a measure. The following four conditions
are necessary and su�cient for guaranteeing that I0�g;G; �� is the trace of a
Borel regular measure on the set of open subsets of X. Let B;C be open
subsets of X.

(a) If B � C, then I0�g;G;B� 2 I0�g;G;C�.
(b) If B \ C � ;, then I0�g;G;B [ C� � I0�g;G;B� � I0�g;G;C�.
(c) I0�g;G;B [ C� 2 I0�g;G;B� � I0�g;G;C�.
(d) I0�g;G;B� � sup I0�g;G;C� : C �� Bf g.

Conditions (a) and (b) hold trivially. Condition (d) follows by using the upper
bound measure k for I0 (Lemma 2.18) and the subadditivity (Lemma 2.21).
This brief argument is given in the last part of Step 1. To prove (c), it su�ces
to follow Proposition 2.10 of [31], noting that we have already established the
subadditivity property Lemma 2.21. (

3. The Bulk Density

We recall the de®nition of the density function Hp�A;B�; p 3 1, intro-
duced in (2.16),

Hp�A;B� � inf
u

(Z
Q

W �ru� dx�
Z

S�u�

w��u�; mu� dH Nÿ1

: u 2 SBV �Q;Rd�; uj@Q � Ax;

jruj 2 Lp�Q�;
Z
Q

ru dx � B

)
;

where A;B 2Md�N . We give the following limit characterization for Hp.

Proposition 3.1. Let p 3 1 and assume that �H1�p, �H2�, and �H4� hold.
Then
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Hp�A;B� � inf
fung

(
lim inf

n!1

"Z
Q

W �run� dx�
Z

S�un�\Q

w��un�; mun� dH Nÿ1
#

: un 2 SBV �Q;Rd�;

un ! Ax in L1;run *
�

B; sup
n
jrunjLp <1

)
� : ~Hp�A;B�:

Proof. Step 1. We prove that ~Hp�A;B� 2 Hp�A;B�. Fix u 2 SBV �Q;Rd� such
that uj@Q � Ax, jruj 2 Lp�Q�, and RQru dx � B. We write u�x� � Ax� /�x�,
where / 2 SBV �Q;Rd�, /j@Q � 0 , andZ

Q

r/�x� dx � Bÿ A:

Extend / periodically, with period one, to RN and de®ne un�x� :�
Ax� 1

n /�nx�. Then
un�x� ! Ax in L1; run *

�
B; sup

n
jrunjLp <1:

Thus, using �H2� we obtain

~Hp�A;B� 2 lim inf
n!1

(Z
Q

W �run� dx�
Z

S�un�\Q

w��un��x�; mun� dH Nÿ1�x�
)

� lim inf
n!1

(Z
Q

W �A�r/�nx�� dx

�
Z

S�/�
n \Q

w
1

n
�/��nx�; m/

� �
dHNÿ1�x�

)

� lim inf
n!1

(
1

nN

Z
nQ

W �A�r/�y�� dy

� 1

nN

Z
S�/�\nQ

w��/��y�; m/� dH Nÿ1�y�
)

�
Z
Q

W �A�r/�y�� dy �
Z

S�/�\Q

w��/��y�; m/� dH Nÿ1�y�:

Taking the in®mum over all such / 2 SBV we obtain ~Hp�A;B� 2 Hp�A;B�.
Step 2. We claim that ~Hp�A;B� 3 Hp�A;B�. Let fung be an admissible se-
quence in SBV �Q;Rd�, i.e., un ! Ax in L1, run *

�
B, and supn jrunjLp <1.

Let Qk be the cube �ÿ 1
2� 1

k ;
1
2ÿ 1

k�N . Using the argument given in Lemma
2.21, for each k we can ®nd Q0k such that Qk �� Q0k �� Q, and uk

n such that
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uk
n�x� � Ax for x 2 @Q; uk

n�x� � un�x� for x 2 Qk;

and for each k,

uk
n ! Ax;ruk

n *
�

vQ0k
B� vQ ÿ vQ0k

� �
A as n!1;

jruk
njLp 2 C jrunjLp � jAj� � � 1:

Thus, we may take a diagonal subsequence vk :� uk
n�k� such that vkj@Q � Ax,

vk ! Ax in L1, rvk *
�

B, and

lim sup
k!1

(Z
Q

W �rvk�x�� dx�
Z

S�vk�\Q

w��vk�; mvk � dH Nÿ1
)

� lim inf
n!1

(Z
Q

W �run�x�� dx�
Z

S�un�\Q

w��un�; mun� dH Nÿ1
)
: �3:1�

Without loss of generality we may assume, upon extracting a subsequence,
that lim supk in (3.1) is limk. Lastly, we modify vk to accommodate the
condition on the average gradient, and we consider two cases.
Case 1 (p > 1): By Lemma 2.10, there exists rk ! 1ÿ such that

Z
@Q�0;rk�

jvk�x� ÿ u0�x�j dH Nÿ1�x� < 1

k
; �3:2�

where u0�x� :� Ax. De®ne

wk�x� :� u0�x� if x 2 QnQ�0; rk�,
vk�x� � Ckx if x 2 Q�0; rk�,

�

where Ck is chosen such that
R

Qrwk�x� dx � B, that is,

Ck :� 1

LN �Q�0; rk��

"
Bÿ

Z
Q�0;rk�

rvk dxÿ ALN �QnQ�0; rk��
#
:

Using the equi-integrability of the sequence rvk and the fact that rvk *
�

B,
we have

Ck ! 0 as k !1: �3:3�

Clearly wk ! u0 in L1, and by �H1�p, �H2�, we have
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Z
Q

W �rwk� dx �
Z

S�wk�\Q

w��wk��x�; mwk � dHNÿ1�x�

2
Z
Q

W �rvk� dx� C�jAjp � 1�LN �QnQ�0; rk��

� jCkj
(
1�

Z
Q

jrvkjpÿ1dx�
Z
Q

jrwkjpÿ1dx

)

�
Z

S�vk�

w��vk��x�; mvk � dH Nÿ1�x�

� C0
Z

@Q�0;rk�

jtr vk�x� � Ckxÿ u0�x�j dHNÿ1�x�:

Using (3.2), (3.3), and the fact that frvkg and frwkg are uniformly bounded
in Lp�Q;RD�, we obtain

lim
k!1

(Z
Q

W �rwk� dx�
Z

S�wk�

w��wk��x�; mwk � dHNÿ1�x�
)

2 lim
k!1

(Z
Q

W �rvk� dx�
Z

S�vk�

w��vk��x�; mvk � dH Nÿ1�x�
)
:

Case 2 (p � 1): Using (3.1), �H2�, and the fact that supk jrvkjL1 <1, and
after extracting a subsequence, we ®nd a Radon measure b such that
jjDvkjj*� b. Thus, for all but a countable number of e > 0,

b�@Q�0; 1ÿ e�� � 0; jjDvkjj�Q�0; 1ÿ e�� ! b�Q�0; 1ÿ e�� as k !1:
�3:4�

Fix such an e, and de®ne

wk;e�x� :� u0�x� if x 2 QnQ�0; 1ÿ e�,
vk�x� � Ck;ex if x 2 Q�0; 1ÿ e�;

�
where Ck;e is chosen so that

R
Qrwk;e�x� dx � B, i.e.,

Ck;e :� 1

LN �Q�0; 1ÿ e��

"
Bÿ

Z
Q�0;1ÿe�

rvk dxÿ ALN �QnQ�0; 1ÿ e��
#
:

The weak star convergence (in the sense of measures) of rvk to B implies that

lim
e!0�

lim
k!1
jCk;ej � 0; �3:5�

hence,

lim
e!0�

lim
k!1
jwk;e ÿ u0jL1�Q� � 0:
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Using �H1�1; �H2�, we obtain

Z
Q

W �rwk;e� dx �
Z

S�wk;e�

w��wk;e��x�; mwk;e�x�� dH Nÿ1�x�

2
Z
Q

W �rvk � Ck;e� dx�
Z

S�vk�

w��vk��x�; mvk �x�� dHNÿ1�x�

� C�jAj � 1�LN �QnQ�0; 1ÿ e��
� C0

Z
@Q�0;1ÿe�

tr vk�x� � Ck;exÿ Ax
�� �� dHNÿ1

2
Z
Q

W �rvk� dx� CjCk;ej �
Z

S�vk�

w��vk��x�; mvk �x�� dHNÿ1�x�

� C�jAj � 1�LN �QnQ�0; 1ÿ e��
� CjCk;ejH Nÿ1�@Q�0; 1ÿ e��
� C

Z
Q�0;1ÿe�

jtr vk�x� ÿ Axj dHNÿ1: �3:6�

Next, in the spirit of Lemma 2.10, we address the asymptotic behavior of the
last term in (3.6). Let /d 2 C10 �Q� be a sequence of cut-o� functions such
that, 0 2 /d 2 1, /d � 0 if x 2 Q�0; 1ÿ eÿ 2d�, /d � 1 if x 2 Qn
Q�0; 1ÿ eÿ d�, and jr/djL1 � O 1=d� �. By (2.5)

Z
@Q�0;1ÿe�

jtr vk�x� ÿ Axj dHNÿ1 �
Z

@Q�0;1ÿe�

jtr /d�x� vk�x� ÿ Ax� �j dHNÿ1

2
Z

Q�0;1ÿe�

djjD /d � �vk ÿ Ax�� �jj

�
Z

Q�0;1ÿe�

j/d � �vk ÿ Ax�j dx

2
Z

Q�0;1ÿeÿd�nQ�0;1ÿeÿ2d�

d�jjDvkjj � jAjLN �

� C
d

Z
Q

jvk ÿ Axj dx:

Thus, from (3.4) we obtain
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lim
e!0�

lim
k!1

Z
@Q�0;1ÿe�

jtr vk�x� ÿ Axj dHNÿ1

2 lim
e!0�

lim
d!0�

lim
k!1

�
jjDvkjj�Q�0; 1ÿ eÿ d�nQ�0; 1ÿ eÿ2d��

� jAjLN �Q�0; 1ÿeÿd�nQ�0; 1ÿeÿ2d�� � C
d

Z
Q

jvk ÿ Axj dx
�

2 lim
e!0�

lim
d!0�

�
b Q 0; 1ÿeÿd

2

� �
nQ�0; 1ÿeÿ3d�

� �
� jAjLN �Q�0; 1ÿeÿd�nQ�0; 1ÿeÿ2d��

�
� lim

e!0�
b�@Q�0; 1ÿ e�� � 0: �3:7�

Finally, setting e � 1=j, we take a diagonal sequence of wk;e, wj :� wj;k 1
j� �,

satisfying

wj�x�j@Q � Ax;
Z
Q

rwj�x� dx � B;

and, by (3.5), (3.6), and (3.7),

lim sup
j!1

(Z
Q

W �rwj� dx�
Z

S�wj�

w��wj��x�; mwj�x�� dHNÿ1�x�
)

2 lim inf
k!1

(Z
Q

W �rvk� dx�
Z

S�vk�

w��vk��x�; mvk �x�� dHNÿ1�x�
)
: (

The following characterization of the relaxed bulk density holds for
Ip; p 3 1, as well as for I0.

Theorem 3.2. Let p 3 1 and W ;w satisfy �H1�p, �H2�ÿ�H4�. Then for
�g;G� 2 SD�X�, with g 2 L1 if p > 1, we have

dIp�g;G; ��
dLN �x� � Hp�rg�x�;G�x�� LN -a:e: x;

where Hp is given by (2.16). If p � 1, then for all �g;G� 2 SD�X� we have
dI0�g;G; ��

dLN �x� � H1�rg�x�;G�x�� LN -a:e: x:

Proof. Step 1 (Lower Bound). Let A � X be an open set and let I�g;G; ��
denote either I0�g;G; �� or I1�g;G; �� if p � 1, and I�g;G; �� � Ip�g;G; �� if
p > 1. We prove that
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I�g;G;A� 3
Z
A

Hp�rg�x�;G�x�� dx: �3:8�

From (3.8) and from Proposition 2.22, it follows that

dI�g;G; ��
dLN �x� 3 Hp�rg�x�;G�x�� LN -a:e: x:

Let e > 0 and let un be an admissible sequence for I such that

e� I�g;G;A� 3 lim
n!1

(Z
A

W �run�x�� dx�
Z

S�un�\A

w��un��x�; mun�x�� dHNÿ1�x�
)
;

�3:9�
where un ! g in L1, supn jrunjLp <1, and run *

�
m in M�A�, with

m � G �LN � ms, ms ?LN . By Theorems 2.4 and 2.6, for LN -a.e. x0 2 X,
we have

lim
e!0�

1

eN�1

Z
Q�x0;e�

jg�x� ÿ g�x0� ÿ rg�x0� � �xÿ x0�j dx � 0; �3:10�

lim
e!0�

1

eN

Z
Q�x0;e�

jG�x� ÿ G�x0�jpdx � 0; �3:11�

lim
e!0�

dms

dLN �x0� � 0: �3:12�

Choose such a point x0. Upon extraction of a subsequence, which we do not
relabel, there exists a non-negative Radon measure l such that

W �run� dx� w��un�; mun� dH Nÿ1bS�un�*� l:

We claim that proving

dl

dLN �x0� 3 Hp�rg�x0�;G�x0�� �3:13�

implies the lower bound. Indeed, from (3.9) and (3.13), for all A0 �� A we
have

e� I�g;G;A� 3
Z
A0

dl 3
Z
A0

dl

dLN �x� dx 3
Z
A0

Hp�rg�x�;G�x�� dx;

and (3.8) follows by letting A0 % A and e! 0�. It remains to prove (3.13).
Using the countable additivity property of l, choose radii e > 0, e! 0�, such
that l�@Q�x0; ��� � 0. By Theorem 2.6 we have
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dl

dLN �x0� � lim
e!0�

lim
n!1

(
1

eN

Z
Q�x0;e�

W �run� dx:

� 1

eN

Z
S�un�\Q�x0;e�

w��un��x�; mun� dHNÿ1�x�
)

� lim
e!0�

lim
n!1

(Z
Q

W �run�x0 � ey�� dy:

� 1

e

Z
S�un�ÿx0

e \Q

w��un��x0 � ey�; mun� dH Nÿ1�y�
)
:

De®ne

u0�y� :� rg�x0�y; un;e�y� :� un�x0 � ey� ÿ g�x0�
e

:

By (3.10) we have

lim
e!0�

lim
n!1 jun;e�y� ÿ u0�y�jL1�Q� � 0;

and, due to the homogeneity of w,

dl

dLN �x0� � lim
e!0�

lim
n!1

(Z
Q

W �run;e�y�� dy

�
Z

S�un;e�

w��un;e��y�; mun;e�y�� dH Nÿ1�y�
)
:

�3:14�

Case 1. We assume coercivity, i.e., there exists a constant C such that
CjAj � W �A� for all A 2Md�N . Then (3.14) implies that

sup
e
sup

n
jrun;ejLp�Q� <1:

Let / 2 C0�Q�. By (3.11) and (3.12) we have

lim
e!0�

lim
n!1

Z
Q

�run�x0 � ey� ÿ G�x0��/�y� dy

� lim
e!0�

(Z
Q

�G�x0 � ey� ÿ G�x0��/�y� dy � 1

eN

Z
Q�x0;e�

/
xÿ x0

e

� �
dms�x�

)

� lim
e!0�

1

eN

Z
Q�x0;e�

/
xÿ x0

e

� �
dms �x�;

2 j/j1 lim
e!0�

ms�Q�x0; e��
LN �Q�x0; e��

� 0:

By virtue of the separability property of C0�Q�, we may extract a diagonal
subsequence vk 2 SBV �Q;Rd� such that
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vk�y� ! u0�y� in L1�Q;Rd�; rvk�y�*� G�x0�; sup
k
jrvkjLp <1;

dl

dLN �x0� � lim
k!1

(Z
Q

W �rvk�x�� dx �
Z

S�vk�\Q

w��vk��x�; mvk �x�� dHNÿ1�x�
)
:

�3:15�

The inequality (3.13) follows from Proposition 3.1 and (3.15).

Case 2. Next, we remove the coercivity assumption. To this end, let
W e��� :� W ��� � ej � jp and let fung be an admissible sequence for I satisfying
(3.9). Let A � X be open and let le 2M�A� be such that

W e�run�dLN � w��un�; mun� dH Nÿ1bS�un�*� le:

By Case 1 we have

dle

dLN �x0� 3 H e
p�rg�x0�;G�x0�� 3 Hp�rg�x0�;G�x0��;

where H e
p is given by (2.16) with W e replacing W . This, combined with (3.9)

and the uniform Lp bound on fung, gives for all A0 �� A,

e� I�g;G;A� 3 lim
n!1

Z
A

W �run� dx�
Z

S�un�\A

w��un�; mun� dH Nÿ1

3 lim
n!1

Z
A

We�run� dx�
Z

S�un�\A

w��un�; mun� dHNÿ1

ÿ e
Z
A

jrun�x�jpdx

3
Z
A0

dle ÿ eC

3
Z
A0

Hp�rg�x�;G�x�� dxÿ eC:

Letting A0 % A and then e! 0�, we conclude that

I�g;G;A� 3
Z
A

Hp�rg�x�;G�x�� dx:

Step 2 (Upper Bound). Fix e > 0 and consider an admissible sequence
un 2 SBV �Q;Rd� for Hp�A;B�, i.e., un�x� ! u0�x� :� rg�x0�x in L1, run *

�

G�x0�, supn junjLp <1, and
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e� Hp�rg�x0�;G�x0�� 3 lim
n!1

(Z
Q

W �run� dx�
Z

S�un�\Q

w��un�; mun� dH Nÿ1
)
:

�3:16�
Using the argument given in Proposition 3.1, Step 2, we may assume, without
loss of generality, that unj@Q � u0. Thus, we may write un�x� � u0�x� � fn�x�
where

fnj@Q � 0; fn ! 0 in L1; sup
n
jrfnjLp <1; rfn *

� �G�x0� ÿ rg�x0��:

We extend fn periodically to all of RN , with period Q. By Theorem 2.8 there
exist he 2 SBV �Q�x0; e�;Rd� such that

rhe�x� � G�x� ÿ G�x0� � rg�x0� ÿ rg�x� for LN -a.e. x 2 X;

jjDhejj�Q�x0; e�� 2 C�N�
Z

Q�x0;e�

jG�x� ÿ G�x0�j � jrg�x0� ÿ rg�x�j dx �: a�e�;

where x0 is chosen such that

1

eN

( Z
Q�x0;e�

jG�x� ÿ G�x0�jp � jrg�x� ÿ rg�x0�jpdx

)
! 0 as e! 0�;

dj�g�jH Nÿ1bS�g�
dLN �x0� � 0:

Hence,
a�e�
eN ! 0 as e! 0: �3:17�

By Lemma 2.9, there exist piecewise constant functions he;n such that for each
e,

he;n ! ÿhe in L1�Q�x0; e�;Rd�; jjDhe;njj�Q�x0; e�� ! jjDhejj�Q�x0; e�� �3:18�
as n!1. Now de®ne

we;n�x� :� g�x� � efn
xÿ x0

e

� �
� he � he;n:

For each e > 0, we;n !
n

g in L1, supn jrwe;njLp�Q�x0;e�� <1, and

rwe;n�x� � rg�x0� � rfn
xÿ x0

e

� �
� G�x� ÿ G�x0�*� G�x�

in Q�x0; e� as n!1. Thus fwe;ngn is an admissible sequence for I for each
e > 0, and by �H4� we have

dI�g;G; ��
dLN �x0� � lim

e!0�
I�g;G;Q�x0; e��

eN
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2 lim sup
e!0�

lim inf
n!1

(
1

eN

Z
Q�x0;e�

W �rwe;n� dx

� 1

eN

Z
S�we;n�\Q�x0;e�

w��we;n��x�; mwe;n� dHNÿ1�x�
)

2 lim sup
e!0�

lim inf
n!1

(
1

eN

Z
Q�x0;e�

W rg�x0� � rfn
xÿ x0

e

� �
� G�x� ÿ G�x0�

� �
dx

� 1

eN

Z
�x0�eS�fn��\Q�x0;e�

w e�fn�
xÿ x0

e

� �
; mfn

� �
dHNÿ1

� 1

eN

Z
S�g�\Q�x0;e�

w��g��x�; mg�x�� dHNÿ1 � 1

eN

Z
S�he�\Q�x0;e�

w��he��x�; mhe� dH Nÿ1

� 1

eN

Z
S�he;n�\Q�x0;e�

w��he;n��x�; mhe;n� dH Nÿ1
)

2 lim sup
e!0�

lim inf
n!1

( Z
Q�0;1�

W �rg�x0� � rfn�y�� dy �
Z

Q�0;1�

�W �rg�x0� � rfn�y�

� G�x0 � ey� ÿ G�x0�� ÿ W �rg�x0��rfn�y��� dy

� 1

eN

Z
�x0�e S�fn��\Q�x0;e�

w e�fn�
xÿ x0

e

� �
; mfn

� �
dHNÿ1

� 1

eN

Z
S�g�\Q�x0;e�

w��g��x�; mg� dH Nÿ1

� 1

eN

Z
S�he�\Q�x0;e�

w��he��x�; mhe� dH Nÿ1

� 1

eN

Z
S�he;n�\Q�x0;e�

w��he;n��x�; mhe;n� dH Nÿ1
)
:

On the other hand, by (H3) we have

lim sup
e!0�

lim inf
n!1

1

eN

Z
�x0�e S�fn��\Q�x0;e�

w e�fn�
xÿ x0

e

� �
; mfn

� �
dHNÿ1

2 lim inf
n!1

Z
S�fn�\Q�0;1�

w��fn��y�; mfn�y�� dHNÿ1�y�;

and so, by �H1�p and (3.18) we conclude that
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dI�g;G; ��
dLN �x0� 2 lim inf

n!1

Z
Q�0;1�

W �run�y�� dy

� lim sup
e!0�

lim inf
n!1

Z
Q�0;1�

jG�x0 � ey� ÿ G�x0�j

� 1� jrg�x0� � rfn�y� � G�x0 � ey� ÿ G�x0�jpÿ1
�

� jrg�x0� � rfn�y�jpÿ1
�

dy

� lim inf
n!1

Z
S�un�\Q�0;1�

w��un�; mun�x�� dHNÿ1

� lim sup
e!0�

1

eN

Z
S�g�\Q�x0;e�

w��g��x�; mg�x�� dHNÿ1

� C lim sup
e!0�

1

eN jj Dhejj�Q�x0; e��:

Since frfng are uniformly bounded in Lp, (3.16), (3.17) and (H2) imply
that

dI�g;G; ��
dLN �x0� 2 e� Hp�rg�x0�;G�x0�� � lim sup

e!0�

C
eN

Z
S�g�\Q�x0;e�

j�g��x�j dHNÿ1:

The result follows by letting e! 0�. (

Remark 3.3. If p > 1, we may replace hypotheses �H2� and �H3� by
�H2�� There exists a constant c > 0 such that

0 2 w�k; m� 2 cjkj
for all �k; m� 2 Rd � SNÿ1.
�H3�� There exist constants C; l; a > 0 such that

w0�k; m� ÿ
w�tk; m�

t

���� ���� 2 Cta

for every �k; m� 2 Rd � SNÿ1 with jkj � 1; 0 < t < l, and where w0 is the pos-
itively homogeneous function of degree 1 de®ned as

w0�k; m� :� lim sup
t!0�

w�tk; m�
t

:

In doing so, we must rede®ne the energy Ip as follows:
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Ip�g;G;X� :� inf
fung

(
lim inf

n!1

"Z
X

W �run� dx�
Z

S�un�

w��un�; mun� dHNÿ1
#

: un 2 SBV �X;Rd�;
un ! g in L1�X;Rd�;run *

�
G;

sup
n
jrunjLp�X;Md�N � � junjBV �X;Rd �
� �

<1
)
:

The integral representation for Ip provided in Theorem 2.17 holds, except
that the new bulk density (Theorem 3.2) involves w0 in place of w, that is,

Hp�A;B� :� inf
u

�Z
Q

W �ru� dx�
Z

S�u�

w0��u�; m� dH Nÿ1 : u 2 SBV �Q;Rd�;

uj@Q � Ax; jruj 2 Lp�Q�;
Z
Q

ru dx � B
�
:

The proof of Theorem 3.2 is carried out with the obvious adaptions. As an
example, (3.15) would read

dl

dLN �x0� � lim
k!1

(Z
Q

W �rvk�x�� dx� 1

ek

Z
S�vk�\Q

w��ekvk��x�; mvk �x�� dHNÿ1�x�
)
;

with vk ! u0 in L1, rvk * G�x0� in Lp, and supk jjDvkjj�Q� <1. Using the
truncation argument introduced in the proof of Lemma 2.20, for all d > 0 we
may ®nd a new sequence wk � wk�d�, with the same convergence properties as
vk and satisfying

sup
k
jwkjL1 2 C�d�; sup

k
jrwkjLp � jjDwkjj�Q�
� 	

<1;

dl

dLN �x0� 3 d� lim
k!1

(Z
Q

W �rwk�x�� dx:

� 1

ek

Z
S�wk�\Q

w��ekwk��x�; mwk �x�� dHNÿ1�x�
)
:

Since wk are uniformly bounded in L1, by virtue of �H3��, we have
dl

dLN �x0� 3 d� lim
k!1

(Z
Q

W �rwk�x�� dx

�
Z

S�wk�\Q

w0��wk��x�; mwk �x�� dHNÿ1�x�
)

3 d� Hp�rg�x0�;G�x0��:
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It su�ces to let d! 0� to conclude that

dl

dLN �x0� 3 Hp�rg�x0�;G�x0��:

We remark that replacing �H2�; �H3� by �H2��; �H3�� admits surface
densities w which appear naturally in fracture mechanics, for example,
functions w�k; m� which are sublinear in k and approach a constant as
jkj ! 1.

4. The Interfacial Density

Wewill need the following limit characterizations of the functions h1 and h.

Proposition 4.1. Let �H1�1, �H2�, �H4�, and �H5� hold. Then

h1�k; m� � inf
fung

(
lim inf

n!1

" Z
Qm

W 1�run� dx�
Z

S�un�\Qm

w��un�; mun� dH Nÿ1
#

: un 2 SBV �Qm;R
d�; un ! uk;m in L1�Qm�0; 1�;Rd�;run *

�
0

�
:

Proof. The proof of Proposition 4.1 is identical to that of Proposition 3.1. (

Proposition 4.2. Let p > 1. If �H1�p, �H2�, �H4�, and �H5� hold, then

h�k�� inf
fung

�
lim inf

n!1

Z
S�un�\Qm

w��un�; mun� dH Nÿ1 : un 2 SBV �Qm;R
d�; m 2 SNÿ1;

un ! uk;m in L1�Qm�0; 1�;Rd�;run ! 0 in Lp
�

� : ~h�k�:

Proof. To prove that ~h 2 h, we consider u � uk;eN � / with
/j@Q � 0;r/ � 0 LN -a.e. Extending / periodically to all of RN with period
Q, and setting un :� uk;eN � nÿ1/�nx�, we easily see that un ! uk;eN in L1,
run � 0 LN -a.e., andZ

S�un�\Q

w��un�; mun� dH Nÿ1 !
Z

S�u�\Q

w��u�; mu� dH Nÿ1 as n!1:

Conversely, let m 2 SNÿ1 and let un 2 SBV �Qm;R
d� be such that un ! uk;m in L1

and run ! 0 in Lp strongly. By Theorem 2.8, for each n we choose
fn 2 SBV �Qm�0; 1�;Rd� such that rfn � run LN -a.e. and jjDfnjj�Qm�
2 CjrunjL1�Qm�. By Lemma 2.9, there exist piecewise constant functions gn;m

such that gn;m !
m

fn and jjDgn;mjj�Qm� !
m
jjDfnjj�Qm�. Let
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wn;m :� un ÿ fn � gn;m:

Clearly, rwn;m � 0LN -a.e. and limn limm jwn;m ÿ uk;mjL1 � 0. Moreover, using
�H2� and the fact that

jjDsfnjj�Qm� � jjDsgn;mjj�Qm� 2 C
Z
Qm

jrunj dx! 0 as n!1;

we have

lim
n!1 lim

m!1

Z
S�wn;m�\Qm

w��wn;m�; mwn;m� dH Nÿ1 2 lim
n!1

Z
S�un�\Qm

w��un�; mun� dH Nÿ1:

Hence, we may extract a diagonal sequence in m; n, say vk, such that vk ! uk;m

in L1�Qm;R
d�, rvk � 0 a.e., and

lim
k!1

Z
S�vk�\Qm

w��vk�; mvk � dH Nÿ1 2 lim
n!1

Z
S�un�\Qm

w��un�; mun� dH Nÿ1:

Next, we amend the sequence vk to equal uk;m on @Qm. To this end, by Fubini's
Theorem there exists rk ! 1ÿ such that, upon extracting a subsequence,Z

@Qm�0;1ÿrk�

j tr vk ÿ uk;mj dH Nÿ1 !
k
0: �4:1�

De®ne

~vk�x� :� vk if x 2 Qm�0; 1ÿ rk�,
uk;m if Qm�0; 1�nQm�0; 1ÿ rk�.

�
Clearly r~vk � 0 a.e., and by (4.1), �H2�, we have

lim
k!1

Z
S�~vk�\Qm

w��~vk�; m~vk � dH Nÿ1 2 lim
n!1

Z
S�un�\Qm

w��un�; mun� dH Nÿ1: �4:2�

Let R be a rotation such that ReN � m, and set hk :� ~vk�Rx�. It follows that
fhkg is an admissible sequence for h andZ

S�hk�\Q

w��hk�; mhk � dH Nÿ1 �
Z

S�~vk�\Qm

w��~vk�; m~vk � dH Nÿ1;

which, together with (4.2), concludes the proof. (

We will also need the following continuity property for h1 and h.

Proposition 4.3. Let W ;w satisfy �H1�p ÿ �H5�. Then there exists a constant
C such that

jh1�k; m� ÿ h1�k0; m�j 2 Cjkÿ k0j if p � 1; jh�k� ÿ h�k0�j 2 Cjkÿ k0j if p > 1:

Also, if p � 1, then h1 is upper semicontinuous with respect to m.

Proof. We start by proving that
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h1�k; m� 2 h1�k0; m� � Cjkÿ k0j: �4:3�
Fix e > 0. Using Proposition 4.1, let fung be a sequence in SBV �Qm;R

d� such
that un ! uk0;m in L1�Qm;R

d�, run *
�
0, and

e� h1�k0; m� 3 lim
n!1

( Z
Qm

W 1�run� dx�
Z

S�un�\Qm

w��un�; mun� dH Nÿ1
)
:

By Lemma 2.9 we can ®nd a sequence of piecewise constant functions fvng
such that

vn ! uk;m ÿ uk0;m; jjDvnjj�Qm� ! jjD�uk;m ÿ uk0;m�jj�Qm� � jkÿ k0j:
Then

wn :� un � vn ! uk;m in L1�Qm;R
d�; rwn *

�
0;

and so, by Proposition 4.1,

h1�k; m� 2 lim inf
n!1

Z
S�wn�\Qm

w��wn�; mwn� dH Nÿ1 � e

2 lim inf
n!1

( Z
S�un�\Qm

w��un�; mun� dHNÿ1 �
Z

S�vn�\Qm

w��vn�; mvn� dH Nÿ1
)
� e

2 h1�k0; m� � e� Cjkÿ k0j;
where we have used the subadditivity of w. The inequality converse to (4.3) is
proved in the same way. This argument is also valid for h.

Next, we show that, for ®xed k,

m 7! h1�k; m� is upper semicontinuous:
We follow the proof of Proposition 3.6, iv, in [7]. By (2.12) we have

h1�k; m� � inf
u

(Z
Q

W 1�ruRT � dx�
Z

S�u�\Q

w��u�; mu� dH Nÿ1

: R is a rotation; ReN � m;

u 2 SBV �Q;Rd�; uj@Q � uk;eN ;

Z
Q

ru dx � 0

)
:

Let mn ! m and choose a rotation R such that ReN � m. Fix e > 0 and let
ue 2 SBV �Q;Rd�, ue � uk;eN ,

R
Qruedx � 0 and�����h1�k; m� ÿ

Z
Q

W 1�rueRT � dx�
Z

S�ue�\Q

w��ue�; mue� dHNÿ1
����� < e:

Considering a sequence of rotations fRng such that Rn ! R and Rnen � mn, we
use the Lipschitz continuity of W 1 to conclude that
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h�k; m� 2 lim inf
n!1

(Z
Q

W 1�rueRT
n � dx�

Z
S�ue�\Q

w��ue�; mue� dH Nÿ1
)

�
Z
Q

W 1�rueRT � dx�
Z

S�ue�\Q

w��ue�; mue� dH Nÿ1

2 h�k; m� � e:

It su�ces to let e! 0�. (

Theorem 4.4. Let W ;w satisfy �H1�1, �H2�, �H4� and �H5�. Then
dI1�g;G; ��

d�j�g�jHNÿ1bS�g�� �x� �
1

j�g��x�j h1��g��x�; mg�x�� H Nÿ1- a:e: x 2 S�g�;

�4:4�
where h1 is given by (2.12).

Proof. Step 1 (Lower Bound). Fix e > 0 and assume that x0 2 X \ S�g� sat-
is®es the equalities in Theorem 2.4 (ii) with respect to g and, in addition,

lim
d!0

j�g�jHNÿ1�S�g� \ Qm�x0��
dNÿ1 � j�g�x0��j; lim

d!0�

1

dNÿ1

Z
Qm�x0;d�

jG�x�j dx � 0:

�4:5�
It is well known that �4:5� can be guaranteed for HNÿ1 -a.e. x0 (see Ziemer
[41]). Let A be an open subset of X and let fung be an admissible sequence for
I1 such that

e� I1�g;G;A� 3 lim
n

Z
A

W �run�x�� dx�
Z

S�un�\A

w��un��x�; mun�x�� dHNÿ1�x�;

�4:6�
un ! g in L1 and run *

�
G. Up to extraction of a subsequence, which we do

not relabel, there exists a non-negative Radon measure l such that

W �run�LN � w��un�; mun� dH Nÿ1bS�un�*� l:

By (4.6), the inequality

dl
d�jg� ÿ gÿjHNÿ1bS�g�� �x0� 3

1

j�g��x0�j h1��g��x0�; mg�x0��

for HNÿ1-a.e x0 2 S�g� �4:7�
yields the lower bound, after letting e! 0�. Choosing a sequence e! 0�

such that l�@B�x0; ��� � 0, we have
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dl
d�j�g�jH Nÿ1bS�g�� �x0� �

1

j�g�x0��j lime!0�
lim

n!1
1

eNÿ1

� Z
Qm�x0��x0;e�

W �run�x�� dx

�
Z

S�un�\Qm�x0��x0;e�

w��un��x�; mun� dH Nÿ1�x�
�

� 1

j�g�x0��j lime!0�
lim

n!1

�
e
Z

Qm�x0�

W �run�x0 � ey�� dy

�
Z

S�un�ÿx0
e \Qm�x0�

w��un��x0 � ey�; mn� dH Nÿ1�y�
)
:

De®ne
un;e�y� :� un�x0 � ey� ÿ gÿ�x0�:

By Theorem 2.4(ii) we have

lim
e!0�

lim
n!1 un;e�y� ÿ u�g��x0�;m�x0��y�

�� ��
L1�Qm�x0��

� 0;

and

dl
d�j�g�jHNÿ1bS�g�� �x0� �

1

j�g�x0��j lime!0�
lim

n!1

(
e
Z

Qm�x0�

W
1

e
run;e�y�

� �
dy

�
Z

S�un;e�\Qm�x0�

w��un;e��y�; mun;e�y�� dHNÿ1�y�
)

�4:8�

Now let / 2 C0�Qm�x0��0; 1��. Using (4.5) we deduce that

lim
e!0�

lim
n!1

Z
Qm�x0��0;1�

/�y�run;e�y� � lim
e!0�

lim
n!1

1

eNÿ1

Z
Qm�x0��x0;e�

/
xÿ x0

e

� �
run�x� dx

� lim
e!0�

1

eNÿ1

Z
Qm�x0��x0;e�

/
xÿ x0

e

� �
G�x� dx � 0:

Case 1. Assume that W is coercive, i.e., there exists a constant C > 0 such that
CjAj 2 W �A� for all A 2Md�N . Using (H5) and the fact that coercivity
implies a uniform L1 bound for frun;eg, we may follow the arguments given
in the proof of Theorem 4.1, Step 3, of [7], to obtain �4:8� with equality
replaced by greater than or equal to, and eW �=e� � replaced by W 1���. Next,
we choose a diagonal sequence in e; n, and a countable dense collection of
functions in C0�Qm�x0��0; 1�� to obtain vk such that

vk ! u�g��x0�;mg�x0� in L1; rvk *
�
0;
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dl
d�j�g�jHNÿ1bS�g�� �x0� 3

1

j�g�x0��j limk!1

( Z
Qm�x0�

W 1 rvk�x�� � dx

�
Z

S�vk�

w��vk��y�; mvk �y�� dH Nÿ1�y�
)
:

The result now follows from Proposition 4.1.
Case 2. Proceeding as in Step 1 (Case 2) of Theorem 3.2, we may remove the
coercivity assumption. The argument is the same except LN is replaced by
j�g�jÿ1H Nÿ1bS�g�.
Step 2 (Upper Bound). In view of (4.5), we only need to prove that given
�g;G� 2 SD�X�, for any open A � X,

I1�g;G;A� 2
Z
A

C�N��1� jG�x�jp� dx�
Z

S�g�\A

h1��g��x�; m�x�� dHNÿ1�x�:

�4:9�
Moreover, we claim that it su�ces to prove (4.9) for g of the form g � kvE,
where vE is the characteristic function of a set of ®nite perimeter E. This
follows from an argument of AMBROSIOMBROSIO, MORTOLAORTOLA, & TORTORELLIORTORELLI given in
Proposition 4.8 of [6], which will require continuity and semi-continuity
properties of h1 (see Proposition 4.3.).
Case 1. Suppose that E is a polygon and W is coercive. We use a Besicovitch
covering argument introduced by BRAIDESRAIDES & PIATIAT [13]. Let g � kvE and
G 2 L1�X;Md�N �. Fix A � X open, d > 0, and let x0 be a Lebesgue point for
the function h1�k; m���� with respect to HNÿ1bS�g�. Then there exists ex0 < d
such that for every 0 < e < ex0 ,

h1�k; m�x0�� 2
1

eNÿ1

Z
S�g�\Qm�x0��x0;e�

h1�k; m�y�� dHNÿ1�y� � d: �4:10�

By the de®nition of h1 (see (2.12)), there exists ux0 such that

ux0 j@Qm�x0��0;1� � uk;m�x0�;
Z

Qm�x0��0;1�

rux0 dx � 0; �4:11�

h1�k; m�x0�� 3
Z

Qm�x0��0;1�

W 1�rux0�y�� dy �
Z

S�ux0 �\Qm�x0�

w��ux0 ��y�� dH Nÿ1�y� ÿ d:

�4:12�
Let

X :� fx 2 A \ S�g� : �4:10�; �4:12� hold at xg:
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Note that HNÿ1��A \ S�g��nX � � 0. Let

A0 :�
[
fQm�x��x; e� : x 2 X ; 0 < e < ex;Qm�x��x; e� � Ag:

The set of cubes Qm�x��x; e� covers A0 ®nely, and so by Besicovitch's Covering
Theorem there exist xi and ei, i � 1; . . . ; such that A0 is the disjoint union of
fQm�xi��xi; ei�g, up to a set ofLN -measure zero. For simplicity of notation, set
ui :� uxi , mi :� m�xi�, Qi :� Qmi�xi; ei�, and let Q0i be the projection of Qi onto
the hyperplane perpendicular to mi, passing through xi. Extend ui��; yN � by
periodicity to the strip x : xÿxi

ei

� �
� mi

��� ��� < 1
2�2k�1�

n o
with period Q0i. Let

Di;k :� Qi \ x :
xÿ xi

ei

� �
� mi

���� ���� < 1

2�2k � 1�
� �

; A00k :�
[

i

Di;k:

Note that, due to the polyhedral nature of E, for every k we have
S�g� \ A � A00k . For y 2 Qi, let y � �y0; yN � where yN 2 R is the component of y
along mi, and de®ne

ud;k�x� :�
k if x 2j A00k ; x 2 E;

ui �2k � 1� xÿxi
ei

� �
if x 2 Di;k;

0 if x 2j A00k ; x 2j E:

8><>:
We have

jud;k�x� ÿ g�x�jL1�A� �
X

i

Z
Di;k

jud;k�x� ÿ g�x�j dx

2 jkj
X

i

eN
i �

X
i

Z
Di;k

jud;k�x�j dx; �4:13�

where X
i

eN
i 2 d

X
i

eNÿ1
i 2 dH Nÿ1�A \ S�g�� � O�d�; �4:14�

X
i

Z
Di;k

jud;k�x�j dx �
X

i

eN
i

Z 1
2�2k�1�

ÿ 1
2�2k�1�

Z
Q0i�0;1�

jui��2k � 1�y0; �2k � 1�yN �j dy0dyN

�
X

i

eN
i

1

2k � 1

Z 1
2

ÿ1
2

Z
Q0i�0;1�

jui��2k � 1�y 0; z�j dy0dz;

where z :� �2k � 1�yN . Since the inner integral tends toZ
Q0i�0;1�

jui�y0; z�j dy0

as k !1, and in view of (4.13) and (4.14), we conclude that

lim
d
lim

k
jud;k�x� ÿ g�x�jL1�A� � 0:
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Next we show that, for each d > 0, rud;k *
�
0 as k !1. To this end, ®x

d > 0 and let / 2 C0�A�.Z
A

rud;k�x�/�x� dx

�
X

i

Z
Di;k

2k � 1

ei
rui �2k � 1� xÿ xi

ei

� �
� /�x� dx

�
X

i

ei
Nÿ1

Z
Qi�0;1�\ y:jyN j< 1

2�2k�1�

n o�2k � 1�rui��2k � 1�y�/�xi � eiy� dy

�
X

i

ei
Nÿ1

Z1
2�2k�1�

ÿ 1
2�2k�1�

Z
Q0i�0;1�

�2k � 1�rui��2k � 1�y0; �2k � 1�yN �

� /�xi � eiy0; xi � eiyN � dy0dyN

�
X

i

ei
Nÿ1

Z 1
2

ÿ1
2

Z
Q0i�0;1�

rui��2k � 1�y0; z�/�xi � eiy0; xi � eiz�2k � 1�ÿ1� dy0dz:

Let

Mi�z� :�
Z

Q0i�0;1�

rui�y0; z� dy0:

Due to the periodicity of rui��; z� and the fact that /�xi ÿ eiy0;
xi ÿ eiz�2k � 1�ÿ1� converges uniformly, as k !1, to /�xi ÿ eiy0; xi�, we haveZ

A

rud;k�x�/�x� dx !
k!1

X
i

ei
Nÿ1

Z1=2
ÿ1=2

Mi�z�
Z

Q0i�0;1�

/�xi � eiy0; xi� dy0dz

�
X

i

ei
Nÿ1

Z1=2
ÿ1=2

Mi�z� dz
Z

Q0i�0;1�

/�xi � eiy0; xi� dy0:

By (4.11),
R 1=2
ÿ1=2 Mi�z� dz � 0, and so rud;k *

�
0 as k !1. Using Theorem

2.8, we can ®nd h 2 SBV �A;RD� such that

rh � G; jjDhjj�A� 2 C�N�jGjL1�A;Md�N �; �4:15�

and, by virtue of Lemma 2.9, we consider piecewise constant functions
vk 2 SBV �A;RD� such that vk ! h in L1 and jjDvkjj�A� ! jjDhjj�A�. Set

wd;k�x� :� ud;k�x� � h�x� ÿ vk�x�:
By the de®nition of I1, �H2� and �H4�, we have
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I1�g;G;A�

2 lim inf
d!0�

lim inf
k!1

(Z
A

W �rwd;k�x�� dx�
Z

S wd;k� �\A

w��wd;k�x��� dHNÿ1�x�
)

2 lim inf
d!0�

lim inf
k!1

(Z
A

W �rud;k�x�� dx� C
Z
A

jGj dx

�
Z

S�ud;k�\A

w��ud;k�x��� dHNÿ1�x�

�
Z

S�h�\A

Cj�h��x�j dHNÿ1�x� �
Z

S�vk�\A

Cj�vk��x�j dHNÿ1�x�
)

2 C�N�
Z
A

jG�x�j dx

� lim inf
d!0�

lim inf
k!1

X
i

" Z
Di;k

W
�2k � 1�

ei
rui �2k � 1� xÿ xi

ei

� �� �� �
dx

�
Z

xi� eiS�ui�
2k�1 \Di;k

w �ui� �2k � 1� xÿ xi

ei

� �� �� �
dHNÿ1�x�

#

� C�N�
Z
A

jG�x�j dx

� lim inf
d!0�

lim inf
k!1

(X
i

eN
i

Z 1
2�2k�1�

ÿ1
2�2k�1�

Z
Q0i

W

 
�2k � 1�

ei
rui��2k � 1�y�

!
dy0dyN

�
X

i

eNÿ1
i

Z
S�ui�
2k�1\Qi\

�
y:jyN j 2 1

2�2k�1�
	 w �ui� �2k � 1�y� �� � dH Nÿ1�y�

)

� C�N�
Z
A

jG�x�j dx

� lim inf
d!0�

lim inf
k!1

(X
i

eNÿ1
i

ei

2k � 1

Z 1
2

ÿ1
2

Z
Q0i

W

 
�2k � 1�

ei
rui ��2k � 1�y 0; z�

!
dy0dz

�
X

i

eNÿ1
i

�2k � 1�Nÿ1
Z

S�ui�\�2k�1�Qi\ y:jyN j�1
2f g
w��ui��y�� dHNÿ1�y�

)
: �4:16�
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Next, we note that, for each i, ei�d� ! 0� as d! 0�, and, due to the coer-
civity of W , f�2k � 1�rui��2k � 1�y0; z�g are uniformly bounded in k; hence,
using �H5�, we may replace

ei

2k � 1
W

2k � 1

ei
rui��2k � 1�y0; z�

� �
in (4.16) by

1

2k � 1
W 1 �2k � 1�rui��2k � 1�y0; z�� � � W 1 rui��2k � 1�y0; z�� �:

Using the periodicity of the ui, (4.12), and then (4.10), we obtain

I1�g;G;A� 2 C�N�
Z
A

jG�x�j dx� lim inf
d!0�

X
i

(
eNÿ1

i

Z
Qi

W 1�rui�y�� dy

� eNÿ1
i

Z
S�ui�\Qi

w��ui��y�� dHNÿ1
)

2 C�N�
Z
A

jG�x�j dx� lim inf
d!0�

X
i

eNÿ1
i h1��g��x�; mi� ÿ d� �

2 C�N�
Z
A

jG�x�j dx

� lim inf
d!0�

(X
i

" Z
S�g�\Qi

h1��g��x�; m�x��dHNÿ1�x� ÿ d

#
ÿ d

X
i

eNÿ1
i

)
:

By (4.14), d
P

i e
Nÿ1
i � O�d� and thus we conclude that

I1�g;G;A� 2 C�N�
Z
A

jG�x�j dx�
Z

S�g�\A

h1��g��x�; m�x�� dHNÿ1�x�: �4:17�

Case 2. Let E be an arbitrary set of ®nite perimeter, and assume that W is
coercive. The proof of inequality (4.9) for g � kvE follows from the argument
given in [7] (Step 2d of the proof of Proposition 5.1), and from the lower
semicontinuity of I�g;G;X� for coercive W (see Proposition 5.1). Indeed,
consider a sequence of polygons En such that PerX�En� ! PerX�E�,
LN �En4E� ! 0, and vEn

! vE in L1. In view of the upper semicontinuity of
h1�k; �� (Proposition 4.3), we may apply Proposition 3.6 in [7] to obtain a
sequence of continuous functions hm : RN ! �0;1� such that

h1�k; y� 2 hm�y� 2 Cjyj for every y 2 RN ;

h1�k; y� � inf
m

hm�y�;

where h1�k; �� has been extended to RN as a homogeneous function of degree
one. Thus, setting gn � kvEn

, using (4.9) and the fact that LN �EnDE� ! 0,
Per�En� ! Per�E�, we have
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I�g;G;A�2 lim inf
n!�1 I�gn;G;A�

2 C�N�
Z
A

jG�x�j dx� lim
n

Z
@En\A

h�k; mn�x��dHNÿ1�x�

2 C�N�
Z
A

jG�x�j dx� lim
n

Z
@En\A

hm�mn�x�� dHNÿ1�x�

2 C�N�
Z
A

jG�x�j dx�
Z

@E\A

hm�m�x�� dHNÿ1�x�:

Letting m! �1 and using the Monotone Convergence Theorem, we obtain

I�g;G;A� 2 C�N�
Z
A

jG�x�j dx�
Z

S�g�\A

h�k; m�x�� dHNÿ1�x�:

Case 3. To complete the proof of the upper bound, we remove the coercivity
assumption on W . Let W e��� � W ��� � ej � j. Then, by (4.9) we have

I1�g;G;A�2 I e
1�g;G;A�

2 C
Z
A

1� jG�x�j dx�
Z
A

he
1��g�; mg� dH Nÿ1; �4:18�

and given d > 0, by de®nition of h1 we may ®nd u 2 SBV �Qm�0; 1�;Rd� such
that uj@Qm

� uk;m,
R

Qm
rudx � 0, and

d� h1�k; m� 3
Z
Q

W 1�ru� dx�
Z

S�u�

w��u�; mu� dH Nÿ1:

Thus

he
1�k; m�2

Z
Q

W 1�ru� dx� ejruj �
Z

S�u�

w��u�; mu� dH Nÿ1

2 h1�k; m� � d� ejrujL1 ;
and we conclude that lim supe he

1�k; m� 2 h1�k; m� � d, from which we obtain

I1�g;G;A� 2 C
Z
A

�1� jG�x�j� dx�
Z
A

h1��g�; mg� dH Nÿ1:

It su�ces to let d! 0�. (

Theorems 3.2 and 4.4 reduce to Theorem 2.16. We now state and prove
the counterpart result to Theorem 4.4 for p > 1.

Theorem 4.5. Let p > 1 and W ;w satisfy �H1�p, �H2�, and �H4�. If
g 2 L1�X;Rd�, then

dIp�g;G; ��
d�jg� ÿ gÿjH Nÿ1bS�g�� �x� �

1

j�g��x�j h��g��x��;
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where h is given by (2.17).

Proof. The proof is very similar to that of Theorem 4.4 except at the fol-
lowing points, where the growth of W and the convergence of admissible
sequences fung become relevant.
Step 1. For the lower bound, we apply the same argument to construct un;e

and to ®nd a ®nite, nonnegative Radon measure l such that

dl
d�jg� ÿ gÿjH Nÿ1bS�g�� �x0� �

1

j�g�x0��j lime!0�
lim

n!1

�
e
Z

Qm�x0�

W
1

e
run;e�y�

� �
dy

�
Z

S�un;e�\Qm�x0�

w��un;e��y�; mun;e�y��dHNÿ1�y�
�
:

Assuming that W is coercive, i.e., there exists a constant C > 0 such that
CjAjp 2 W �A� for all A 2Md�N , and using the fact that the density is ®nite
H Nÿ1-a.e. (see Theorem 2), we extract a diagonal subsequence vk from
un;e�y� :� un�x0 � ey� ÿ gÿ�x0� such that

lim
k

vk�y� ÿ u�g��x0�;m�x0��y�
�� ��

L1�Qm�x0��
� 0; rvk ! 0 in Lp�Qm�x0��0; 1��

dl
d�jg� ÿ gÿjH Nÿ1bS�g�� �x0� 3

1

j�g�x0��j lim inf
k!1

Z
S�vk�

w��vk��y�; mvk �y�� dH Nÿ1�y�:

The lower bound now follows by Proposition 4.2. Removal of the coercivity
assumption can be achieved by means of an argument identical to the one
used in Step 1, Case 2, of Theorem 3.2.
Step 2. For the upper bound, we proceed with the construction of ud;k�x� as in
(4.11), (4.12), noting that, in this case, rud;k�x� � 0 a.e. By Theorem 2.8, let
h 2 SBV �A;Rd� be such that

rh � G; jjDhjj�A� 2 C�N�jGjL1�A;Md�N �:

By Lemma 2.9 there exist piecewise constant functions vk 2 SBV �A;RD� such
that vk ! h in L1 and jjDvkjj�A� ! jjDhjj�A�, and we de®ne

wd;k�x� :� ud;k�x� � h�x� ÿ vk�x�:
Then

I�g;G;A� 2 C
Z
A

�1� jG�x�jp� dx

� lim inf
d!0�

lim inf
k!1

Z
S�wd;k�\A

w��wd;k��x�; mwd;k � dH Nÿ1�x�:

The arguments carried out in (4.13)ÿ(4.17), except now involving only the
interfacial energy, allow us to conclude that
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I�g;G;A� 2 C
Z
A

�1� jG�x�jp� dx�
Z

S�g�\A

h��g��x�� dHNÿ1�x�

for the case when g � kvE and E is a polygon. Since h does not depend on the
normal to the jump set, the inequality for E of ®nite perimeter follows directly
by assuming coercivity of W , and applying Proposition 5.1, and then the
Lebesgue Dominated Convergence theorem to vEn

! vE. To remove the
coercivity assumption, we proceed, as in the case where p � 1 (Case 3 of Step
2 for Theorem 4.4), to obtain (4.18) with I e

p and he corresponding to
W e��� :� W ��� � ej � jp. For p > 1, he � h and the proof is complete. (

From Theorems 3.2 and 4.5, we have Theorem 2.17 for the case when
g 2 L1�X;Rd�. To complete the proof of Theorem 2.17, we remove this re-
striction.

Proof of Theorem 2.17. De®ne

J�g;G;X� :�
Z
X

Hp�rg�x�;G�x�� dx�
Z

S�g�

h��g�� dHNÿ1:

By Theorems 3.2 and 4.5, we know that Ip�g;G;X� � J�g;G;X� if
g 2 L1�X;Rd�. Let g 2 SBV �X;Rd� be arbitrary.
Step 1 (Lower bound). Fix d > 0 and let fung be an admissible sequence such
that un ! g in L1, run * G in Lp, and

d� Ip�g;G;X� 3 lim
n!1

(Z
X

W �ru� dx�
Z

S�un�

w��un�; mun� dH Nÿ1
)
:

After extracting a subsequence, we may assume that

W �ru�dLN � w��un�; mun�dHNÿ1 *
�

l; �4:19�
where l is a ®nite Radon measure. The arguments of Theorem 3.2, Step 1,
and Theorem 4.5, Step 1, allow us to conclude that

dl
dLN �x0� 3 Hp�rg�x0�;G�x0�� LN -a.e. x0 2 X;

dl
dj�g�jHNÿ1bS�g� �x0� 3

1

j�g��x0�j h��g�; mg� H Nÿ1-a.e. x0 2 S�g�: �4:20�

Clearly, (4.19), (4.20) yield

d� Ip�g;G;X� 3 J�g;G;X�:
Letting d! 0�, we conclude that

Ip�g;G;X� 3 J�g;G;X�:
Step 2 (Upper bound). Conversely, let n 2 N and consider /n as in the proof
of Lemma 2.20, i.e., /n 2 C1�Rd ;Rd� such that jr/n�x�jL1 2 1 and
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/n�x� :� x if jxj < en;
0 if jxj 3 en�1:

�
Let W be coercive. Since /n�g� ! g in L1, Proposition 5.1 implies that

Ip�g;G;X� 2 lim inf
n!1 Ip�/n�g�;G;X� � lim inf

n!1 J�/n�g�;G;X�; �4:21�

where we have used the fact that Ip�g;G;X� � J�g;G;X� whenever g 2 L1.
Next, we note that by �H2�, we have for all k 2 Rd ,

h�k� 2
Z

S�u�

w��uk;eN �; eN � dH Nÿ1 2 Cjkj;

and we claim that there exists a constant C such that for all A;B 2Md�N , we
have

Hp�A;B� 2 C�1� jAj � jBjp�: �4:22�
Assuming that (4.22) holds, let

Xn :� x 2 X : jgÿ�x�j > en or jg��x�j > enf g
\ x 2 X : jgÿ�x�jf < en�1 or jg��x�j < en�1	:

We have

J��/n�g�;G;X� 2 J�g;G;X� � C
Z

fx:jg�x�j>eng

�1� jr�/n�g��j � jGjp� dx

� C
Z
Xn

j�g��x�j dHNÿ1�x�: �4:23�

It can be shown (see (3.19)±(3.22) of [7]) thatX2n

i�n

Z
Xi

j�g��x�j dH Nÿ1�x� 2
Z

S�g�\X

j�g��x�j dH Nÿ1�x�;

and so there exists i�n� 2 fn; . . . ; 2ng such thatZ
Xi�n�

j�g��x�j dH Nÿ1�x� 2
1

n

Z
S�g�\X

j�g��x�j dHNÿ1�x�:

Using the fact that the ®rst integrand in (4.23) is bounded independent of n,
and that LNfx : jg�x�j > eng ! 0, we conclude from (4.23) that

J�/i�n��g�;G;X� 2 J�g;G;X� � O
1

n

� �
;

which, together with (4.21), yields

Ip�g;G;X� 2 J�g;G;X�:
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Removal of the coercivity assumption follows the arguments given in Step 2,
Case 3, of Theorem 4.4. Here, we apply these arguments to both the densities
Hp and h.

It remains to prove (4.22). By virtue of Theorem 2.8 and Lemma 2.9, there
exist h 2 SBV �Q;Rd� and piecewise constant functions ~un such that rh � B
LN -a.e., jjDhjj�Q� 2 CjBj, ~un ! �Axÿ h� in L1, and

jjD~unjj�Q�ÿ!jAÿ Bj � jjDshjj�Q� 2 C�jAj � jBj�:
Let un :� ~un � h. By Proposition 3.1 and �H1�p, we have

Hp�A;B�2 lim inf
n!1

Z
Q

W �run� dx�
Z

S�un�

w��un�; mun� dH Nÿ1

2 W �B� � lim
n!1 jjDsunjj�Q�

2 C�1� jAj � jBjp�: (

5. Some Properties of the Energy

In this section we discuss certain properties of the energy I . We start with
lower semicontinuity with respect to the appropriate topology, under the
assumption that W is coercive.

Proposition 5.1. Assume that there exist constants C; c; such that
C�jAj ÿ c� 2 W �A� for all A 2Md�N . Let �gn;Gn�; �g;G� 2 SD�X� with
gn ! g in L1�X;Rd�, and Gn *

�
G. Then, for p 3 1,

Ip�g;G;X� 2 lim inf
n!1 Ip�gn;Gn;X�:

Proof. Without loss of generality, assume that lim infn Ip�gn;Gn;X� �
limn Ip�gn;Gn;X�. Due to the coercivity of W , we can ®nd a minimizing se-
quence for Ip�gn;Gn;X�, um

n , such that

Ip�gn;Gn� � lim
m!1E�um

n �; um
n !m gn in L1; rum

n *
�
m

Gn�x�:

Coercivity of W yields a uniform bound on frum
n g, and so we may extract a

diagonal subsequence in n;m; say vk :� umk
nk
, such that vk ! g in L1, rvk *

�
G,

and

E�vk� 2 Ip�gnk ;Gnk ;X� �
1

k
:

Thus

Ip�g;G;X� 2 lim inf
k!1

E�vk� 2 lim inf
n!1 Ip�gn;Gn;X�: (

Proposition 5.2. Assume that �H1�p; �H2�, and �H4� hold. Then Hp�A;B�,
de®ned by (2.16), is uniformly continuous in A and B.
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Proof. Let Am ! A. By Lemma 2.9, for each m there exists a sequence of
piecewise constant functions vn de®ned on Q such that

vn ! �Am ÿ A�x in L1; lim
n
jjDvnjj�Q� � jAm ÿ Aj:

Let fung be an admissible sequence for the limit description of Hp�A;B� given
in Proposition 3.1. Then the sequence fun � vng is admissible for Hp�Am;B�,
and using the subadditivity of w, (H4), together with the linear growth as-
sumption, we obtain for some constant C, independent of n;m,

E�un � vn� ÿ CjjDvnjj�Q� 2 E�un� 2 E�un � vn� � CjjDvnjj�Q�:
Taking the limit in n and then the in®mum over all admissible sequences un,
we obtain

Hp�Am;B� ÿ CjAÿ Amj 2 Hp�A;B� 2 Hp�Am;B� � CjAm ÿ Aj;

and continuity in A follows by letting m tend to in®nity. To prove continuity
with respect to B, consider Bm ! B. By Theorem 2.8 and Lemma 2.9, for each
m there exists h 2 SBV �Q;Rd� such that

rh � Bm ÿ B; jjDhjj 2 CjBm ÿ Bj;
and there exist piecewise constant functions vn such that vn ! ÿh in L1�Q;Rd�
and limn jjDvnjj�Q� � jjDhjj�Q�. Let fung be an admissible sequence for
Hp�A;B�. Then the sequence fun � h� vng is admissible for Hp�A;Bm�, and,
proceeding as before, we obtain

Hp�A;Bm� ÿ CjBÿ Bmj 2 Hp�A;B� 2 Hp�A;Bm� � CjBm ÿ Bj
and the result follows. (

In the following proposition we use the notion of inf-convolution, pre-
cisely, the inf-convolution of W and w is given by

�Wrw��A� :� inf W �Aÿ a
 b� � w0�a; b� : a 2 Rd ; b 2 SNÿ1� 	
:

Also, given f : Md�N ! R, Qf denotes the quasiconvex envelope of f , that is,

Qf �A� :� inf
1

LN �X�
Z
X

f �A�r/�x�� dx : / 2 W 1;1
0 �X;Rd�

8<:
9=;:

Proposition 5.3. Assume that �H1�p, �H2�ÿ�H4� hold, and that there exist
constants C; c; such that C�jAjp ÿ c� 2 W �A� for all A 2Md�N . Let
�g;G� 2 SD�X� and p 3 1. Then

inf
G2Lp�X;Md�N �

Z
X

Hp�rg�x�;G�x�� dx �
Z
X

inf
B2Md�N

Hp�rg�x�;B� dx:

In addition, if p � 1, then
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inf
B2Md�N

Hp�A;B� � Q�Wrw��A�:

Proof. For ®xed A 2Md�N , the de®nition of Hp implies that

inf
B2Md�N

Hp�A;B�

� inf
u

(Z
Q

W �ru� dx�
Z

S�u�

w��u�� dH Nÿ1 : u 2 SBV �Q;Rd�; uj@Q � Ax

)
;

which reduces to Q�Wrw��A� when p � 1, as was established in [7]. Hence, it
su�ces to construct for each e > 0 a function G 2 L1�X;Md�N � such that

Hp�rg�x�;G�x�� 2 inf
B

Hp�rg�x�;B� � e for LN -a.e. x 2 X:

To this end, let fn be a sequence of simple functions which converges in L1 to
rg, satis®es jfn�x�j 2 jrg�x�j, and such that fn�x0� ! rg�x0� for LN -a.e.
x0 2 Q. Assume that x0 is such a point. For every n, choose Gn�x0� 2Md�N

such that

Hp�fn�x0�;Gn�x0�� 2 inf
B2Md�N

Hp�fn�x0�;B� � e; �5:1�

and Gn��� is a simple function. De®ne
G�x0� :� lim sup

n!1
Gn�x0�;

where, upon extracting a suitable subsequence, the lim sup is taken compo-
nentwise. Note that for every n, Gn��� is measurable, and so G��� is measur-
able. In order to show that G��� is integrable, let u be an admissible function
for Hp�fn�x0�;Gn�x0�� such that

E�u� 2 Hp�fn�x0�;Gn�x0�� � e:

By �H1�p and (5.1) with B � fn�x0�, we have
E�u� 2 Hp�fn�x0�;Gn�x0�� � e

2 Hp�fn�x0�; fn�x0�� � 2e

2 Cjfn�x0�jp � 2e:

Thus, by Jensen's inequality and the coercivity of W , we deduce that

jGn�x0�jp �
���� Z

Q

rudx

����p 2
Z
Q

jrujpdx

2 CE�u� 2 C0�jfn�x0�jp � 2e� 2 C0�jrg�x0�jp � 2e�:
Hence, for almost every x0,
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Gn�x0�j j 2 C0 jrg�x0�jp � 2e� �1=p
;

and we conclude that G 2 L1�Q;Md�N �. Finally, by Proposition 5.2 and by
virtue of (5.1), for every B 2Md�N we have

Hp�rg�x0�;G�x0�� � lim
n!1Hp�fn�x0�;Gn�x0��

2 lim
n!1Hp�fn�x0�;B� � e

� Hp�rg�x0�;B� � e;

and so

Hp�rg�x0�;G�x0�� 2 inf
B

Hp�rg�x0�;B� � e: (

As a corollary, we obtain integral representations for the relaxation in the L1

topology of

E�g� �
Z
X

W �rg�x�� dx�
Z

S�g�

w��g��x�; mg�x�� dHNÿ1�x�:

Set

F�g� :� inf
fung

lim inf
n!1 E�un� : un 2 SBV ; un ! g in L1�X;Rd�

n o
:

Corollary 5.4. Assume that �H1�p, �H2�ÿ�H4� hold, and that there exist
constants C; c; such that C�jAjp ÿ c� 2 W �A� for all A 2Md�N . If p > 1, and if
g 2 SBV �X;Rd�, then

F�g� �
Z
X

inf
B2Md�N

Hp�rg�x�;B� dx�
Z

S�g�

h��g�� dH Nÿ1;

where Hp and h are de®ned by �2:16� and �2:17�, respectively. If p � 1, and if
g 2 W 1;1�X;Rd�, then

F�g� �
Z
X

Q�Wrw��rg� dx:

Remark 5.5. A representation of F�g� for p � 1 and for all g 2 BV �X;Rd�
was obtained directly in [7], precisely,

F�g� �
Z
X

Q�Wrw��rg� dx�
Z
X

Q�Wrw�1�Dsg�:

Proof. Let p > 1 and assume that un; g 2 SBV �X;Rd�, g 2 Lp�X;Rd�, frung
is uniformly bounded in Lp, and un ! g in L1. Then, upon extracting a
subsequence, there exists G 2 Lp�X;Md�N � such that
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run * G in Lp�X;Md�N �
and so

inf
G2Lp

Ip�g;G� 2 F�g�:

Hence,

inf
G2Lp

Ip�g;G� �F�g�;

and the result now follows by virtue of (2.15) and Proposition 5.3. If p � 1
and ifrun are uniformly bounded in L1, then, up to a subsequence, there exist
m 2M�X� and G 2 L1�X;Md�N � such that

run *
�

m;
dm

dLN � G:

Thus

inf
G2L1

I0�g;G� 2 F�g�:

Hence
inf

G2L1
I0�g;G� �F�g�;

and the conclusion follows from (2.14), Lemma 2.18, and Proposition 5.3. (

Next, we search for relations between I�g;rg;X� (Ip or I0) and the relaxed
energy Z

X

QW �rg� dx:

By Theorem 3.2 and Lemma 2.18, if g 2 W 1;1�X;Rd�, then
I0�g;rg� � I1�g;rg�. Let I denote Ip.

Proposition 5.6. (i) The function A 2Md�N 7!Hp�A;A� is quasiconvex and
Hp�A;A� 2 QW �A�. In particular, if g 2 W 1;1�X;Rd�, then

I�g;rg;X� �
Z
X

Hp�rg�x�;rg�x�� dx 2
Z
X

QW �rg�x�� dx:

(ii) Let g 2 W 1;1�X;Rd�. Suppose either that W is convex, or W is quasiconvex
with linear growth i.e., cjAj 2 W �A� 2 CjAj for some constants c;C, and
w�k; m� 3 W 1�k
 m�. Then

I�g;rg� �
Z
X

W �rg�x�� dx:

(iii) A 2Md�N is such that W ���A� < QW �A� if and only if there exist a con-
stant a 2 R such that

I�g;rg� <
Z
X

QW �rg�x�� dx;

R. CHOKSIHOKSI & I. FONSECAONSECA96



where g�x� � Ax and w��� � aj � j.

Proof. (i) By de®nition of Hp (see (2.16)) we have

Hp�A;A� 2 inf

(Z
Q

W �ru� dx : u � Ax� /;/ 2 W 1;1
0

)
� QW �A�:

Therefore, if g 2 W 1;1�X;Rd�, then by Theorems 2.16 and 2.17 we obtain

I�g;rg� �
Z
X

Hp�rg;rg� dx 2
Z
X

QW �rg�x�� dx:

In order to prove that A 7! Hp�A;A� is a quasiconvex function, it su�ces to
apply Theorems 2.16 and 2.17 to Ip�g;rg�, to conclude that

Ip�g;rg� �
Z
X

Ĥp�rg;rg� dx�
Z

S�g�\X

ĥ��g�; mg� dH Nÿ1;

where we have used the lower semicontinuity property of Ip (see Proposition
5.1), and where Ĥp and ĥp are associated with Hp and with h (or h1 if p � 1),
through the formulas in Theorems 2.16 and 2.17. Thus

Hp�A;B� � Ĥp�A;B�;

and, in particular,

Hp�A;A� � Ĥp�A;A� 2 inf

(Z
Q

Hp�ru;ru� dx : u 2 W 1;p�Q;Rd�; uj@Q � Ax

)

� QHp�A;A�:

(ii) For g 2 W 1;1, I1�g;G;X� � I0�g;G;X�, and hence it su�ces to consider
Ip, p 3 1. Suppose that W is convex, and let un ! g, run *

� rg. Then, using
Jensen's inequality we conclude that

lim inf
n!1 E�un� 3 lim inf

n!1

Z
X

W �run� dx 3
Z
X

W �rg� dx:

Taking the in®mum over all such sequences fung, we obtain
Ip�g;rg� 3

R
X W �rg� dx, and the result follows by part (i).

Next, assume that W is quasiconvex with linear growth, and that
w�k; m� 3 W 1�k
 m�. Take un ! g, run *

� rg. Then

Bulk and Interfacial Energy 97



lim inf
n!1 E�un� 3 lim inf

n!1

(Z
X

W �run� dx�
Z

S�un�

W 1��un� 
 mun� dH Nÿ1
)

�: lim inf
n!1 G�un�:

By a result of FONSECAONSECA & MUUÈ LLERLLER (see [35]), G�un� is lower semi-continuous
with respect to the L1 topology, and so

lim inf
n!1 E�un� 3 G�g� �

Z
X

W �rg� dx:

This yields I�g;rg� 3
R

X W �rg� dx, and the converse inequality follows
from (i).

(iii) Let w��� � aj � j and suppose that W ���A� < QW �A�: Then there exist
an A 2Md�N and f 2 L1�Q;Md�N � such thatZ

Q

f �x� dx � 0;

Z
Q

W �A� f �x�� dx � QW �A� ÿ e

for some e > 0. Let Qd :� Q�0; 1ÿ d�, where d is chosen su�ciently small so
that

W �A�LN �QnQd� < 1
2 e:

Set

Cd :� 1

LN �Qd�
Z

QnQd

f �x� dx; Cd ! 0 as d! 0�:

By Theorem 2.8, there exists / 2 SBV �Qd;R
d� such that r/ � f ,

R
Qd

/ � 0,
jjD/jj�Qd� 2 Cjf jL1 , and by (2.5) we haveZ

@Qd

jtr /j dH Nÿ1 2 Cjf jL1 :

De®ne

u�x� :� Ax� 0 if x 2j Qd,
/�x� � Cdx if x 2 Qd.

�
Clearly uj@Q � Ax, and from the fact that f has zero average over Q, it follows
that

R
Qrudx � A. Thus, by de®nition of Hp�A;A� and by �H1�p,

Hp�A;A� 2
Z
Q

W �ru� dx� a
Z

S�u�

j�u�j dHNÿ1

2
e
2
�
Z
Q

W �A� f �x�� dx� C�Cd� � aC0jf jL1

2 QW �A� ÿ e
2
� C�Cd� � aC0jf jL1 :
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Choosing a and d su�ciently small so that

C�Cd� � aC0jf jL1 < 1
2 e;

we obtain

Hp�A;A� < QW �A�:

Conversely, if

Ip�g;rg� <LN �A�QW �A�;

then

Hp�A;A� < QW �A�

and so

W ���A� � inf

(Z
Q

W �A� u� dx :

Z
Q

udx � 0

)

2 inf

�Z
Q

W �ru� dx�
Z

S�u�\Q

w��u�; m� dH Nÿ1

: u 2 SBV �Q;Rd�;ru � A� u;
Z
Q

u dx � 0; uj@Q � Ax
�

� Hp�A;A� < QW �A�: (

We note that Corollary 5.4 has the interpretation that, for a given mac-
roscopic deformation g 2 W 1;1�X;Rd�, the energy associated with the optimal
microstructure is given by the relaxation of E�g� in the L1 topology (BV
weak). Precisely, by Theorem 2.17, Proposition 5.3, and Corollary 5.4, we
have

inf
G2Lp�X;Mp�N �

Ip�g;G;X� �
Z
X

Q�Wrw��rg� dx�
Z

S�g�\X

h��g�; mg� dH Nÿ1

�
Z
X

Q�Wrw��rg� dx:

Moreover, if we assume W to be coercive, then the direct method of the
calculus of variations can be implemented to show that the in®mum over all
microstructures is achieved. Indeed, let

inf
G2Lp�X;Mp�N �

Ip�g;G;X� � lim
n!1 Ip�g;Gn;X�:
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For every n choose vn such that jgÿ vnjLp�X;Rd � < 1=n and Ip�g;Gn;X� 3
E�vn� ÿ 1=n: Then frvng is bounded in Lp, and, upon extracting a subse-
quence, we have rvn * n in Lp for some n 2 Lp�X;Mp�N �: Finally, by
Proposition 4.3 we conclude that

Ip�g; n� 2 lim inf
n!1 Ip�vn;rvn�

2 lim inf
n!1 E�vn�

� inf
G2Lp�X;Mp�N �

Ip�g;G;X�:

There are cases in which

I0�g;G;X� 3 I0�g;rg;X�;

for all G 2 L1�X;Md�N �, e.g., if W is quasiconvex with linear growth and
w�k; m� 3 W 1�k
 m�. Hence, if variational principles are accepted for this
model, we may interpret this result as evidence that for this particular crystal
it is energetically more costly to form defects. On the other hand, there are
simple examples in which

inf
G2L1

I0�g;G;X� < I0�g;rg;X�:

Consider W ��� � j � j and w��; m� � aj � j. Using Corollary 5.4, Proposition 5.6
(ii), and Theorem 2.14 in [7], we haveZ

X

jrg�x�j dx � I0�g;rg� 3 inf
G2L1

I0�g;G;X�

� F�g� �
Z
X

min�a; 1�jrg�x�j dx:

Hence, if a 3 1, this inequality is in fact an equality, and if a < 1, then the
inequality is strict.

We end with the conjecture that for ®xed p,

Hp�A;B� � F1�B� � F2�Aÿ B�

for some functions F1 and F2. Note that the conjecture is trivially satis®ed in
the case where only surface energy is present, i.e., when W � 0. This situation
may occur when the sample is so small that interfacial energy overtakes the
bulk contribution. It is also easy to check that it is satis®ed when W is convex,
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regardless of w. Proving this conjecture would con®rm what was postulated
in the Introduction. Precisely, the energy functional associated with a
structured deformation of a crystal should involve a measure of the dis-
crepancy between the macroscopic and microscopic strains rg , G, respec-
tively. Such a result could motivate the use of Hp as the total free (stored)
energy in computing stress at equilibrium. Work in this direction has already
begun (see [24, 38 and 16]).
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