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Abstract We consider mass-constrained minimizers for a class of non-convex energy
functionals involving a double-well potential. Based upon global quadratic lower
bounds to the energy, we introduce a simple strategy to find sufficient conditions
on a given critical point (metastable state) to be a global minimizer. We show that
this strategy works well for the one exact and known metastable state: the constant
state. In doing so, we numerically derive an almost optimal lower bound for both
the order–disorder transition curve of the Ohta–Kawasaki energy and the liquid–solid
interface of the phase-field crystal energy.We discuss how this strategy extends to non-
constant computed metastable states, and the resulting symmetry issues that one must
overcome. We give a preliminary analysis of these symmetry issues by addressing the
global optimality of a computed lamellar structure for the Ohta–Kawasaki energy in
one (1D) and two (2D) space dimensions.We also consider global optimality of a non-
constant state for a spatially in-homogenous perturbation of the 2D Ohta–Kawasaki
energy. Finally we use one of our simple quadratic lower bounds to rigorously prove
that for certain values of the Ohta–Kawasaki parameter and aspect ratio of an asym-
metric torus, any global minimizer v(x) for the 1D problem is automatically a global
minimizer for the 2D problem on the asymmetric torus.
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1 Introduction

Pattern formation in complex systems (both physical and biological) has attracted
much attention in applied mathematics and condensed matter physics. A classical
viewpoint, emerging from ideas of Turing, has been that pattern formation outside
of thermal equilibrium can be captured via bifurcations of a homogeneous (thermal
equilibrium) state, wherein patterns are classified according to linear instabilities of the
homogeneous state (cf. Cross andHohenberg 1993). On the other hand, in systems that
are driven out of thermal equilibrium it is often the case that there is some non-convex
energy functional associated with the phenomenon, and the PDE models used are
indeed variational; that is, they represent a gradient flow (with respect to some metric)
of a postulated “energy.” We call such systems energy-driven, and often periodic
pattern formation is a direct consequence of the competition between different terms
in the energy (Seul and Andelman 1995; Kohn 2007).

In this article, we address a ubiquitous class of non-convex functionals associated
with energy-driven pattern formation, focusing on two paradigms: the Ohta–Kawasaki
energy (Ohta andKawasaki 1986) used tomodel self-assembly of diblock copolymers,
and a variant of the Swift–Hohenberg energy (Swift and Hohenberg 1977; Cross
and Hohenberg 1993; Elder et al. 2002) used in phase-field crystal modeling. These
functionals and the associated variational problems are defined for order parameters u
with fixed relative average m ∈ (−1, 1) (conserved “mass”). They share the following
common features:

• They are based upon a double-well potential regularized with higher-order terms.
As such they may be viewed as offsprings of the ubiquitous Ginzburg–Landau
functional. Thewells represent two preferred states (phases) of the order parameter
u. Energetically, the additive regularization prefers pure phases—regions of space
wherein u is essentially constant.

• They also contain a term that competes energeticallywith the regularization, favor-
ingmodulations (oscillations) of the order parameter u. This competition is respon-
sible for periodic pattern formation, that is, minimizers tend to be periodic on an
intrinsic scale. In addition to the mass parameter m, a parameter denoted here by
γ (or ε) weighs the relative importance of the different terms. Together, these two
parameters control the pattern morphology of minimizers.

• The constant state u ≡ m remains a critical point for all values of γ (resp. ε).
• For most points in the γ (resp. ε) versus m phase plane, the associated energy
landscape is highly non-convex with a tremendous number of critical points and
local minimizers around which the energy landscape is relatively “flat”.

This last feature presents many difficulties in computing local and global minimiz-
ers. In particular, a gradient flow starting from any given state (for example, a random

123



J Nonlinear Sci (2015) 25:539–582 541

state) may appear to converge to a state that is not a local minimizer. Using gradient
dynamics alone, one cannot distinguish between stable and unstable critical points,
since they are both identified as solutions for which the relative change in the order
parameter or the energy between time steps is smaller than some tolerance level. We
call such states metastable. These include states that are sufficiently “near” to local
minimizers that the gradient dynamics are so slow that solutions appear to be stable.
This sort of dynamic metastability can be misleading in the sense that after a long
time, the solution undergoes drastic change. Techniques for dealing with metastability
and highly non-convex energy landscapes often belong to the broad class of statistical
methods that include techniques of simulated annealing. They were created to navi-
gate through a complex energy landscape, surpassing energy barriers in search of a
global minimizer. An example of such a technique is spectral weighting or spectral
projection (Choksi et al. 2011). This technique is used in Fig. 1 to show the vast array
of metastable states. They show final metastable states for simulations of the H−1 gra-
dient flow of the (OK) functional with m = 0.25, γ = 10. In each case, we start with
random initial data but use several iterations of spectral projection to push the flow
into a metastable state. Figure 2 shows another metastable state resulting from straight
gradient flow with random initial conditions. While this structure exhibits defects and
a lack of symmetry, it is not clear as to the type of metastable state, e.g., dynamically
metastable or local minimizer. Note that the hexagonally packed spots in Fig. 1 have
the lowest energy per unit area, and we believe that this represents a depiction of the
ground state.

Clearly if one wants to address the energy landscape of a non-convex functional
with a goal of describing global minimizers throughout the phase plane, neither the
local analysis around critical points, nor the solution of a gradient flow from any given
state, is sufficient. Moreover, in contrast to 2D pattern formation where simple stripes
and spots form the basis of the overriding patterns, the analogous class of metastable
and minimizing patterns in 3D is far more complex, and any sort of classification is as
yet unclear. Thus, studying 3D pattern formation from purely the PDE point of view is
unproductive without guidance from the overall energy landscape. A long-term goal
is to exploit the structure of the energy functional to

• develop verification strategies (based upon sufficient conditions) for determining
whether or not a computed steady state is a global minimizer;

• develop and explore tools of simulated annealing for navigating through the non-
convex energy landscape in order to access low energy states.

In this article, we focus on the first goal by deriving global quadratic lower bounds
to the energy about a given metastable state. In Sect. 3, we consider the simplest, so-
called disordered, state associated with a constant order parameter. For any fixed m,
when γ (resp. ε) is sufficiently small, the constant state u ≡ m becomes energetically
favorable. We derive a new strategy to determine when the disordered state is the
(unique) globalminimizer.Moreprecisely,wefinda lower boundon theorder–disorder
curve (ODT) in the phase plane, which is simply the curve belowwhich the disordered
state is the unique global minimizer. Note that a standard (local) technique pertaining
to the ODT (or in fact any phase transition) is via linear stability analysis (Cross and
Hohenberg 1993). Linear stability analysis about the constant state gives an upper
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Fig. 1 Metastable states associated with the gradient flow of the Ohta–Kawasaki (OK) functional with
m = 0.25, γ = 10. The first result (hexagonally packed spots) has the lowest energy per unit area, and
we believe it represents a depiction of the ground state. The energy densities of the states are (l–r) top row
0.1218, 0.1234, 0.1263 and bottom row 0.1239, 0.1263, 0.1265

Fig. 2 A metastable state
obtained by running a gradient
flow starting with random initial
conditions. Here
m = 0.25, γ = 10, while the
relatively high energy density is
0.1290. Note that the state
exhibits defects and a lack of
symmetry

bound on the true ODT, since above the linear stability curve the constant state is
linearly unstable and hence cannot possibly be a minimizer. From the point of view of
global minimization, this gives little information. What does give precise information,
and requires a different argument, is a lower boundon theODT; this is our strategy here.
It is simple and based upon a very common theme in themodern calculus of variations:
Replace a non-convex variational problem with a “suitable” convex problem that one
can solve. In Sects. 4 and 5, we discuss how this strategy can be used to find sufficient
conditions on non-constant computed metastable states to be global minimizers.
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Let us give a few details about our simple strategy. As we explain in the next
section, the class of non-convex variational problems considered here all take the
form: Minimize

F[u] = a(u, u) +
∫

Ω

1

4
(1 − u2)2dx,

over all u with average m in some Sobolev space. Here, a denotes a bilinear form on
the Sobolev space. We are interested in verifying whether a given critical point v is a
global minimizer of F . This amounts to showing

F[v + f ] − F[v] ≥ 0, ∀ f ∈ H,

whereH is the subspace of mean zero functions in the Sobolev Space. Using the fact
that v is a critical point, i.e., vanishing first variation in the sense of (4.2), we have

F[v + f ] − F[v] = a( f, f ) +
∫

Ω

(
3v2

2
− 1

2

)
f 2 + v f 3 + f 4

4
dx. (1.1)

Using the structure of F , we now attempt to bound from below the right-hand side by
a convex quadratic functional Q[ f ] = Q( f, f ).1 Then if the quadratic bilinear form
Q is positive semi-definite, i.e., for some C ≥ 0

Q( f, f ) ≥ C
∫

Ω

f 2dx,

then v will be the global minimizer for the particular choice of parameters γ (resp. ε)
and m. Note that a, and hence Q and the constant C , will depend on these parameters,
and moreover, Q will also depend on v. Thus, sufficient conditions for global mini-
mality are transferred to linear conditions based upon the positivity of the eigenvalues
of an associated linear operator onH. Both the structure of v and the energy functional
F will be used deriving the lower bound Q. We present two approaches:

1. The first approach is particularly simple and based upon elementary inequalities
(e.g., the Cauchy–Schwarz inequality in the L2 sense).

2. The second approach uses more information about the functional by invoking the
Cauchy–Schwarz inequality in the inner product induced by the second variation
bilinear form which is simply a together with the quadratic terms in (1.1).

These approaches allow us to numerically compute values for C .
As we show in Sect. 3, this strategy works very well for the simplest critical point,

the constant state v ≡ m. The constant state is indeed special as it remains a critical
point throughout the entire phase plane; moreover, it is stable throughout a region of
the phase plane. In Sects. 4 and 5, we specialize to the Ohta–Kawasaki functional and

1 Given the simplicity of the idea of a global convex bound, it seems likely that it has been invoked in the
past. We note that the idea has been recently used in Fratta et al. (2014) to study profiles of point defects in
the Landau–de Gennes theory of liquid crystals.
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Fig. 3 Simple schematic
illustrating our approach versus
the standard local approach

address non-constant critical points. Non-constant states are particularly important
as rigorous results about global minimizers for these are scarce (cf. Choksi 2012
and the references therein). On the flat torus, the energy is invariant under certain
symmetry transformations, and this results in degeneracy issues for our lower bounds.
These issues require one to constrain the set of possible perturbation functions f . In
Sect. 4.3, we argue that a computed lamellar state in 1D is nearly optimal. In Sect. 4.4,
we computed a lamellar state in 2D, but at present, we give only a partial picture as a
result of the larger number of symmetry transformations. However, by working on an
asymmetric rectangular torus, we show that our method is successful (Sect. 4.5). In
Sect. 4.6, we address global optimality of a computed metastable state for a perturbed
functional that includes a spatially non-symmetric potential. In Sect. 5, we use our
first lower bound to rigorously prove that for certain values of the Ohta–Kawasaki
parameter and aspect ratio of an asymmetric rectangular torus, any global minimizer
v(x) for the 1D problem on the torus is automatically a global minimizer for the 2D
problem on the asymmetric 2D torus. Combining this with previous work (Müller
1993; Ren and Wei 2003; Yip 2006) on minimizers in 1D, we obtain a proof of the
existence of periodic, lamellar global minimizers on certain 2D domains.

Given that our strategy will reduce to linear analysis based upon a critical point, it
is important to differentiate our analysis with standard local perturbation theory that
is also based upon a linear operator about a critical point. Figure 3 illustrates the dif-
ference via a simple non-convex finite-dimensional energy (in black). Focusing on the
critical point at x = 0, the top parabola (in blue) on the left illustrates the standard the-
ory based upon the analysis of an approximating convex (parabolic) function, which is
locally a good “fit” at x = 0. On the other hand, the bottom parabola (in red) illustrates
our approach based upon the analysis of a convex (parabolic) lower bound to the entire
energy. For this finite-dimensional case, it is clear that one could simply choose the
convex hull of the energy. In our infinite-dimensional setting, our strategy will be to
find a “good” quadratic lower bound based upon information about the energy F .

We end with a few important remarks concerning our focus on global minimizers.2

For any physical application, one could certainly argue that the ground state is in fact

2 We must acknowledge that there are interesting phenomena at the level of critical points to Swift–
Hohenberg-type energies. Of particular interest here are localized patterns (see for example Beck et al.
2009). There is also work on localized patterns for the Ohta–Kawasaki energy (Glasner 2010).
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not accessible and hence have reservations for a study that is focused on its structure
and how to reach it. Indeed, even if the energy has direct physical meaning, most
thermodynamical principles do not dictate global energy minimization. On the other
hand, global energy minimization has often proved to be a convenient postulate for
gaining insight into a variety of phenomena. In the current situation, without guidance
from the energy onewould have noway ofweeding out “non-desirable” (non-physical)
metastable states; this is particularly pertinent in 3Dwhere the number and complexity
of metastable states is considerably higher. Thus, even if a global minimizer is not
the eventual goal, strategies for navigating the energy landscape to achieve states of
lower energy are of fundamental importance, and any results or methods which give
insight into the overall energy landscape should prove fruitful. Moreover, we remind
the reader that while much work is concerned with the dynamics to a metastable state
(cf. Desai and Kapral 2009), these notions of dynamics are based upon a gradient flow
which is a priori not well-defined; in fact, a gradient flow involves a choice of a metric,
and based upon notions of entropy dissipation, one can debate the appropriateness of
using different metrics. While the L2 metric is often used without question, it has
recently been shown that the Wasserstein metric is a natural metric for the variational
interpretation of many time-dependent PDEs (cf. Jordan et al. 1998; Adams et al.
2011). For our class of mass-constrained problems, it is convenient to compute the
gradient in the Hilbert space H−1. Physicists call this the diffusive dynamics. For
certain problems, e.g., the standard Cahn–Hilliard problem, the H−1 dynamics can be
directly justified on purely physical grounds (Cahn and Hilliard 1958). However, for
other problems, for example the Ohta–Kawasaki energy, no such justification exists.

2 The Common Structure of the Energy Functionals

Webeginwith somenotation. Throughout this article,Ω denotes a flat torus inRn (usu-
ally n = 2 or 3). In other words, we invoke periodic boundary conditions throughout.
We denote the average of any function φ on Ω by

φ := −
∫

Ω

φ(x)dx = 1

|Ω|
∫

Ω

φ(x)dx.

When we do not average we use the notation

〈φ〉 :=
∫

Ω

φ(x)dx.

We denote the L2 inner product and norm of functions u and v in L2(Ω) by

〈u, v〉 :=
∫

Ω

u(x)v(x)dx, ‖u‖2 := 〈u, u〉.

Our functionals will be defined over functions in the Sobolev Space Hk(Ω),
k = 1, 2 with fixed average. The choice of k depends on the precise functional with
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k = 1 and 2, respectively, for the Ohta–Kawasaki and phase-field crystal function-
als. Perturbation functions will have mean zero, and hence we will often work in the
Hilbert space

H :=
{

f ∈ Hk(Ω)

∣∣∣∣ f = 0

}
, with either k = 1 or k = 2.

Wewill also use a version of the H−1 norm on functions in L2(Ω)with mean zero.
To this end, if u ∈ L2(Ω) with 〈u〉 = 0, then we define

‖u‖2H−1(Ω)
:= ‖∇(−
)−1u‖2.

That is,

‖u‖2H−1(Ω)
=

∫
Ω

|∇v2|dx where − 
v = u in Ω.

Note that this norm is simply the dual norm to H1 with respect to the L2 pairing. That
is,

‖u‖H−1(Ω) = sup
v∈H1(Ω)

〈u, v〉
‖∇v‖L2(Ω)

. (2.1)

We consider functionals of the following form:

F[u] = a(u, u) +
∫

Ω

1

4
(1 − u2)2dx (2.2)

defined over functions u ∈ Hk(Ω) with average u = m, for some fixed −1 < m < 1.
Since a constant plays no role in the minimization, we can equivalently write (2.2) as

F[u] = a(u, u) +
∫

Ω

u4

4
− u2

2
dx. (2.3)

Here a represents a bilinear form on Hk(Ω), for some appropriate choice of k ≥ 1.
Functionals (2.2) arise in different physical problems, for example, in phase transitions
in complex fluids, self-assembly of block copolymers, superconductivity, etc. Two spe-
cific examples are an appropriately rescaled version of the Ohta–Kawasaki functional
for self-assembly of diblock copolymers (see Ohta and Kawasaki 1986; Choksi et al.
2009) and a variant of the Swift–Hohenberg energy (Swift and Hohenberg 1977).

• The Ohta–Kawasaki functional, defined over

Hm := m + H =
{

u ∈ H1(Ω)

∣∣∣∣u = m

}
,
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is given by

(OK) F1[u] :=
∫

Ω

1

2
γ −2|∇u|2 + 1

2
|∇(−Δ)−1(u − m)|2 + 1

4
(1 − u2)2dx.

Note that
∫

Ω

|∇(−Δ)−1(u − m)|2dx =
∫

Ω

|∇v|2dx where − Δv = u − m in Ω.

In this case, the associated bilinear form a in (2.2), defined over Hm , is given by

a1(u1, u2) =
∫

Ω

1

2
γ −2∇u1 · ∇u2 + 1

2
∇w1 · ∇w2 dx, (2.4)

with −Δwi = ui − m in Ω .
• The phase-field crystal functional is an example of a Swift–Hohenberg-type func-
tional commonly used in models for pattern formation (Swift and Hohenberg
1977; Cross and Hohenberg 1993; Netz et al. 1997; Villain-Guillot and Andelman
1998). This particular variant3 Elder et al. (2002) and Emmerich et al. (2012) is
the functional defined over

Hm := m + H =
{

u ∈ H2(Ω)

∣∣∣∣u = m

}

by

(PFC) F2[u] :=
∫

Ω

1

2
u(q2

0 + Δ)2u + 1

2
(1 − ε)u2 + 1

4
(1 − u2)2dx.

For (PFC) the associated bilinear form in (2.2) is

a2(u1, u2) =
∫

Ω

1

2
(q2

0 + Δ)u1(q
2
0 + Δ)u2 + 1

2
(1 − ε)u1u2dx.

In what follows, we set q0 = 1.

In all these functionals, the order parameter u describes an average material density
and satisfies a fixed mass (or mass ratio) constraint: for a fixed m with −1 < m < 1,
u = m. The parameters γ (resp. ε) and m describe material properties and deter-
mine the morphology (structure) of minimizing states. More precisely, they deter-
mine the morphology of the domains, wherein u takes on one of two preferred val-
ues, and their diffuse interfaces. These patterns have an intrinsic length. For (OK),
this intrinsic length is set by γ , and results from the minimization via competition

3 This functional is also related to what is commonly called the Coleman–Mizel functional introduced in
1984 in the context of second-order materials, and then studied in Coleman et al. (1992). An interesting
asymptotic analysis of this functional appears in Cicalese et al. (2011).
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of the Dirichlet energy regularization with the long-range interaction repulsive term∫
Ω

|∇(−Δ)−1(u − m)|2dx. For (PFC), the intrinsic length is directly set by the para-
meter q0, which we will henceforth set to be 1. By integrating by parts in F2, we
find

∫
Ω

1

2
u(1 + Δ)2udx =

∫
Ω

u2

2
+ |Δu|2

2
− |∇u|2dx.

Hence we see it is now the negative of the Dirichlet energy, which favors modulations
and competes with the regularization |Δu|2.

3 Analysis for the Constant State and Lower Bounds on the ODT Curve

The order–disorder phase transition (ODT) occurs when there is a transition in the
global minimizer of the functional from the disordered (i.e., no phase separation) state
u(x) ≡ m. The curve in the γ (or ε) versus m plane differentiates two regimes: one
wherein the global minimizer is u(x) ≡ m and one wherein it is some state u(x) �≡ m,
which typically exhibits some symmetric pattern. One standard approach for comput-
ing the ODT curve is through a linear stability analysis about the state u(x) ≡ m. In all
these functionals, such a calculation overestimates the critical parameters γc and εc.
For instance, when the disordered state becomes unstable, the function u(x) ≡ m is
certainly not a global minimizer of the functional. In contrast, the state u(x) ≡ m may
be stable, yet still not minimize the functional. In our approach, we compute a region in
which u(x) ≡ m is guaranteed to be the global minimizer. We therefore underestimate
the exact ODT via a lower bound. However, we provide numerical evidence that this
underestimation is small.

We consider finite perturbations inH of the general energy F about the disordered
state. That is, we define the excess energy about the disordered state u ≡ m in direction
f ∈ H, to be δmF where

δmF[ f ] := F[m + f ] − F[m]
= a(m + f, m + f ) +

∫
Ω

1

4
(1 − (m + f )2)2 − a(m, m) − 1

4
(1 − m2)2dx

= a( f, f ) + 2a( f, m) +
∫

Ω

1

4
(1 − m2 − 2m f − f 2)2 − 1

4
(1 − m2)2dx

= a( f, f ) +
∫

Ω

(m3 − m) f +
(
3

2
m2 − 1

2

)
f 2 + m f 3 + f 4

4
dx

= a( f, f ) +
∫

Ω

(
3m2

2
− 1

2

)
f 2 + m f 3 + f 4

4
dx

= b( f, f ) + 1

4
〈 f 4〉 + m〈 f 3〉. (3.1)
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Note that the linear terms in f vanish as the constant state is a critical point (vanishing
first variation) of the energy functional.4 Here, we have incorporated the quadratic
terms into a new bilinear form b defined on H, i.e.,

b( f, g) := a( f, g) +
∫

Ω

(
3m2

2
− 1

2

)
f gdx. (3.2)

The form b( f, f ) is none other than 1/2 the second variation of the functionalF about
the critical point u ≡ m, taken in direction f . For (OK), this bilinear form is

b1( f, g) :=
∫

Ω

1

2
γ −2∇ f · ∇g + 1

2
∇w1 · ∇w2 + 1

2
(3m2 − 1) f gdx,

where

−Δw1 = f and − Δw2 = g.

For (PFC) with q0 = 1, the associated bilinear form is

b2( f, g) :=
∫

Ω

1

2
[(1 + Δ) f ][(1 + Δ)g] + 1

2
(3m2 − ε) f gdx.

Our general strategy is to seek a quadratic functional Q[ f ] defined onH such that

Q[0] = 0 and δmF[ f ] ≥ Q[ f ] for all f ∈ H.

Then if in addition Q[ f ] is positive semi-definite, i.e., Q[ f ] ≥ 0 for all f ∈ H, we
are guaranteed that the disordered state u(x) ≡ m is a global minimizer of F[u].

Note that b depends on the parameters γ (resp. ε) and m, and we are seeking
conditions for which u(x) ≡ m is a global minimizer. Hencewithout loss of generality,
we work in the parameter regime of positive-definite second variation

b( f, f ) > 0 for all f �= 0. (3.3)

We remark that this assumption may not in general hold when one analyzes a non-
constant state as b( f, f ) may only be positive semi-definite across parameter space
due to certain symmetry invariances of the energy. The degeneracy due to symmetry
does not, however, effect the constant state.

We now use the trivial consequence of (α + β)2 ≥ 0 that

for α > 0 and any β α + 2β ≥ −β2

α
, (3.4)

4 For example, in (OK) the term a( f, m) = 0 trivially, while in (PFC) the term a( f, m) = 0 follows from
〈 f 〉 = 0.
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applied to

α = 1

4
〈 f 4〉 β = m

2
〈 f 3〉,

to find from (3.1)

δmF[ f ] ≥ b( f, f ) − m2 〈 f 3〉2
〈 f 4〉 (3.5)

= b( f, f )

[
1 − m2 〈 f 3〉2

b( f, f )〈 f 4〉
]

. (3.6)

In general, one can always rescale a function to saturate the inequality (3.5). Therefore,
to describe the exact ODT curve, the critical parameters γc and εc must satisfy the
following criteria

max
f

〈 f 3〉2
b( f, f )〈 f 4〉 = m−2. (3.7)

Solving (3.7) is difficult, essentially as difficult as the original problem. However,
all is not lost as one can now replace (3.7) with an approximate convex problem. To
this end, we will apply the Cauchy–Schwarz inequality to (3.6). We first do this with
respect to the usual L2 inner product and then show that we can produce a sharper
lower bound by using the inner product induced by b. Note that by (3.3) and the fact
that b( f, g) = b(g, f ) for all f, g, the quadratic functional b( f, g) defines an inner
product:

〈 f, g〉b := 2b( f, g). (3.8)

In addition, we can relate the inner product 〈·, ·〉b to the conventional L2 inner product
by introducing the positive-definite, self-adjoint operator5 B defined on H by

〈 f, g〉b =: 〈 f, Bg〉. (3.9)

The operator B defined onH is invertible on H.

3.1 First Quadratic Lower Bound

As a first attempt to find a quadratic lower bound on δmF[ f ], we apply the Cauchy–
Schwarz inequality in the L2 inner product: for all f ∈ H,

5 For (OK)

B = γ −2(−Δ) + (−Δ)−1 + (3m2 − 1),

while for (PFC),

B = (1 + Δ)2 + (3m2 − ε).
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〈 f 3〉2 ≤ 〈 f 2〉〈 f 4〉.

Applying this in (3.6) gives

δmF[ f ] ≥ b( f, f ) − m2 〈 f 3〉2
〈 f 4〉

≥ b( f, f ) − m2〈 f 2〉. (3.10)

Hence if

inf

{
b( f, f ) − m2〈 f 2〉

∣∣∣∣ f ∈ H, f �= 0

}
≥ 0

or equivalently,

inf

{
b( f, f ) − m2〈 f 2〉

∣∣∣∣ ‖ f ‖ = 1

}
≥ 0,

u ≡ m is a global minimizer of F over Hm . If the inequality is strict, v is the unique
global minimizer.

By invoking the correspondence of the Rayleigh quotient and the eigenvalues of the
associated operator, we can equivalently rephrase in terms of eigenvalues involving
B, the self-adjoint operator onH associated with b( f, f ), of the eigenvalue problem

(B − 2m2)ψ = λψ. (3.11)

Then if the smallest eigenvalue λ1 is positive, then u ≡ m is a global minimizer of F
over Hm . Given b (i.e., B), we can readily compute this smallest eigenvalue that will
depend on the exact size of the torus Ω . On the other hand, one can easily compute
a lower bound, exact in the limit where the torus size tends to ∞, by transforming to
Fourier space (Fourier series) and optimizing in the Fourier variable |k|, treated as a
continuous variable. To this end, for the Ohta–Kawasaki functional, the operator

B − 2m2 = 1

γ 2 (−
) + (−
)−1 + (m2 − 1),

in Fourier space (defined on the flat torus with size L × L) is multiplication by

1

γ 2 |k12|2 + |k12|−2 + (m2 − 1)

where |k12| = 2π L−1(n1, n2) for integers (n1, n2), with n2
1 + n2

2 �= 0. Optimizing
|k12|, treated as a continuous variable, implies that this factor is always positive if
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λ1 = min
k12

1

γ 2 |k12|2 + |k12|−2 + (m2 − 1)

≥ min
k∈R

1

γ 2 k2 + k−2 + (m2 − 1)

= 2

γ
+ (m2 − 1) ≥ 0.

In the limit as the torus size L → ∞, there are values of k12 arbitrarily close to the
optimal (continuous) k. The excess energy for (OK) about the disordered state then
satisfies

δmF[ f ] ≥ b1( f, f ) − m2〈 f 2〉
=

∫
Ω

1

2
γ −2|∇ f |2 + 1

2
|∇(−Δ)−1 f |2 + 1

2
(m2 − 1) f 2dx

≥
∫

Ω

1

γ
f 2 + 1

2
(m2 − 1) f 2dx (3.12)

=
(
1

γ
+ 1

2
(m2 − 1)

) ∫
Ω

f 2dx.

We conclude that if

γ ≤ 2

1 − m2 (3.13)

then δmF[ f ] ≥ 0 for all f ∈ H, i.e., u ≡ m is a global minimizer of (OK) over
u ∈ Hm . This proves a lower bound on the ODT which, except at m = 0, is far
from optimal: This was essentially the approach taken in Choksi et al. (2009) (see also
Glasner 2010).

For the phase-field crystal functional, the analogous steps give that if

ε ≤ m2 (3.14)

then u ≡ m (the liquid phase) is a global minimizer of (PFC) over u ∈ Hm .

3.2 An Improved Quadratic Lower Bound

In this subsection, we derive an improved quadratic lower bound by exploiting the
structure of B. Generally speaking, we aim to tighten the two consecutive inequality
approximations ((3.4) and Cauchy–Schwarz) used in the previous subsection. Here the
gap in the lower bound comes from the drastically different nature in the functions that
(1) optimize Cauchy–Schwarz and (2) optimize the quadratic term (3.10) involving
b( f, f ) . Ideally, wemay improve the lower bound if we use a sequence of inequalities
which have almost the same optimizing functions. Our new approach therefore relies
onfirst using theCauchy–Schwarz inequality in themore naturalb( f, f ) inner product,
followed by a constrained optimization problem involving B.
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We write

〈 f 3〉 =
〈

f
(

f 2 − f 2
)〉

=
〈

f BB−1
(

f 2 − f 2
)〉

to find that

〈 f 3〉2 =
〈

f B B−1
(

f 2 − f 2
)〉2

=
〈

f, B−1
(

f 2 − f 2
)〉2

b

≤ 〈 f, f 〉b

〈
B−1

(
f 2 − f 2

)
, B−1

(
f 2 − f 2

)〉
b

(3.15)

= 2b( f, f )
〈(

f 2 − f 2
)

, B−1
(

f 2 − f 2
)〉

. (3.16)

In line (3.15) we used the Cauchy–Schwarz inequality in the inner product 〈 f, g〉b.
The operator B−1 is defined on H. We can extend B−1 to all of Hk by defining B−1

to be zero on constants. In other words, its extension to Hk is simply composition
of B−1 with projection P onto H. Abusing notation slightly, let us use B−1 to also
denote the extension. Thus, by (3.16)

〈 f 3〉2 ≤ 2b( f, f )
〈(

f 2 − f 2
)

, B−1
(

f 2 − f 2
)〉

= 2b( f, f )
〈

f 2, B−1 f 2
〉
. (3.17)

Thus (3.17) implies

〈 f 3〉2
b( f, f )〈 f 4〉 ≤ 2

〈
f 2, B−1 f 2

〉
〈 f 4〉 .

Since

max
f ∈H, f �=0

〈
f 2, B−1 f 2

〉
〈 f 4〉 ≤ max

g≥0,g �=0

〈
g, B−1g

〉
〈g2〉 , (3.18)

we define

r := max
g≥0,g �=0

〈
g, B−1g

〉
〈g2〉 . (3.19)

Note that for all functionals, B−1, extended to Hk , is a bounded linear self-adjoint
operator, and (3.19) is a constrained Rayleigh quotient. Combining (3.6), (3.17) and
(3.19), we have the following prescription for the quadratic functional Q[ f ]

δmF[ f ] ≥ Q[ f ] where Q[ f ] := (1 − 2m2r)b( f, f ).

Lastly note that if 1− 2m2r ≥ 0, the disordered state u(x) ≡ m is a global minimizer
of F . We summarize the previous calculations in the following theorem:
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Theorem 3.1 Let −1 < m < 1 and consider any functional F of the form (2.2)
defined over

Hm =
{

u

∣∣∣∣u = m + f, f ∈ H
}

.

Define the bilinear form b on H by (3.2) and assume, without loss of generality, that
(3.3) holds true. Let B be the associated operator onH defined by (3.8)–(3.9) extended,
by projection, to all of Hk. Finally let r be given by (3.19). Then

i f 1 − 2m2r ≥ 0, u(x) ≡ m is a global minimizer of F .

3.3 Solving for r

To solve for r one must maximize a Rayleigh quotient (3.19), restricted to a convex
set of functions

K1 = {g|g(x) ≥ 0}.

For numerical purposes, we can further rephrase the problem (3.19) as a maximization
of a quadratic (convex) functional over a convex set of functions. First, wemay remove
the denominator in (3.19) as follows. Introduce the ball of functions

K2 = {g|〈g2〉 ≤ 1}.

We note that K2 is convex, and hence K = K1
⋂

K2 is also convex. The problem
(3.19) may then be rephrased as

r = max
g(x)∈K

〈gB−1g〉. (3.20)

For a constrained convex optimization problem, the Karush–Kuhn–Tucker (KKT)
conditions describe the criteria for an optimal g(x) in (3.20). Namely, optimality
occurs when the gradient of the functional (2B−1g) in (3.20) lies within the normal
cone Ng(K ) of the feasible set

2B−1g ∈ Ng(K ) where Ng(K ) =
{

u

∣∣∣∣ 〈h − g, u〉 ≤ 0, ∀ h ∈ K

}
. (3.21)

To describe the normal cone at a location g, we introduce the positive variables y(x) ≥
0 and λ ≥ 0. When g(x) is on the boundary of the feasible set, for instance g(x0) = 0
for some x0 , the normal cone contains functions that are negative at x = x0. Here we
use y(x) and λ to parameterize such functions. To do so, first introduce a sum over all
constraints

L = −2
∫

Ω

y(x)g(x)dx + λ
(
〈g2〉 − 1

)
.
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The normal cone is then given by the (L2) variational derivative δL
δg

Ng(K ) =
{

δL
δg

∣∣∣∣ y(x) ≥ 0, λ ≥ 0, y(x)g(x) = 0, λ
(
〈g2〉 − 1

)
= 0

}
.

Equating the gradient of the functional (3.20) with the normal cone parameterization,
we arrive at the KKT conditions for optimality

B−1g = −y + λg (3.22)

with

g(x)y(x) = 0, g(x) ≥ 0, y(x) ≥ 0, (〈g2〉 − 1)λ = 0. (3.23)

Here y(x) and λ are the Lagrange multipliers for the constraints. Using the conditions
(3.23), we can partially solve (3.22) as

y = (−B−1g)+ and λg = (B−1g)+ (3.24)

Here f (x)+ = 1
2 ( f + | f |) is the nonnegative component of a function. Physically,

(B−1g)+ represents the component of the gradient B−1g inside the set K1.

Remark 1 The value r from (3.19) corresponds to the largest λ satisfying the KKT
condition (3.22).

Since we cannot solve (3.24) exactly, we numerically maximize (3.20) and use
(3.24) as a stopping criterion. We do so by performing a modified power iteration.
Here we work on a regular grid with N grid points xk = kh for 0 ≤ k ≤ N − 1,
and grid spacing h = L/N where L = Lx = L y is the size of the domain. Letting
gi j = g(xi , y j ) denote the discrete values of g on the grid we estimate r via the
following algorithm. When gn is deep inside the feasible set, (B−1gn)+ is always
nonnegative, and the algorithm reduces to a standard power iteration. When gn is on
the boundary of the feasible set K , the algorithm is a power iteration restricted to the
tangent of the feasible set. Figure 4 outlines the evolution of δ and r versus the number
of iterations for (OK), while Fig. 5 shows a plot of the solutions g(x) and y(x). For the
functionals and parameter values we consider, the modified power iteration algorithm
achieves machine precision for δ within 105 iterations.

Remark 2 The algorithm converges to a KKT point which is a necessary condition
for optimality. At this point we do not have a proof that for the functionals under
consideration, satisfying a stableKKT condition is also sufficient for global optimality.
More specifically, maximizing a convex function over a convex set via gradient flow
may have multiple stable KKT points. In our case, we have repeated the numerics with
random initial data and have only observed convergence to a unique maximizer.
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(Modified power iteration)

1. Initialize g0:

g0i j = βσi j

where β is an appropriate normalization constant. The σi j are independent random samples (i.i.d.)
from a uniform distribution 0 ≤ σi j ≤ 1.

2. Iterate via

gn+1 = βn(B−1gn)+
= βn(F−1 B−1Fgn)+

Here βn is just a rescaling to ensure 〈(gn+1)2〉 = 1. To efficiently compute the operator (B−1gn) we
use a fast Fourier transform (FFT) ĝ(k) = Fg and exploit the fact that B−1 is a diagonal operator in
Fourier space.

3. Stopping criteria: let

λ =
∫
Ω

g(B−1g)+dx

δ = 1

|Ω|1/2 ||(B−1g)+ − λg||.

Here δ is the volume averaged L2 norm of the error in the K K T condition. Iterate until a δ achieves
a pre-described tolerance. In our case we typically control δ ≤ 10−8. The exact solution to (3.24) has
δ = 0.

3.4 Results for the ODT and Their Optimality

In the following section, we numerically compute an upper and lower bound to the
ODT curve for the two functionals (OK) and (PFC). Specifically, for the lower bound
we seek to characterize the curve in the phase diagram (m, γc) or (m, εc) where
1 − 2m2r = 0. Such a curve partitions the phase diagram so that in one region m is
the global minimum, i.e., the region where 1 − 2m2r ≥ 0. In our case, we solve for
r using the modified power iteration algorithm outlined in the previous section with
2×104 iterations to ensure that the stopping criterion of δ ≤ 10−8 is reached. We also
note that r can depend on m, γ or ε depending on the functional at hand. To compute
the curve, we fix a value of m and perform a root finding algorithm to solve for γc (or
εc) such that 1 − 2m2r = 0. Specifically, we use a bisection algorithm and solve for
the critical γc with a tolerance of |1− 2m2r | ≤ 10−5. It is important to note that for a
fixed value of m, the ratio r is monotonic in the parameters γ (or ε).6 Hence, the root
finding algorithm converges to the single root, and the curve γc versus m partitions
the phase plane into distinct regions.

6 Observe that for two values γ1 < γ2, the difference in the associated operators B2 − B1 is positive-
definite. Indeed, B1 − B2 = −(

γ −2
1 − γ −2

2
)
Δ, and multiplying each side first on the left by B−1

1 and then

on the right by B−1
2 , we have

B−1
2 − B−1

1 = (
γ −2
1 − γ −2

2
)
B−1
1

( − Δ
)

B−1
2
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Fig. 4 Top plot of the value r (dashed line) versus the number of iterations in the modified power iteration
algorithm. Bottom norm δ (solid line) versus number of iterations. Here m = 0.9 and γ = 2.1. The norm δ

achieves machine precision by ∼4 × 104 iterations

Fig. 5 (OK) withm = 0.25, γ = 2.35. Left plot of the maximizer g(x) to (3.19). Right plot of the Lagrange
multiplier function y(x) which arises in solving the optimization problem (3.19). Note that y(x) ≥ 0 and
g(x) ≥ 0 have disjoint supports

The solid curves in Figs. 6 and 7 show the numerical lower bound for the ODT
curve.

Foornote 6 continued
But B = B−1

1 (−Δ) B−1
2 is the product of three self-adjoint, positive-definite operators, and on the torus,

B1, (−Δ), B2 all mutually commute. As a result B is self-adjoint and positive-definite, and one can use the
complete set of common eigenfunctions to show that every eigenvalue of B is positive. It follows that for
any function g(x) �= 0, we have 〈g, B−1

2 g〉 > 〈g, B−1
1 g〉. This proves that the associated ratios r2 and r1

corresponding to γ2 and γ1 satisfy r2 > r1. An identical argument holds for ε in (PFC).
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Fig. 6 Plot of the ODT curve for (OK). The solid line is the lower bound estimate using (3.19), the dashed
line is the conventional linear stability curve, while the circles (open circles) are a numerical approximation
to the exact ODT curve (they represent the smallest γ with a function u(x) having lower energy than u = m).
Here the upper and lower bound computations are performed on a domain 8π × 8π and N = 256 grid
points. The bottom dotted curve is the less optimal lower bound estimate (3.13)

Fig. 7 Plot of the ODT curve for (PFC). The solid line is the lower bound estimate using (3.19), the dashed
line is the conventional linear stability curve, while the circles (open circles) are a numerical approximation
to the exact ODT curve. The bottom dotted curve is the less optimal lower bound estimate (3.14)

In addition to the numerical computation of a lower bound on the ODT curve, we
also obtain an upper bound by searching for states which have an energy lower than
the constant u = m. We emphasize again that since the functionals are non-convex, we
have no guarantee that the upper bound is close to optimal. To obtain an upper bound
curve, we first fix a value of m. We then vary the parameter γ (or ε) looking for the
smallest value at which there exists a state u �= m with F[u] ≤ F[m]. The circles in
Fig. 6 correspond to the smallest value of γ we found with such a state. As a result, the
true ODT curve in Fig. 6 lies below the circles and above the solid curve. To determine
whether a specific value of m and γ (or ε) has a non-constant minimizer u �= m, we
start with a candidate initial data u(x, 0) = u0(x) and run a gradient flow for some time
T ≤ 50 to minimize the energy. We then check if the energy F[u(x, T )] ≤ F[m]. We
then repeat the process to find the best upper bound γU B yielding states with energy
lower than the constant state u = m. In this approach, the error in γU B with the true
ODT curve depends on how close u(x, T ) is to the global minimizer. As a result, the
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Fig. 8 Computed lower bound of the ODT curve for (OK) in 3D (bottom dashed) versus the 2D bound
(top solid) of Fig. 6

quality of the upper bound depends on how well one chooses u0(x). In our case, we
try several initial conditions u0(x) and take the smallest γ found over all trials as our
upper bound γU B . Specifically, for the functional (OK) we try initial data u0(x) (1)
corresponding to a pure hexagonal lattice, (2) a single point mass, (3) a non-perfect
hexagonal array with defects.

We also performed a 3D computation based upon (3.19) for the ODT of (OK).
In Fig. 8 we plot the 3D computed ODT (a lower bound) and the 2D one presented
in Fig. 6. As expected, the 3D curve lies below the 2D. Note that for 3D we only
computed the curve up to m = 0.7. Computation for larger m can readily be per-
formed but requires more CPU time. All our computations were performed in MAT-
LAB.

Finally, we observe that in some cases the computed function g(x) accurately
predicts the pattern of minimizers. For instance Fig. 9 shows a comparison of optimal
functions associated with both the numerically estimated upper bound (optimal u) and
the computed lower bound (optimal g). Close to the ODT and m = 0, the optimal
g(x) accurately predicts the pattern of what is believed to be the global minimizer,
including the correct lattice size.

Remark 3 The computed lower bound (3.19) and the numerical upper bound in Figs. 6
and 7 have a small gap. The gap is due to the fact that (1) the upper bound is only
a numerical investigation and is not sharp (in fact the numerics become increasingly
difficult with large values of m), and (2) our lower bound is not sharp. In the case
of our lower bound, we use the estimate (3.17) which is sharp for functions of the
form

α f = B−1 f 2 (3.25)

for someα.Meanwhile, optimizers of the ratio (3.19) satisfy theKKT condition (3.22).
If every function of the form (3.25) also satisfied the KKT condition, then our lower
bound would be exact. The gap is therefore partially due to the fact that the functions
do not simultaneously satisfy (3.25) and (3.22).
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Fig. 9 Computations for (PFC).
Left column 1a–4a plot of the
maximizer g(x) to (3.19) for
(PFC). Values are reported as
(m, ε). Right column 1b–4b plot
of the computed metastable
pattern associated with the
smallest ε for which one could
simulate a pattern having lower
energy than u = m. Images
beside each other occur at the
same value of m, but with
different ε—the left and right
being lower and upper bounds
on the ODT, respectively. Note
that there are strong similarities
in the patterns of g(x) and the
approximate critical (large)
perturbations from the constant
state

4 Analysis for Non-constant Metastable States

We now discuss how to extend our method to non-constant states. Here we adopt the
approach taken from Sect. 3, but apply the inequalities to non-constant candidate min-
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imizers v. Since the initial steps are elementary and short but essential, we repeat them
here. We consider stable critical points (states with vanishing first and nonnegative
second variations) and derive sufficiency conditions for global minimality based upon
our two approaches for quadratic lower bounds. Unfortunately except for the constant
state, we have no exact representative of critical points for any of the functionals con-
sidered here. Hence our methods must be directly coupled with numerics whereby
we

• compute a metastable state (candidate minimizer) v for which the appropriate
energy gradient is small,

• address the sufficiency conditions for global minimality.

In our approaches, the lower bound takes the following form

F[v + f ] − F[v] ≥ C〈 f 2〉, (4.1)

where the constant C , dependent on the material parameters, is obtained numerically.
Let−1 < m < 1 and suppose v is a candidate for a global minimizer over u ∈ Hm .

In particular, we may assume that v

• is a critical point in the sense that for all f ∈ H the first variation in direction f
vanishes, i.e.,

∀ f ∈H 2a(v, f ) −
∫

Ω

v(1 − v2) f dx = 0, (4.2)

• the second variation is positive semi-definite ∀ f ∈ H, b( f, f ) ≥ 0, i.e.,

b( f, f ) = a( f, f ) +
∫

Ω

(
3v2

2
− 1

2

)
f 2dx ≥ 0. (4.3)

In all subsequent numerical calculations, we always numerically verify that b( f, f )

is positive semi-definite for any candidate minimizer v.
As in (3.1), we compute the excess energy δvF about a state v satisfying (4.2): for

all f ∈ H

δvF[ f ] = F[v + f ] − F[v]
= a( f, f ) +

∫
Ω

(
3v2

2
− 1

2

)
f 2 + v f 3 + f 4

4
dx

= b( f, f ) +
∫

Ω

v f 3 + f 4

4
dx, (4.4)

where

b( f, g) = a( f, g) +
∫

Ω

(
3v2

2
− 1

2

)
f gdx.

Note that the linear terms in f (which are precisely the left hand side of (4.2)) vanish
since v is a critical point.

123



562 J Nonlinear Sci (2015) 25:539–582

As with the previous case where v ≡ m, if b is positive-definite, we will make use
of the inner product on H induced by b:

〈 f, g〉b := 2b( f, g). (4.5)

and the self-adjoint operator B defined on H by

〈 f, g〉b =: 〈 f, Bg〉 or b( f, g) = 1

2
〈 f, Bg〉. (4.6)

By composing both B and its inverse B−1 with the projection operator defined onHm

Pu = u − −
∫

udx,

wemay extend both B and B−1 to all of Hk .While we do not rename these extensions,
note that on Hm

B ◦ B−1 = P.

In Sects. 4.1 and 4.2, we first give the details for two lower bounds via inequal-
ities analogous to the respective ones of Sects. 3.1 and 3.2. However, in each case
we note that the resulting sufficiency conditions are empty as a result of the inher-
ent symmetry invariance of the energy on the torus. By restricting to the Ohta–
Kawasaki function, we then present a preliminary analysis of these symmetry issues
by

1. addressing the global optimality of the lamellar phase in 1D and 2D space
(Sects. 4.3, 4.4);

2. addressing the global optimality of the lamellar phase when the domain is a rec-
tangular torus (Sect. 4.5);

3. addressing global optimality of a metastable state for a perturbed (OK) functional
that includes a spatially non-symmetric potential (Sect. 4.6).

4.1 First Quadratic Lower Bound

As in Sect. 3.1, the first lower bound comes from elementary inequalities. There
we used an elementary pointwise inequality (3.4) combined with the L2 Cauchy–
Schwarz inequality. Note thatwe can combine these two into one elementary pointwise
inequality: For any real numbers α and β, β2(β/2 + α)2 ≥ 0 implies that

αβ3 + β4

4
≥ −α2β2. (4.7)
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Applying this pointwise to α = v and β = f , we find from (4.4) that

δvF[ f ] ≥ b( f, f ) −
∫

Ω

v2 f 2dx. (4.8)

Now let −1 < m < 1 and consider any functional F of the form (2.2) defined over
Hm . Let v ∈ Hm be a critical point of F in the sense that (4.2) holds true. Then (4.4)
implies that if

inf

{
b( f, f ) − 〈v2 f 2〉

∣∣∣∣ f ∈ H, f �= 0

}
≥ 0

(
or equivalently inf

{
b( f, f ) − 〈v2 f 2〉

∣∣∣∣ ‖ f ‖ = 1

}
≥ 0

)
,

v is a global minimizer of F overHm . If the inequality is strict, v is the unique global
minimizer. Alternatively, if λ1 is the first eigenvalue of the corresponding eigenvalue
problem

(B − 2v2)ψ = λψ, (4.9)

then we let

C1 := λ1.

If C1 ≥ 0, then v is a global minimizer of F over Hm . If the inequality is strict, v is
the unique global minimizer.

This is our first sufficiency condition. However, we immediately note that, except
for v ≡ m, the condition C1 ≥ 0 may never hold true, suggesting that, except for the
constant phase, this strategy requires additional ideas. In fact, it is straightforward to see
that this is the case for periodic boundary conditions! For instance, small translations
in the x direction f (x) = v(x + s, y) − v(x) ≈ s ∂v

∂x will leave the energy unchanged.
To show that such directions imply C1 < 0, first note that v(x) solves the Euler–
Lagrange equation (4.2), and hence v itself is always an eigenvalue of B − 2v2 with
corresponding eigenvalue 0, that is,

(B − 2v2)v = 0. (4.10)

Moreover, in our case of periodic boundary conditions, a minimizer can always be
translated with no cost to the energy, and this implies that one always has λ1 < 0. To
see this let vx = ∂xv be a derivative of v(x) (which can be in any direction). Recall
that our operator B associated with the bilinear form

b( f, g) = a( f, g) +
∫

Ω

(
3v2

2
− 1

2

)
f gdx,
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is defined by (3.8) and (3.9). Translational symmetry of the energy functional implies
that the part of the operator, say A, associated with the form via a( f, g) = 1

2 〈 f, Ag〉
satisfies

(Au)x = Aux .

This is certainly the case for (OK) and (PFC) on the torus.Hence using B = A+3v2−1
and differentiating (4.10), we find

0 = (Bv − 2v3)x

= (Av + v3 − v)x

= (Avx + 3v2vx − vx )

= Bvx .

If we normalize ṽx = cvx so that ||ṽx || = 1, we obtain the following bound

〈ṽx , (B − 2v2)ṽx 〉 = −2||vṽx ||2 < 0.

4.2 Second Quadratic Lower Bound

In the second approach (analogous to that of Sect. 3.2), we exploit the structure of b,
the (local) second variation, by invoking the Cauchy–Schwarz inequality with respect
to the associated B-norm. To this end, using the trivial inequality (3.4) we have

F[v + f ] − F[v] = b( f, f ) + 〈v f 3〉 + 1

4
〈 f 4〉

≥ b( f, f ) − 〈v f 3〉2
〈 f 4〉 .

Thus we obtain the following lower bound

F[v + f ] − F[v] ≥ (1 − 2r)b( f, f ),

where

r := 1

2
sup

f ∈Hm

〈v f 3〉2
b( f, f )〈 f 4〉 .

Next let us further assume that b is positive-definite, i.e.,

b( f, f ) > 0, ∀ f �= 0.

Unlike for the constant state, this assumption is not harmless. Indeed it will never
hold true on the torus for all f ∈ H, and we will have to restrict our perturbation
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Hilbert space by projecting out certain directions related to symmetries. For the time
being, let us assume that b( f, f ) > 0 for all f �= 0 in perhaps some subspace of
H.

To obtain the new lower bound coefficient, we follow the same procedure as in
Sect. 3.2, and bound r using the Cauchy–Schwarz inequality with respect to the b
induced inner product [defined in (4.5) and (4.6)]. We find

r = 1

2
sup
f ∈H

〈
B−1v f 2, B f

〉2
b( f, f )〈 f 4〉

≤ sup
f ∈H

〈
(v f 2), B−1(v f 2)

〉
b( f, f )

b( f, f )〈 f 4〉

= sup
g(x)≥0

〈
(vg), B−1(vg)

〉
〈g2〉 = r0. (4.11)

Note now that againwe have set g = f 2.Wemay then numerically optimize r0 defined
by (4.11) using the same algorithm as in the case where v = m with one modification.
Here we replace B−1 from algorithm 1 with vB−1v, i.e., multiplication by v followed
by B−1 and then again multiplication by v:

gn+1 = βn(
(vB−1v)gn)

+.

Here βn is the appropriate normalization factor and (·)+ denotes the positive part of
a function. We also take the initial data g0 to be random.

Finally we compute7 the coefficient for the lower bound C2 as

C2 = (1 − 2r0)

(
min|| f ||=1

b( f, f )

)
= (1 − 2r0)

λb

2

where λb is the smallest eigenvalue of the operator B.

4.3 Analysis of the Lamellar Phase of (OK) in One Dimension

In one space dimension, it can indeed be proven that the global minimizer to (OK)
on a periodic domain must be periodic (Müller 1993; Ren and Wei 2003; Yip 2006).
We call such a periodic structure lamellar. Thus far, we have shown that neither of the
results from Sects. 4.1 or 4.2 are directly applicable to non-constant states v on a torus

7 As a numerical note, we compute B−1 as follows. We build the following operator

L f = γ −2(Δ2) f − Δ
[
(3v2(x) − 1) f

] + f

and note that B = (−Δ)−1L . Hence the inverse can be computed as

gn+1 = βn(
(vL−1(−Δ)v)gn)

+
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Fig. 10 The L2 norm of the gradient [||vt || from (4.12)] during the evolution of the gradient flow. The
final state is the candidate lamellae vl

Fig. 11 Candidate minimizer vl for m = 0, γ = 2.5 on 1D periodic domain 4π

geometry. In this subsection, we show that if we introduce additional constraints in the
search directions f , then we may use the ideas from Sect. 4.1 to analyze non-constant
candidate minimizers to (OK) in a 1D periodic domain. Specifically, we argue that,
for certain parameters (m, γ ), a computed lamellae structure is close to optimal.

We take m = 0, γ = 2.5 and a periodic domain Lx = 4π and obtain the candidate
minimizer vl(x) by running the H−1 gradient flow on random initial data. That is, we
solve

vt = −γ −2Δ2v + Δ(v3 − v) − (v − m), (4.12)

with random initial conditions v(x j ) = σ j , where x j is the j th grid point and σ j is a
random number in [−1/2, 1/2]. The initial data is also projected to have an average
m. We run the gradient flow (integration time T ∼ 1,000) with progressively smaller
time steps so that the candidate minimizer solves the Euler–Lagrange equations to a
required tolerance ε = 6×10−8 (Fig. 10). As a result, we obtain a candidateminimizer
vl , shown in Fig. 11.

We nowmake several observations regarding the symmetries inF[v]. Note that for
any function v(x), the following have the same energy:
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• arbitrary translations: v(x − s), for any constant s;
• inversion symmetry: v(−x);
• flip about the vertical axis: −v(x).

As a result of this collection of symmetries, the candidate minimizer vl is not unique.
We now constrain the search directions f to compute the lower bound coefficient C1.

Without loss of generality, one may restrict search directions f so that f ∈ Z
where

Z := {
f ∈ H ∣∣ 〈 f, e1〉 = 0

}
where e1 := ∂xv

l . (4.13)

To see this note that given any candidate minimizer v and any global minimizer w,
one can always find a translation s (which leaves the energy unchanged), such that
f = w(x − s) − v ∈ Z is orthogonal to e1. This is simply a fact about functions on
the torus. First note that 〈v, vx 〉 = 0. Then, given two functions v(x) and w(x) on the
torus, one may always shift w(x − s) so that 〈w, ∂xv〉 = 0. Let

h(s) :=
∫ 4π

0
w(x − s)∂xv(x)dx .

By applying the Cauchy–Schwarz inequality and a standard density argument for w,
we see that h(s) is a continuous function of s.

We now observe that

∫ 4π

0
h(s)ds = −

∫ 4π

0

∫ 4π

0
∂xw(x − s)v(x)dxds

= −
∫ 4π

0

( ∫ 4π

0
∂xw(x − s)ds

)
v(x)dx

=
∫ 4π

0

( ∫ 4π

0
∂sw(x − s)ds

)
v(x)dx

= 0.

Hence by the mean value theorem, ∃ s∗ such that h(s∗) = 0.
Thus it suffices to minimize the quadratic lower bound over a smaller subspace of

search directions:

inf

{
b( f, f ) − 〈v2 f 2〉

∣∣∣∣ f ∈ Z, f �= 0

}
≥ 0.

Here the constraint f ∈ Z modifies the eigenvalue problem (4.9) slightly to

(
B − 2(vl)2

)
ψ = λψ + κ(∂xv

l) with 〈ψ, ∂xv
l〉 = 0 (4.14)

where κ is a newLagrangemultiplier introduced to handle the orthogonality condition.
The lower bound coefficient is then C1 = λ1, where λ1 is the smallest (constrained)
eigenvalue of (4.14).
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To solve for λ1 in (4.14), we numerically build the operator (B−2(vl)2) and project
out the orthogonality constraints. Additional details are given in the Appendix. This
calculation yields

C1 = λ1 = 1.6 × 10−6.

We note, however, that the discretization errors in the calculation for C1 are of
O(10−6). Hence for numerical purposes C1 is zero. This is also consistent with the
fact, shown in Eq. (4.10), that for an analytic critical point, the system (4.14) contains
a zero eigenvalue corresponding toψ = vl . But what exactly does this imply in regard
to vl being a global minimizer? In our calculation yielding

δvlF1[ f ] ≥ C1

∫
Ω

f 2dx,

we assumed that

2a1(v
l , f ) −

∫
Ω

vl(1 − (vl)2) f dx = 0.

The extent to which this is true is measured by the tolerance via the size of the energy
gradient

gradH−1F1(v
l) = γ −2(−Δ)2vl + (vl − m) + (−Δ)((vl)3 − vl).

We ran the gradient flow sufficiently long so that

||gradH−1F1(v
l)||H−1 < ε.

Integration by parts gives for any f ∈ H,

〈
gradH−1F1(v

l), (−
)−1 f
〉
= 2a1(v

l , f ) −
∫

Ω

vl(1 − (vl)2) f dx.

On the other hand, by (2.1),

∣∣∣
〈
gradH−1F1(v

l), (−
)−1 f
〉∣∣∣ ≤

∥∥∥gradH−1F1(v
l)

∥∥∥
H−1

∥∥∥(−
)−1 f
∥∥∥

H1

=
∥∥∥gradH−1F1(v

l)

∥∥∥
H−1

‖ f ‖H−1 .

Hence,

∣∣∣∣2a1(v
l , f ) −

∫
Ω

vl(1 − (vl)2) f dx

∣∣∣∣ ≤ ε|| f ||H−1 .

Thus, up to numerical errors, we have shown the following: If w(x) is the global
minimizer, then
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Fig. 12 Candidate minimizer vl

for m = 0, γ = 2.02 with torus
size to be 4π × 4π . Note that the
orientation of the lamellae is
exactly at 45◦

F1[w] − F1[vl ] ≥ −ε|| f ||H−1 + C1|| f ||2, (4.15)

where f = w(x − s∗) − vl for some s∗. Note that (4.15) puts the energy of vl as
being optimal up to the order of numerical errors. Indeed, we can crudely estimate

|| f ||H−1 by noting that since F[w] ≤ F[m] = |Ω| (1−m2)2

4 , ||w||2
H−1 ≤ π and the

same is true for vl (here m = 0, |Ω| = 4π ). Hence || f ||H−1 ≤ 2
√

π . On the other
hand, C1 = 0 up to numerical errors since the discretization errors are O(10−6). Thus
we can conclude that

∣∣F[w] − F[vl ]∣∣ ∼ numerical errors. For our current (adaptive)
methods, these numerical errors are of the order 10−6.

4.4 Analysis of the Lamellar Phase of (OK) in Two Dimensions

In this section, we extend our analysis to a computed lamellar structure on a 2D
square torus. We show that a computed lamellar phase is optimal with respect to
perturbations restricted to various subspaces of H1(Ω). We note that difficulties in
arguing optimality over all perturbations are due to symmetries in the domain and may
be overcome in other domains such as an asymmetric rectangle. Let m = 0, γ = 2.02
with torus size 4π×4π . To obtain the candidateminimizer vl(x), we again run an H−1

gradient flow (4.12) on the sinusoidal initial data v(x, 0) = sin(x) cos(y). We run the
gradient flow (integration time T ∼ 2,000) to a required tolerance ε = 8 × 10−10.
As a result, we obtain a candidate minimizer vl , shown in Fig. 12.

In 2D, a number of symmetries exist in both the functional and in the candidate
minimizer vl , which can be described using the orbit-stabilizer theorem. LetG denote
the symmetry group acting on functions v that leaves F invariant. Let H be the sym-
metry group that stabilizes the candidate minimize vl . We then refer to the symmetry
group of vl as the orbit-stabilizer quotient group G/H. Note that the constant state
has H = G and hence vl = m has a trivial symmetry group. In 2D, the group G is
generated by the following subgroups:

• The discrete dihedral group of order 4 generated by a π/2-rotation and a flip.
• The continuous group of translations.
• Inversion v(x) → −v(x).
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The computed lamellar structure vl (Fig. 12) has a stabilizer group H consisting of

• A discrete flip along the line y = x .
• Rotations of π .
• Arbitrary translations along the direction (1,−1).
• Discrete translations along (1, 1) with length

√
2π .

• An inversion v → −v, followed by a discrete translation along (1, 1) with length
π/

√
2.

One immediate difference to 1D is that the orbits of vl(x) generate a symmetry group
G/H consisting of two tori. These tori may be parameterized by

vl(x + s, y + s), vl(−x − s, x + s) for s ∈ R.

In light of the above symmetries, we introduce the following vectors8

e1 := ∂xv
l(x), e2 := ∂xv

l(4π − x, y), e3 := vl(4π − x, y), e4 := vl(x),

and subspaces of H

Z := {u ∈ H|〈u, e j 〉 = 0, j = 1, . . . , 4} U := span{e1, e2, e3}, V := span{e4},

so that H = U ⊕V ⊕Z . We now argue that vl is nearly optimal when restricting
search directions f to any one of the subspaces U , V or Z .

As before we may, without loss of generality, restrict search directions f so that
〈 f, e1〉 = 0. Unfortunately the argument used to show that 〈 f, e1〉 = 0 will not
simultaneously work for e2, e3 and e4. Suppose w(x) = A sin(x − y) + B sin(x +
y) + C cos(x − y) + D cos(x + y) is the global minimizer and v(x) = a sin(x − y)

is the candidate minimizer. Then one can shift w(x) so that w(x ′) = A′ sin(x −
y) + B ′ sin(x + y). However, no shift or flip will make (w − v) ⊥ sin(x + y) and
simultaneously ⊥ cos(x + y).

The subspace Z: Numerically, we find the smallest eigenvalues of B − 2(vl)2 over
H to be

−0.0066 −0.0033 −0.0033 0.0000 0.0023,

the latter with a degeneracy of 4. The corresponding eigenvectors (Fig. 13) have a
large overlap with vl

x (smallest eigenvalue), vl(4π − x, y), and vl
x (4π − x, y) with

the eigenspace associated with eigenvalue −0.0033, while vl has eigenvalue 0. Note
that all the eigenvectors corresponding to eigenvalues below 0 are associated with
symmetries of the energy, while higher eigenvectors (Fig. 14) are not related in a
simple fashion.

8 For simplicity, when defining e1 and e2 we take the derivatives in the (1, 0), or x direction. Due to the fact
that vl is a lamellae, the derivative along (1, 0) is proportional to the derivative along the direction (1, 1).
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Fig. 13 Plot of the first three eigenvectors of the operator B − 2(vl )2, corresponding to the eigenvalues
below 0. The plot of vl corresponding to eigenvalue 0 is given in Fig. 12. The eigenvectors very closely
resemble the symmetry transformations e1, e2, e3

Fig. 14 Plot of e5, the
eigenvector corresponding to the
first eigenvalue above 0

We now argue that our computed vl is very close to being a global minimizer over
perturbations f ∈ Z . Indeed repeating the steps presented in Sect. 4.3, we find

δvlF1[ f ] ≥ − ε|| f ||H−1 + 〈 f, (B − 2(vl)2) f 〉, ∀ f ∈ H.

Restricting f ∈ Z , we solve for the smallest constrained eigenvalue to the operator
B − 2(vl)2 and find C1 = 0.0023. Consequently we have

δvlF1[ f ] ≥ − ε|| f ||H−1 + C1|| f ||2, ∀ f ∈ Z
≥ − ε|| f ||H−1 + C1

16
|| f ||2H−1

≥ −4ε2

C1
> −4 × 10−16

where in the middle line we used the Poincaré-type inequality9 || f || ≥ (1/4)|| f ||H−1 ,
and in the last line, we optimized over || f ||H−1 . We arrive at the following result. Let

9 Here 1/4 is the Poincaré constant for the torus with length 4π .
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w be the exact global minimizer over perturbations f ∈ Z , then

0 ≤ F1[vl ] − F1[w] < 4 × 10−16.

The subspace U : We make a general remark regarding lamellae functions. Sup-
pose vl is a mean zero (〈vl〉 = 0) lamellae function oriented along the vector
n = 1√

2
(−1, 1). Namely n · ∇vl = 0. Let f be any lamellae function in the per-

pendicular direction along n⊥ = 1√
2
(1, 1). Then f 3 is also lamellae along n⊥ and

hence the integral 〈vl f 3〉 = 0 by virtue of the fact that 〈vl〉 = 0. Let f be any
function such that n⊥ · ∇ f = 0. Then the energy in such directions is always positive

δvlF1[ f ] = b( f, f ) + 〈vl f 3〉 + 1

4
〈 f 4〉 (4.16)

= b( f, f ) + 1

4
〈 f 4〉 (4.17)

≥ 0. (4.18)

Now suppose w is a global minimizer with f = w − vl ∈ U . Then translating f so
that 〈 f, e1〉 = 0, we have that f = ae2 + be3 for some constants a, b. It follows that
f is a lamellae function along n⊥ and hence F1[w] ≥ F1[vl ] has a higher energy.

The subspace V: We have that ±vl solves the Euler–Lagrange equations (to a
tolerance ε), with a positive semi-definite second variation b( f, f ) ≥ 0. Since the
energy F1[λvl ] is a quartic in λ, there are only 2 local minima found at λ = ±1.
Hence vl is almost optimal in V .

Unfortunately, the non-convexity ofF1 implies that we could still lower the energy
by taking directions which are linear combinations of elements of Z and suitable
combinations of e1, . . . , e4. Ideally, we would like a lower bound Q[ f ] for all f ∈ H:

δvlF1[ f ] ≥ Q( f, f )

For example, if f = g(x) + h(x) with g ∈ V and h ∈ Z , we have

δvlF1[g + h] ≥ Q1[g] + Q2[h] + cross terms in g and h,

for positive Q1 ≥ 0 and positive-definite Q2. It is not clear at this time how to use the
structure of the energy to control these cross terms.

Thus at this stage, we have computed a lamellar structure vl for which we can
conclude: The computed structure is close (up to numerical error) to being a global
minimizer on the infinite-dimensional subspace m +Z . If it is not close to the global
minimizer over the entire spacem+H, then the difference between it and a globalmin-
imizer must have a nonzero component in both U ⊕V and Z . Noting that e1, . . . , e4
are directly linked to symmetry transformations of vl (cf. Fig. 13), these conclusions
provide some support that vl is indeed close to a global minimizer over all of m +H.
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4.5 Analysis of the Lamellar Phase of (OK) on an Asymmetric Torus

In light of the discrete flip symmetries on the square torus, we now consider an asym-
metric torus. In breaking the asymmetric flip symmetry about the line y = x , the
symmetry group G that leaves F invariant is reduced while the stabilizer H for a
lamellar phase stays the same. In this setting, we provide numerical evidence that a
lamellar phase is optimal for certain aspect ratios and parameters γ . This optimality
is not surprising as in Sect. 5, we will use our first lower bound to prove, for suitable
aspect ratios, the optimality of a lamellar phase. To this end, we fix Lx = 4π as before,
γ = 2.15 but vary L y > 0. For each L y , we compute the candidate minimizer, and
using the algorithm in the Appendix, we compute the constrained minimizer to the
eigenvalue problem (4.14). We find that for values of L y < 3.82, the smallest con-
strained eigenvalue λ1 is zero up to numerical errors. For L y > 3.82, the eigenvalue
drops below zero.

Remark 4 (Two remarks on the choice of parameters and the use of the first lower
bound)

1. For the lamellar states of the previous three subsections, we used parameters that
were close to the ODT. As γ becomes large the energy landscape becomes very
flat10 (cf. Sect. 6).

2. One could also pursue the analysis of the last subsections using the improved sec-
ond quadratic bound that uses the inner product induced by b to obtain a tighter
lower bound. To do so would require working on a subspace orthogonal to the
null directions of b to enforce its positive definiteness on the appropriate sub-
space. Hence this strategy is worth pursuing only once we have a better treat-
ment/understanding of the role of symmetries.

4.6 Analysis of Non-constant State for (OK) with a Spatially Non-symmetric
Potential

In this subsection, we examine candidate minimizers for the (OK) functional with the
addition of a spatially dependent potential term V (x) that breaks the symmetries in
the domain. We consider the modified functional

(OK-V) F3[u] :=
∫

Ω

1

2
γ −2|∇u|2 + 1

2
|∇Δ−1(u − m)|2 + 1

4
(1 − u2)2

+1

2
V (x)(u − m)2dx.

If V (x) is asymmetric in space, then the functional (OK-V) may admit a unique non-
constant v �= m global minimizer. Since there are a wide variety of potentials one

10 We refer to an energy landscape of a functional F in the vicinity of a local minimize v as flat, if the
associated b( f, f ) has an eigenvalue ε � 1 with eigenvector fε (with || fε || = 1). These directions fε
need not be related to symmetries of v. We observe that as one either increases the domain Ω or increases
γ in (OK), (1) the number of small eigenvalues ε of b( f, f ) increase, and (2) the amplitude of the small
eigenvalues also decreases. Hence, in this respect we say (OK) becomes increasingly flat.
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Fig. 15 Left shows the irregular potential (4.19). Right candidate minimizer v for m = 0 and γ = 1.25.
Here v satisfies the Euler–Lagrange equation with an H−1 error of ∼2 × 10−5

could take, we choose one (somewhat arbitrarily) that varies smoothly in space and
shares the same periodicity as the domain Ω .

V (x) = cos

(
2π

x2

D2

)
cos

(
2π

y2

D2

)
− Vm where

Vm = −
∫

Ω

cos

(
2π

x2

D2

)
cos

(
2π

y2

D2

)
dx. (4.19)

We now apply our approach to examining candidate minimizers for (OK-V) near
the ODT curve. We take the domain size Lx = L y = 4π and m = 0. For m = 0
and the associated domain, the constant solution v = m = 0 becomes unstable for
γ ≈ 1.23. Choosing the value γ = 1.25 and a grid of 256×256, we run a gradient flow
of (OK-V) with random initial data to obtain our candidate minimizer v. Figure 15
shows the candidate minimizer, while Fig. 16 shows the evolution of the energy and
associated gradient during the gradient flow. We note that although the gradient does
not decrease monotonically, for the current parameters we could not find other distinct
local minima, suggesting that perhaps v is also the only local minimum. Once we
obtain a candidate minimizer v, we then compute the two lower bound coefficients
C j for j = 1, 2 to determine whether they are nonnegative. We note that in the
calculations 〈V f 2〉 is directly added into the bilinear form b( f, f ) and 2V (x) is added
to the associated operator B.

Since F3 and m = 0 is invariant under v → −v, any convex (quadratic) lower
bound must be optimal in the direction f = −v. Hence, any lower bound coefficient
C j ≤ 0 for j = 1, 2. We seek to show that for the current parameters γ , the lower
bound coefficient is optimal (C j = 0).

For our candidate v at γ = 1.25, we compute the first 3 eigenvalues of (4.9) as

−0.0001 0.0149 0.025
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Fig. 17 Coefficients of the quadratic lower bounds: Solid line represents the coefficient using the first
lower bound, while the dotted line represents the second lower bound. The solid curve (C1 = λ1) is only
piecewise smooth with kinks that arise from eigenvalue collisions. In addition we also plot the second and
third eigenvalues λ2 and λ3, as dashed lines to show how they relate to the smallest eigenvalue of (4.9) λ1.
Note that there is always an eigenvalue λ = 0. The values numerically support that v is the global minimizer
for γ < 1.269. For γ > 1.269, two eigenvalues drop below 0

yielding C1 = −0.0001. As expected, the first eigenvalue is (up to numerical errors) 0
and corresponds to the function ψ = v satisfying (4.10). Furthermore, a convergence
study, not included here, shows that the smallest eigenvalue decreases in magnitude
as one refines the mesh, verifying that the smallest eigenvalue is 0.

Meanwhile the second eigenvalue λ2 = 0.0149 is bounded away from 0 implying
that v is the global minimizer.11 We also compute the lower bound coefficient C2 =
−0.0001.

We continue the procedure of verifying non-constant candidate minimizers for
γ ≥ 1.25. Let vγ parameterize the candidate minimizer for different γ . To obtain vγ ,
we start with γ = 1.25 and v1.25 as initial data. We then gradually (adiabatically)
increase γ that continuously changes the energy landscape of (OK-V). As the land-
scape changes, we constantly recompute the candidateminimizer using a gradient flow
to obtain vγ . For each pair γ and vγ , we then compute the first 3 eigenvalues of the
(4.9), as well as the lower bound coefficient C2 and plot them in Fig. 17. Here the plot
shows that the second and third eigenvalues collide with λ = 0 around the parameter
γ ∼ 1.269. Hence, for values γ < 1.269, we have up to numerical errors, verification
that our computed vγ is the global minimizer to (OK-V), while for γ > 1.269, the
lower bound contains negative definite directions.

5 A Rigorous Connection Between 1D and 2D Minimizers of (OK)

In this section, we focus on (OK) on a rectangular torus of side lengths Lx by L y .
We use our first convex lower bound to rigorously prove that for certain values of
γ, Lx , and L y , any global minimizer v(x) for the 1D problem on the torus [0, Lx ]
is automatically a global minimizer on the 2D torus. An asymptotic result, similar

11 Although the second eigenvalue 0.0149 is close to 0, the values are accurate to approximately 10−4.

123



J Nonlinear Sci (2015) 25:539–582 577

in spirit, for a sharp interface version of (OK) was recently presented in Morini and
Sternberg (2013). However, we remark that our approach is elementary and yields
exact values for γ and L y . We first prove that in a certain explicit regime for L y and
γ , any global minimizer on the 2D torus must be a function of x only.

Theorem 5.1 Fix Lx > 0, γ > 0 and let L y > 0 be such that L y ≤ 2π
γ

. Let v(x, y)

be a global minimizer for F1 on the two-dimensional torus Ω = [0, Lx ] × [0, L y].
Then v(x, y) is a function only of x, i.e., v(x, y) = v(x).

Proof Our proof requires a simple result regarding the criticality of 1D functions with
respect to y-dependent perturbations. Specifically, letw(x) ∈ H1(Ω) be any function
depending only on x (not necessarily a critical point of the functional F1), and let

f (x, y) ∈ H (i.e., a function in H1(Ω) with average 0) such that
∫ L y
0 f (x, y)dy = 0

holds for a.e. x ∈ [0, Lx ]. We claim the first variation in f vanishes, i.e.,

2 a(w, f ) +
∫

Ω

w(w2 − 1) f dx

=
∫

Ω

γ −2(∇w) · (∇ f ) + (−w + w3) f dx

+
∫

Ω

(∇(−Δ)−1(w − m)
) · (∇(−Δ)−1 f

)
dx = 0. (5.1)

This follows by using Fubini’s theorem and integrating over the y variable first to
show that all the integrals above (5.1) vanish separately. To this end, we start with the
non-local term. First note that W := (−Δ)−1(w(x) − m) depends only on x . Now
let F := (−Δ)−1 f . Assume for the moment that f ∈ C∞(Ω), hence, by elliptic
regularity F ∈ C∞(Ω). Then

−∂xx F − ∂yy F = f �⇒ −∂xx

( ∫ L y

0
Fdy

)
−

∫ L y

0
∂yy Fdy =

∫ L y

0
f dy = 0.

Hence

−∂xx

( ∫ L y

0
Fdy

)
= 0.

Since F is continuous on the torus, we have

∂x

(∫ L y

0
F(x, y)dy

)
= 0.

The non-local term reduces to

∫
Ω

(∂x W )(∂x F)dx =
∫ Lx

0
(∂x W )

( ∫ L y

0
∂x Fdy

)
dx

=
∫ Lx

0
(∂x W )∂x

( ∫ L y

0
Fdy

)
dx = 0.
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This property extends to f ∈ H1(Ω) by a density argument via a sequence fn ∈
C∞(Ω) which converges in H1(Ω) to f , in which case the associated potentials
Fn := (−Δ)−1 fn also converge to F in H1(Ω).

For the other terms we find that, for f ∈ C∞(Ω),

∫
Ω

γ −2(∇w) · (∇ f )dx =
∫ Lx

0
γ −2(∂xw)

( ∫ L y

0
(∂x f )dy

)
dx = 0,

∫
Ω

(−w + w3) f dx =
∫ Lx

0
(−w + w3)

( ∫ L y

0
f dy

)
dx = 0.

Again, we use a density argument to extend to f ∈ H1(Ω). This proves (5.1).
Suppose now that v(x, y) is a global minimizer to F1. We show that the projection

of v(x, y) onto a 1D pattern has lower energy. Let f (x, y) ∈ H1(Ω) be such that

v(x, y) = w(x) + f (x, y) where w(x) = 1

L y

∫ L y

0
v(x, y)dy.

By the mass constraint, we have

1

Lx

∫ Lx

0
w(x)dx = m and

∫ L y

0
f (x, y)dy = 0 for a.e. x ∈ [0, Lx ].

Now consider the energy difference between the global minimizer v(x, y) and its
projection w(x):

F1[v] − F1[w] = F1[w + f ] − F1[w]
= a( f, f ) +

∫
Ω

3

2
w2 f 2 − 1

2
f 2 + w f 3 + 1

4
f 4dxdy

≥ a( f, f ) +
∫

Ω

1

2
w2 f 2 − 1

2
f 2

=
∫

Ω

γ −2

2
|∇ f |2 + 1

2
|∇(−Δ)−1 f |2 − 1

2
f 2 + 1

2
w2 f 2dxdy

≥
∫

Ω

γ −2

2
(∂y f )2 − 1

2
f 2dxdy

≥
((

2π

L yγ

)2

− 1

)
1

2

∫
Ω

f 2dxdy.

To pass to the second line, we made use of (5.1). To pass to the third line, we used the
analogous lower bound (our first lower bound) as in (4.8). To pass to the last line, we
used the Poincaré inequality on f for each slice as a function of y. Hence if L y ≤ 2π

γ
,

then F1[w] ≤ F1[v]. Since by definition of v we have F1[w] ≥ F1[v], it follows that
f ≡ 0 a.e. and v(x, y) = w(x) a.e. ��
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Since for the parameters in Theorem 5.1 the global minimizer to F1 in 2D, which
depends only on x , is also the global minimizer to F1 in one-dimensional [0, Lx ], we
have the following immediate corollary:

Corollary 5.2 For the parameters in Theorem 5.1, any global minimizer to the 1D
problem on Ω is also a global minimizer to the 2D problem.

Note that while we stated and proved Theorem 5.1 on the 2D torus, the same is
true on the n-dimensional torus with L y being the side length of all sides except that
corresponding to x . A similar argument would also yield, for instance, that if v(x, y)

is a global minimizer for F1 on the 2D torus of size Lx × L y , then for Lz ≤ 2π
γ
,

v(x, y, z) = v(x, y) is the global minimizer on the 3D torus of size Lx × L y × Lz . In
a similar spirit, if max{Lx , L y} ≤ 2π

γ
, then the global minimizer is the constant state

v = m.
The previous theorem makes no use of the structure of v(x). On the other hand

combining Theorem 5.1 with previous work on the 1D (OK) problem, we can now
rigorously prove that for certain values of γ, Lx , and L y , a lamellar state is a global
minimizer. Indeed, on the 1D torus it has been shown in Müller (1993) and Yip (2006)
(for the case m = 0) and in Ren and Wei (2003) for general m, that for γ > γc, a
periodic structure v(x) must be a global minimizer. In fact, their results prove more:
Any global minimizer for γ > γc (in fact, even a suitable local minimizer) must be
periodic. See, for example, Theorem 1.1 of Ren and Wei (2003). Theorem 5.1 implies
that there is a threshold for L y/Lx , in terms of γc, below which the periodic lamellar
structure v(x) is a global minimizer on the 2D torus. In other words, this proves
the existence of periodic lamellar global minimizers to (OK) in higher dimensions.
Precisely, we have the following result:

Corollary 5.3 Consider the minimization of (O K ) for any m ∈ (−1, 1) on an n-
dimensional flat torus with one fixed side length, L0 and n − 1 side lengths L. There
exist values of γ and L such that a periodic lamellar structure, i.e., a periodic structure
depending only on one variable, is a global minimizer.

6 Summary and Discussion

For a class of non-convex energy functionals, we have presented a simple strategy to
verify whether or not a given metastable state is a global minimizer. In addition to the
Ohta–Kawasaki, phase-field crystal and other Swift–Hohenberg-type functionals, this
class includes the simpler classical Ginzburg–Landau and Cahn–Hilliard functionals.
Our method was based upon finding a global quadratic lower bound for the excess
energy about a critical point. We gave two simple ways to find such lower bounds.

In Sect. 3we considered the simplestmetastable state: the constant state.We showed
the second approach for a lower bound worked particularly well; indeed for both the
Ohta–Kawasaki and phase-field crystal energies, it gave a good estimate for the actual
true order–disorder curve in phase space. However, we also note that one might further
improve the current ODT estimate by analyzing the structure of the ratio in (3.7).
Note that the method was numerically robust and independent of domain geometry or
dimension.
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In Sect. 4 we applied our methodology to the verification of non-constant candidate
minimizers v �≡ m. Here one must deal with certain symmetry invariants of the energy
and appropriately constrain the class of perturbation methods. Focusing on the Ohta–
Kawasaki energy and our first lower bound, we showed that this can be successfully
done on the 1D torus and on certain asymmetric 2D tori. In these cases, we computed a
lamellar state for which wewere able to numerically verify was close to being globally
optimal. On the symmetric 2D torus, however, the additional symmetry invariants
led us to only a partial answer. Here we were able to argue global optimality of a
computed lamellar state only with respect to perturbations that were orthogonal to
four eigenfunctions directly tied to symmetries of vl .

In Sect. 5, we used our first lower bound to prove that globalminimizers to theOhta–
Kawasaki energy on the 1D torus are also global minimizers on certain asymmetric
higher-dimensional tori. Combining this result with previous work on the 1D torus,
we were able to prove the existence of periodic, lamellar global minimizers to the
Ohta–Kawasaki energy on certain higher-dimensional domains.

We conclude with a few observations. The addition of symmetries in the energy
functionals leads to degenerate global minimizers. As a general observation, using
a lower bound functional to verify that a state is a global minimizer requires either:
(1) removing search directions of symmetry or (2) requiring that the lower bound be
optimal (flat) in any direction of symmetry.

One difficulty when dealing with the (OK) functional is that the energy landscape
becomes very flat as γ becomes large. Specifically, if v is a global minimizer of F1
and b( f, f ) ≥ 0 is the second variation about v, then as γ becomes large, b( f, f )

contains many directions f along which b( f, f ) is small. Furthermore, as the domain
size becomes large, the addition of the longwavelengths can introducemore directions
where b( f, f ) becomes small. Indeed, one might wonder as to why in Sects. 4.3–4.6
we chose a value for γ close to 2 (i.e., close to the ODT curve). Here the number of
eigenvalues less that 0 to the operator B − 2v2 increases with γ . By choosing values
of γ close to 2, we restrict the number of eigenvalues less than 0 to 3. The eigenvectors
appear related to both the smallest eigenvalues of B (without the potential v2) and the
symmetries of the domain. For large values of γ , manymore eigenvalues appear, which
are less than 0. In addition, although many of the eigenvectors appear to be associated
with symmetries of the domain, many do not. Hence, the approach presented here,
using a quadratic lower bound and accounting for symmetries, is restricted to small
values of γ . For example, we also examined the operator B − 2v2 using the (far from
the ODT) parameters γ = 10 and m = 0.25 mentioned in Fig. 1. We did so about
both the hexagonal and lamellae states where we believe the hexagonal structure is
the true ground state. In both cases, several eigenfunctions appeared to be related to
translations of the hexagonal or lamellae state. However, in both cases, we also found
eigenfunctions with additional structures. Since the quadratic functional containing
the operator B −2v2 is only a lower bound to the energy, there is no a priori reason that
eigenfunctions with eigenvalues less that 0 should represent physically lower energy
states—but only rather that they may suggest such states.
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7 Appendix: Solving the Constrained Eigenvalue Problem

We seek to compute the minimizer of 〈ψ, (B − 2v2)ψ〉 subject to

〈ψ2〉 = 1,

〈ψ, ∂xv(x)〉 = 0.

Due to the large matrices involved, it is more efficient to first ignore the orthog-
onality constraint and build a low rank approximation to (B − 2v2) over the entire
unconstrained space. Once the low rank approximation is built, we then project out
the appropriate orthogonality constraints and solve for the minimizer of (B − 2v2).

1. Build numerical finite difference operators:

L = γ −2(Δ2) − (Δ)(3v2(x) − 1) + I,

D = (−Δ).

2. Use MATLAB’s eigenvalue function

[Q �] = eigs(L, D, k, ‘sm’)

to compute the first k eigenvectors and values to the eigenvalue problem:

Lq j = λ jDq j j = 1, . . . , k.

Here Q = [q1 q2, . . . ,qk], while � = diag[λ1 λ2, . . . , λk].
3. Orthonormalize q with respect to the standard �2 inner product (if they are not

orthonormal already).

We now have the numerical representation for operator (B − 2v2) as follows:

(B − 2v2) ≈ D−1L

= Q�QT + R,

where RT = R is a remainder term. Choose k large enough so that R is a positive-
definite matrix. Hence for any discrete vector ψ , we then have:

ψTD−1Lψ ≥ ψTQ�QT ψ for all ψ.

Finally, we minimize ψTQ�QT ψ over the subspace ψT e1 = 0 with ||ψ || = 1,
where e1 ≈ ∂v

∂x is the discrete vector for ∂v
∂x . The above problem can be solved using

straightforward methods as k will generally be small.
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