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ABSTRACT. We consider a class of nonlocal shape optimiza-
tion problems for sets of fixed mass where the energy functional
is given by an attractive/repulsive interaction potential in power-
law form. We find that the existence of minimizers of this
shape optimization problem depends crucially on the value of
the mass. Our results include existence theorems for large mass
and nonexistence theorems for small mass in the class where the
attractive part of the potential is quadratic. In particular, for the
case where the repulsion is given by the Newtonian potential,
we prove that there is a critical value for the mass, above which
balls are the unique minimizers, and below which minimizers
fail to exist. The proofs rely on a relaxation of the variational
problem to bounded densities, and recent progress on nonlocal
obstacle problems.

1. INTRODUCTION

In this note, we address the following nonlocal shape optimization problem:

(P) Minimize E(Ω) :=
∫

Ω

∫

Ω
K(x −y)dx dy

over measurable sets Ω ⊂ Rd (d á 2) of finite measure |Ω| =m.

Here, K : Rd → R ∪ {+∞} is a locally integrable, lower semicontinuous, radial
function, and |Ω| denotes the Lebesgue measure of the set Ω. In particular, we are
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interested in interaction potentials in the power-law form

(1.1) K(x) :=
|x|q

q
−
|x|p

p

where −d < p < q with p,q ≠ 0.
Note that these sums of attractive and repulsive power-law potentials have

collective effect, which is repulsive at short ranges but attractive at long ranges
(see Figure 1.1). We will focus on positive attraction q > 0 and Riesz potential

|x|

K(|x|)

(a) −d < p < 0 and q > 1

|x|

K(|x|)

(b) −d < p < 0 and 0 < q < 1

FIGURE 1.1. Generic examples of K for various values of q and p

repulsions −d < p < 0; the majority of our results pertain to quadratic attraction
q = 2, and some require p to be at or below 2−d, the exponent of the Newtonian
potential. Our results are valid in any dimension d á 2 with the understanding
that when d = 2, the Newtonian repulsion (corresponding to p = 2 − d = 0) is
given by log |x|, that is, the kernel (1.1) isK(x) = (1/q)|x|q−log(|x|) when p =
2− d. Moreover, when p = 2 − d, the repulsive part of the energy is determined
by the H−1-norm of the characteristic function and is equal to ‖χΩ‖

2
H−1 up to a

constant. We use the notation χΩ for the characteristic (indicator) function of a
set.

The problem (P) is a toy example of shape optimization problems where re-
pulsive interactions at short distances compete with attraction at long distances.
As far as we know, this is the first work to address such problems. It is closely
related to the problem of minimizing the nonlocal interaction energy

(1.2) E(ρ) :=
∫

Rd

∫

Rd
K(x −y)ρ(x)ρ(y)dx dy

over non-negative densities ρ ∈ L1(Rd) of given mass ‖ρ‖L1(Rd) =m. Note that
such functionals appear in a class of well-studied self-assembly/aggregation mod-
els (e.g., see [4, 18, 23, 24] and the references therein). Under broad assumptions
on the kernels, the existence of global minimizers [10, 11, 13, 34] and qualitative
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properties of local minimizers [2, 12] of these energies along with convex approx-
imations of minimizers via analytical [17] and numerical [3] techniques have re-
cently been investigated. These results do not directly extend to (P), because a
sequence of densities given by the indicator functions of measurable sets may con-
verge weakly to densities taking values strictly between zero and one. Nevertheless,
we are able to exploit the relation between the two problems to obtain existence
and non-existence results for (P).

The purpose of this study is to lay out the foundations for addressing (P),
focusing mostly on the case of quadratic attraction. In particular, we prove the
following result.

Theorem 1.1. Let K be of the form (1.1), and letm> 0. We have the following:

(i) For q = 2 and −d < p à 2 − d and for sufficiently small m, the problem
(P) does not have a solution.

(ii) For q = 2 and −d < p < 0 and for sufficiently large m, the ball of volume
m is the unique solution of (P) up to translations.

(iii) For q = 2 and p = 2−d, the unique solution of (P) is a ball of volumem if
m á ωd, where ωd denotes the volume of the unit ball in Rd. If m <ωd,
the problem (P) does not have a solution.

Our approach to Theorem 1.1 is via a relaxation of (P) wherein the energy
(1.2) is minimized over densities ρ with 0 à ρ à 1 almost everywhere. We will
denote this relaxed problem by (RP) and note that existence of minimizers was
recently established in [13]. In Section 4, we show that (P) has a solution if and
only if the relaxed problem has a solution that is a characteristic function (Theo-
rem 4.5). We also derive the first variation of (RP) and show that local minimizers
are compactly supported. These results hold for general kernels. In Section 5,
we turn our attention to power-law potentials and consider the quadratic attrac-
tion case. After establishing the uniqueness of minimizers, we first prove part (i)
of Theorem 1.1 via a recent regularity result of Carrillo, Delgadino, and Mellet
[12] for local minimizers of E over probability measures, where they prove the
connection with solutions of certain nonlocal obstacle problems and utilize their
regularity [8, 33]. Then, we show that balls satisfy the first-order variational in-
equalities corresponding to (RP) when the mass is sufficiently large, and prove
parts (ii) and (iii) of Theorem 1.1. Our results exploit the special nature (convex-
ity) of the energy E for q = 2. We believe the basic approach to their proof should
extend to all q > 0. We address the challenges of such extensions in Section 6 and
also mention when we can expect minimizers that are not necessarily balls.

Our conclusions and the consideration of (P) are motivated by a number of
old and new shape optimization problems which we now describe in the physically
most relevant case of three dimensions.

2. RELATED SHAPE OPTIMIZATION PROBLEMS

We start with a problem of Poincaré on the shape of a fluid [32]. If we assume
vanishing total angular momentum, the total potential energy in a fluid body,
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represented by a set Ω ⊂ R3, is given by

−

∫

Ω

∫

Ω

C

|x − y|
dx dy,

where −C|x − y|−1 is the Newtonian potential resulting from the gravitational
attraction between two points x and y in the fluid, and C > 0 is a physical
constant. After rescaling, Poincaré’s variational problem is given by





Minimize −
∫

Ω

∫

Ω

1
|x −y|

dx dy

over measurable sets Ω ⊂ R3 with |Ω| =m.

Poincaré asserted that among all shapes with fixed mass, the unique shape of lowest
energy is a ball, and proved this statement for sufficiently smooth sets. He referred
to previous work of Lyapunov but was critical of its incompleteness. It was not un-
til almost a century later that all the details were sorted out by Lieb [28], wherein
the heart of the matter lies in the rearrangement ideas of Steiner for the isoperi-
metric inequality. These ideas are captured in the Riesz rearrangement inequality
and its development (cf. [7, 29]). On the other hand, the maximum energy is not
attained, as by breaking up the shape and spreading out one can drive the energy
to 0.

Another classical variational problem with similar conclusions is the isoperi-
metric problem:

{
Minimize perimeter (Ω)
over sets Ω ⊂ R3 of finite perimeter with |Ω| =m.

It is, of course, well known that the only minimizers are balls. Again, the maxi-
mum does not exist.

The energies in both these problems are purely attractive in that they share an
incentive (albeit a different one) for set elements to stay together. When these are
placed in direct opposition by subtracting the energies, one obtains the nonlocal
isoperimetric problem which, stated in dimension d = 3, is

(NLIP)





Minimize perimeter (Ω)+
∫

Ω

∫

Ω

1
|x −y|

dx dy

over sets Ω ⊂ R3 of finite perimeter with |Ω| =m.

Here, the Newton potential |x − y|−1 represents the electrostatic repulsion be-
tween two points x and y , and the double integral represents the Coulomb energy
of a uniform charge distribution on Ω. The two terms are now in direct compe-
tition: balls are best (minimizers) for the first term but worst (maximizers) for the
second. This functional appeared first in physics literature in Gamow’s famous
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liquid drop model (cf. [22]), and later it was re-introduced in [14,15] in studying
the small volume fraction asymptotics of the Ohta-Kawasaki functional. It was
conjectured that there exists a critical mass mc such that minimizers are balls for
m à mc and fail to exist otherwise. There has recently been much work on the
(NLIP) (see, e.g., [5,20,25–27,30,31]). To date, what is known is that there exist
two constantsm1 àm2 such that the following hold:

(i) Balls are the unique minimizers ifmàm1.
(ii) Minimizers fail to exist ifm>m2.

It remains open whether or not m1 = m2. Thus, the heuristic picture emerges
that the perimeter completely dominates up to a critical mass, beyond which the
Coulomb repulsion is strong enough to break sets apart.

In the (NLIP), the attraction (i.e., the incentive) for the set to remain together
is via perimeter, a local quantity involving derivatives, while the repulsion results
from a pairwise interaction potential. As such, the short- and long-range inter-
actions are inherently different.1 Thus, it is natural to consider problems where
both attraction and repulsion are dictated by pairwise interaction potentials in
power-law form, for example, minimizers of

(2.1)
1
2

∫

Ω

∫

Ω
|x −y|2 dx dy +

∫

Ω

∫

Ω

1
|x −y|

dx dy

over sets Ω ⊂ R3 with |Ω| =m. This is the special case of (P) with q = 2, p = −1,
and d = 3. It can be viewed as a toy problem for the total potential energy of
spring-like media which, at short distances, experience Coulombic repulsion, and,
at longer distances, experience the usual Hookean attraction. As in the (NLIP),
balls are best for the first term but worst for the second. However, the role of the
massm is reversed according to the different scaling of the attractive and repulsive
terms in (2.1), with repulsion dominating for smallm and attraction dominating
for largem. While in the (NLIP) the lack of existence of minimizers is due to mass
escaping to infinity, here it is due to oscillations. Moreover, unlike for the (NLIP),
here we can explicitly identify the critical threshold below which minimizers fail
to exist and above which the unique minimizer is a ball.

In this short paper, we make a first step at addressing existence vs. nonexistence
for the general problem (P), depending on the mass parameterm. Here, there is a
surprising lack of general mathematical tools: for controlling the attractive part of

1Recently there has also been a significant interest in nonlocal set interactions via nonlocal deriva-
tives (see e.g., [1,9,19] and in particular [35] for a review). Here, the repulsion is of Riesz type and the
attraction is created by the interaction of a set Ω with its complement Ωc . Specifically, the nonlocal
energy considered in these works is given by

∫

Rd

∫

Rd

(χΩ(x)− χΩ(y))
2

|x −y|d+s
dx dy

for some Ω ⊂ Rd and 0 à s à 1. There has also been interest in nonlocal set interactions via cross
interaction of two phases (cf. [6, 16]).
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the interaction potential, there is nothing like the well-developed regularity theory
for minimal surfaces, which greatly benefited the analysis of both the local and
nonlocal isoperimetric problems, and recently, the analysis of variational problems
with nonlocal derivatives. On the other hand, the Riesz rearrangement inequality,
which was the key to solving Poincaré’s problem, goes in the wrong direction.

Finally, we remark that we only consider locally integrable kernels, although
kernels that are not locally integrable and appear in crystallization problems are of
great interest from the point of view of the calculus of variations.

3. MASS SCALING

Throughout, we consider nonlocal interaction energies (1.2) over three different
classes:

• Sm := Characteristic functions of measurable sets Ω ⊂ Rd with |Ω| =m;

• Am,M := {ρ ∈ L1(Rd) ∩ L∞(Rd) : ‖ρ‖L1(Rd) = m and 0 à ρ(x) à M
almost everywhere};

• P(Rd) := probability measures over Rd.

With an abuse of notation, we denote the energy by E over each class; however, we
emphasize the dependence on the admissible class using the notation E(Ω), E(ρ),
and E(µ), respectively, when needed. Note that minimization over Sm is precisely
our shape optimization problem (P). Clearly, Sm ⊂ Am,1 and Am,1 is the weak
closure of Sm in the weak L1-topology.

Over P(Rd), the minimal energy scales differently than on Sm or Am,M .
When we consider the nonlocal energy (1.2) over density functions ρ ∈ L1(Rd),
the shape of minimizers is independent of the mass m: the problem is homoge-
neous in ρ; that is,

E(cρ) = c2 E(ρ)

for any c > 0.
On the other hand, for (P) this is not the case, since the attractive and repulsive

parts of the interaction energy scale differently under a dilation. To see this, let us
split the energy into its attractive and repulsive parts, E = Eq− Ep, where

Eq(Ω) =
1
q

∫

Ω

∫

Ω
|x −y|q dx dy and Ep(Ω) =

1
p

∫

Ω

∫

Ω
|x −y|p dx dy.

Given a measurable set Ω ⊂ Rd of volumem, and t > 0, the dilated set

tΩ := {x ∈ Rd : t−1x ∈ Ω}

has mass equal to tdm. The attractive and repulsive parts of the energy satisfy

Eq(tΩ) = t2d+q Eq(Ω) and Ep(tΩ) = t2d+p Ep(Ω).
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Choosing t = m1/d and replacing Ω with tΩ, we see that (P) is equivalent to
minimizing

(3.1) E(tΩ) =m2+q/d Eq(Ω)−m2+p/d Ep(Ω) over sets of volume |Ω| = 1.

Since p < 0 < q, we see from (3.1) that, for sets of large mass, the energy
is dominated by attraction, whereas for small mass, it is dominated by repulsion.
The separate effects of each term are characterized by the following well-known
application of the Riesz rearrangement inequality.

Proposition 3.1. For every non-zero r > −d and each m > 0, balls are the
unique minimizers of the energy

Er (Ω) =
1
r

∫

Ω

∫

Ω
|x −y|r dx dy

among measurable sets Ω ⊂ Rd of measure m. There is no maximum; the supremum
takes the value +∞ for r > 0, and 0 for −d < r < 0.

Proof. Given a set Ω ⊂ R
d of measure m > 0, let Ω∗ be the open ball of

the same measure centered at the origin. Since the kernel Kr (x) = (1/r)|x|r

is radially increasing, it follows from the classical Riesz rearrangement inequality
[7, 29] that

Er (Ω∗) à Er (Ω).
(Note that the sign of the factor 1/r compensates for the change of monotonicity
when r < 0.) Since Kr is strictly increasing, equality holds only if Ω agrees with
Ω∗ up to a translation and a set of measure zero [28], that is, if Ω itself is a ball.

For the second statement, construct maximizing sequences of sets {Ωn}ná1,
where each Ωn is the union of n balls of mass m/n whose pairwise distance
exceeds n. ❐

In light of (3.1), if the mass is large, the attractive interaction dominates and
we expect that balls are global minimizers for (P). If the mass is small, the repul-
sion dominates and we expect that minimizers fail to exist: rather, a minimizing
sequence converges weakly to a density function taking on values strictly between
0 and 1. We now make these statements precise.

4. THE RELAXED PROBLEM

We consider the following relaxation of (P):

(RP) Minimize E(ρ) =

∫

Rd

∫

Rd
K(x −y)ρ(x)ρ(y)dx dy over Am,1.

In this section, we will work with radially symmetric kernels K(·) that are

locally integrable, nonnegative, lower semicontinuous,(4.1)

and satisfy lim
|x|→∞

K(x) = ∞.
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Note that this class of kernels include power-law potentials of the form (1.1).
The following existence result was first proved for power-law potentials in

[13]. To obtain the existence of minimizers for more general kernels, we can
use the arguments in [34, Theorem 3.1] and obtain that a minimizing sequence
is tight. Then, combining this with the arguments in [13, Theorem 2.1], we
can conclude that a minimizing sequence is compact, that is, has a convergent
subsequence in the class of admissible functions Am,1.

Proposition 4.1 (Existence of solutions). Under the assumptions of (4.1), the
problem (RP) admits a solution for eachm> 0.

We say that a function ρ is a local minimizer of E inAm,1 (in the L1-topology),
if E(ρ) à E(ρ +ϕ) for all ϕ ∈ L1(Rd) with ‖ϕ‖L1 < δ and ρ + ϕ ∈ Am,1.
Local minimizers satisfy the following necessary condition.

Lemma 4.2. Let ρ be a local minimizer of the energy E in Am,1. Then, there
exists a constant λ > 0 such that (except for x in a set of measure zero)

(4.2) K ∗ ρ(x)





= λ if 0 < ρ(x) < 1,

á λ if ρ(x) = 0,

à λ if ρ(x) = 1.

Proof. We proceed as in [21, Lemma 4.1.2] and [16, Lemma 1.2]. We let
ρ ∈ Am,1 be a local minimizer of E. We need to construct perturbations that
are nonnegative on S0 := {x : ρ(x) = 0}, nonpositive on S1 := {x : ρ(x) = 1},
and that preserve mass. Letϕ andψ ∈ L1(Rd) be compactly supported, bounded,
nonnegative functions with ϕ = 0 almost everywhere in S1, ψ = 0 almost every-
where in S0, and ∫

Rd
ϕ(x)dx =

∫

Rd
ψ(x)dx = 1.

Fix ε > 0, and define

ϕε(x) :=
1

‖ϕχ{1−ρ>ε}‖L1(Rd)

ϕ(x)χ{1−ρ(x)>ε}(x),

ψε(x) :=
1

‖ψχ{ρ>ε}‖L1(Rd)

ψ(x)χ{ρ(x)>ε}(x).

By construction, ρ + t(ϕε −ψε) lies in Am,1, and the perturbation is small
for sufficiently small values of t > 0. Since ρ is a minimizer, it follows that

0 à lim
t→0+

E(ρ + t(ϕε −ψε))− E(ρ)

t
= 2

∫

Rd
K ∗ ρ(x)(ϕε −ψε)(x)dx.

Clearly, ϕε → ϕ and ψε → ψ as ε → 0. By dominated convergence, we can
pass to the limit as ε → 0 and obtain

(4.3)
∫

Rd
K ∗ ρ(x)(ϕ −ψ)(x)dx á 0.



Interaction of Sets 383

Note that, by density, (4.3) holds for all nonnegative functions ϕ,ψ in L1(Rd)

with ϕ(x) = 0 on S1, ψ(x) = 0 on S0, and ‖ϕ‖L1(Rd) = ‖ψ‖L1(Rd) = 1.
Minimizing and maximizing separately overϕ andψ, we obtain a constant λ ∈ R
such that

inf
{∫

Rd
K ∗ ρ(x)ϕ(x)dx : ‖ϕ‖L1(Rd) = 1, ϕ á 0,

and ϕ = 0 almost everywhere on S1

}
á λ

and

sup
{∫

Rd
K ∗ ρ(x)ψ(x)dx : ‖ψ‖L1(Rd) = 1, ψ á 0,

and ψ = 0 almost everywhere on S0

}
à λ.

In particular, λ > 0 since K, ρ, and ψ are positive. We conclude that K ∗ ρ á λ
almost everywhere on {x : ρ(x) < 1}, and K ∗ ρ à λ almost everywhere on
{x : ρ(x) > 0}, as claimed. ❐

The proof of the above lemma shows that the conditions (4.2) are equivalent
to the condition

lim
t→0+

1
t
(E(ρ + tψ)− E(ρ)) á 0

whereψ is chosen, so that ρ+tψ ∈ Am,1 for small t > 0. In fact, the next lemma
shows that (4.2) are sufficient for minimality when E(ρ) is strictly convex.

Lemma 4.3 (Sufficiency of conditions (4.2)). If E(ρ) is strictly convex over
any convex admissible class A, and if ρ ∈ A satisfies the conditions (4.2), then ρ is
the unique minimizer of E(ρ) over A.

Proof. Let ρ1 and ρ2 ∈ A be such that both ρ1 and ρ2 satisfy the conditions
(4.2), and assume, for a contradiction, that ρ1 6≡ ρ2. Suppose E(ρ1) = E(ρ2).
Then, by strict convexity of E and convexity of A, there exists a function ψ ∈ A
such that E(ψ) < E(ρ1). By the fact that ρ1 satisfies (4.2) and E is strictly convex,
we obtain

0 à lim
t→0+

E(ρ1 + t(ψ− ρ1))− E(ρ1)

t
à E(ψ)− E(ρ1),

which contradicts the assumption E(ψ) < E(ρ1).
If E(ρ1) ≠ E(ρ2), assume, without loss of generality, that E(ρ1) < E(ρ2).

Since ρ2 satisfies (4.2) and E is strictly convex, we have

0 à lim
t→0+

E(ρ2 + t(ρ1 − ρ2))− E(ρ2)

t
à E(ρ1)− E(ρ2).

However, this contradicts the assumption E(ρ1) < E(ρ2). Thus, ρ1 ≡ ρ2.
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Thus, there exists only one function ρ ∈A that satisfies the conditions (4.2),
and by strict convexity of E(ρ), it is the global minimizer. ❐

One consequence of Lemma 4.2 is that the minimizers of E over Am,1 are
compactly supported. This fact was established in [10] for minimizers of E over
P(Rd); a more direct approach was used in [16, Proposition 1.11]. In our situ-
ation, the argument is simple and we present it here for the convenience of the
reader.

Lemma 4.4. Under the assumptions of (4.1), every local minimizer for (RP) in
Am,1 has compact support.

Proof. By Lemma 4.2, there exists a constant λ such that K ∗ ρ à λ almost
everywhere on the support of ρ. Changing ρ on a set of measure zero, if necessary,
we may assume that K ∗ ρ(x) à λ for all x with ρ(x) > 0.

Let R > 0 be large enough such that

CR :=
∫

|y|<R
ρ(y)dy > 0.

Since K and ρ are nonnegative, we have for x ∈ Rd that

K ∗ ρ(x) á

∫

|y|<R
K(x −y)ρ(y)dy

á CR inf{K(z) : |z| > |x| − R}.

Therefore,
lim
|x|→∞

K ∗ ρ(x) = ∞,

and the sub-level set {x : K ∗ ρ à λ} is bounded. Since the sub-level set contains
the support of ρ, the claim follows. ❐

A useful consequence of Lemma 4.4 is that K ∗ ρ is continuous (since K is
locally integrable). We can now reduce the geometric variational problem to the
relaxed problem.

Theorem 4.5 (Necessary and sufficient conditions for existence of (P)). Let
K be a radially symmetric kernel satisfying (4.1). Then, the problem (P) has a solution
Ω ⊂ Rd if and only if its characteristic function χΩ is a solution of (RP).

Proof. We will show that

(4.4) inf
|Ω|=m

E(Ω) = min
ρ∈Am,1

E(ρ)

and establish a relationship between the solutions of the two variational problems.
The inequality á is trivial from the definition of the two variational problems: the
characteristic function χΩ of any set Ω ⊂ Rd of measurem lies in Am,1.



Interaction of Sets 385

Conversely, fix a global minimizer ρ over Am,1. By Lemma 4.4, ρ has com-
pact support. Choose a sequence of measurable sets {Ωn}ná1 whose characteristic
functions ρn = χΩn converge to ρ weakly in L1(Rd). To be specific, take a dyadic

decomposition of Rd into cubes of side length 2−n, and let the intersection of Ωn
with a given cube Q be the centered closed subcube of volume

∫

Q
ρ(x)dx. By

construction, |Ωn| = m and ρn ∈ Am,1. Since ρ has compact support, the sets
Ωn are contained in a common compact set, a large cube Q.

Clearly, ρn ⇀ ρ weakly in L1(Rd). It follows from the local integrability of K
that

lim
n→∞

K ∗ ρn(x) = K ∗ ρ(x)

for every x ∈ Rd, that is, K ∗ ρn converges pointwise to K ∗ ρ. Since K ∗ ρn is
uniformly bounded on Q, it follows by the dominated convergence theorem that
K ∗ ρn → K ∗ ρ in L1(Q). Using once more that ρn ⇀ ρ, we conclude that

E(Ωn) =
∫

Ωn
K ∗ ρn dx →

∫

Rd
(K ∗ ρ)ρ dx = E(ρ).

Hence,
inf

|Ω|=m
E(Ω) à E(ρ) = min

ρ∈Am,1

E(ρ).

❐

5. THE CASE OF q = 2

Here, we specialize to kernels of the form (1.1) where the attractive term is qua-
dratic, that is, q = 2. The key observation here is that (RP) can be rewritten as a
convex minimization problem in the parameter regime q = 2 and −d < p < 0,
hence allowing us to conclude the uniqueness of minimizers of the relaxed prob-
lem.

Lemma 5.1. For q = 2 and −d < p < 0, the solution of problem (RP) is unique
up to translation, and is given by a radial function.

Proof. Since the energy E(ρ) is translation invariant, without loss of generality,

we assume that
∫

Rd
xρ(x)dx = 0. Then,

Eq(ρ) =
1
2

∫

Rd

∫

Rd
|x −y|2ρ(x)ρ(y)dx dy =m

∫

Rd
|x|2ρ(x)dx,

and the attractive part of the energy is linear in ρ.
On the other hand, when −d < p < 0, the repulsive part of the energy

− Ep(ρ) = −
1
p

∫

Rd

∫

Rd
|x −y|pρ(x)ρ(y)dx dy
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is strictly convex over Am,1, because the Fourier transform of the interaction ker-
nel −Kp(x) = −(1/p)|x|p is strictly positive when −d < p < 0 [29, Corol-
lary 5.10].

Therefore, the energy is strictly convex among all functions inAm,1 with zero
first moments, and the solution of (RP) is unique up to translations.

Radial symmetry of the solution follows from the uniqueness and, due to its
isotropic nature, the rotational symmetry of the energy E(ρ) around the center of
mass of any ρ ∈Am,1. ❐

Remark 5.2. For x ∈ R2, we take

K(x) =
1
2
|x|2 − log |x|

when p = 2− d, and the repulsive part of the energy is given by

− Ep(ρ) = −

∫

R2

∫

R2
log(|x −y|)ρ(x)ρ(y)dx dy = C

∥∥ρ
∥∥2
H−1 .

Hence, the repulsion term is strictly convex, and we still have the uniqueness of
minimizers in the case p = 2− d when d = 2.

5.1. Nonexistence for (P) for small mass. To prove the nonexistence of
minimizers in the small mass regime, we specialize to kernels of the form (1.1)
with q = 2 and −d < p à 2 − d. This range of Riesz potentials shares some
important properties via their correspondence to the obstacle problem for (−∆)s
with s ∈ (0,1], which enjoys strong regularity features [8, 33]. This connection
between the obstacle problem and nonlocal interaction energies over P(Rd) was
recently exploited by Carrillo, Delgadino, and Mellet [12] to obtain regularity of
local minimizers with respect to the ∞-Wasserstein metric d∞.2 Although a priori
local minimizers in the d∞-topology are not comparable with the local minimizers
in the L1-topology, the regularity result is true for global minimizers independent
of the topology. Here, we rephrase their results for interaction potentials in power-
law form (1.1) (cf. [12, Remark 3.1]).

Lemma 5.3 (Theorems 3.4 and 3.10 in [12]). Let K be given by (1.1). Let
µ ∈ P(Rd) be a local minimizer of E over P(Rd) in the topology induced by d∞. We
have the following:

(i) If q > 0 and p = 2 − d, then µ is absolutely continuous with respect to
the Lebesgue measure and there exists a function ϕ ∈ L∞(Rd) such that
dµ(x) =ϕ(x)dx.

2For µ, ν ∈ P(Rd) the ∞-Wasserstein metric is defined as

d∞(µ, ν) := inf
π∈Π(µ,ν)

sup
(x,y)∈suppπ

|x − y|,

where Π(µ, ν) := {π ∈ P(Rd ×Rd) : π(A×Rd) = µ(A) and π(Rd ×A) = ν(A) for all A ⊂ Rd}.
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(ii) If q > 0 and p < 2 − d, then µ is absolutely continuous with respect to the
Lebesgue measure and there exists a functionϕ ∈ Cα(Rd) for all α < 1 such
that dµ(x) =ϕ(x)dx.

Remark 5.4 (L∞-control on global minimizers). In the parameter regime
q > 0 and −d < p à 2 − d, we can still control the L∞-bound of a global
minimizer: [10, Theorem 1.4] implies that any global minimizer µ ∈ P(Rd) of E

over P(Rd) is compactly supported. This, in light of Lemma 5.3 (ii), yields that
the density function ϕ is in L∞(Rd).

Using these results, we can relate the L∞-bound of minimizers to the mass
constraintm via scaling, which in turn enables us to obtain nonexistence of min-
imizers of the set energy E(Ω) when the mass is sufficiently small.

Proof of Theorem 1.1 (i). Let µ ∈ P(Rd) be a global minimizer of E over
P(Rd). Such a minimizer exists by [10, Theorem 1.4] or [34, Theorem 3.1]
in the parameter regime q = 2, −d < p à 2−d. By Lemma 5.3 and Remark 5.4,
µ is absolutely continuous with respect to the Lebesgue measure with bounded
density; that is, there exists a constant C > 0 such that ‖µ‖L∞ < C with an abuse
of notation.

Consider ρm :=mµ. Form > 0 sufficiently small, we have that ρm ∈Am,1.
Now, we claim that ρm minimizes E over Am,1. To see this, let ϕ ∈ Am,1 be
an arbitrary function and note that (1/m)ϕ ∈ P(Rd). Using the fact that µ
minimizes E over P(Rd) and the scaling of the energy E, we have that

E(ρm) =m
2 E(µ) à m2 E

(
1
m
ϕ

)
= E(ϕ).

On the other hand, by Lemma 5.1 and Remark 5.2, ρm is the unique min-
imizer of E over Am,1 in any dimension d á 2. For m sufficiently small, we
have

‖ρm‖L∞(Rd) =m‖µ‖L∞(Rd) àmC < 1.

Hence, when m is small, ρm is not a characteristic function of a set. Since it
is the unique solution to the problem (RP) by Theorem 4.5, the energy E does not
admit a minimizer over measurable sets of measure m. ❐

5.2. Existence for (P) for large mass. First, note that heuristically Lemma
4.2 and Theorem 4.5 should imply existence for m á ωd in the case of Newto-
nian repulsion p = 2 − d and quadratic attraction q = 2. To see this formally,
assume that any local minimizer of (RP) is continuous on its support, and let

Ω = {x ∈ Rd : 0 < ρ(x) < 1}

for a local minimizer ρ. Suppose, for a contradiction, that |Ω| > 0. Since we
assume that ρ is continuous on its support, Ω is an open set. Lemma 4.2 implies
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there exists a constant λ such that K ∗ ρ(x) = λ on Ω. Taking the Laplacian of
both sides, we find for all x ∈ Ω that

∆K ∗ ρ(x) = 1
2
∆(| · |2 ∗ ρ)(x)+ 1

d− 2
∆
(

1
| · |d−2

∗ ρ

)
(x)

= d

∫

Rd
ρ(y)dy − dωdρ(x) = 0,

or
m

wd
= ρ(x).

Hence, if m á ωd, we obtain a contradiction unless the set Ω is empty. This
shows that for m á ωd, every local minimizer of (RP) must be a characteristic
function. By Theorem 4.5, this establishes existence of (P) for m á ωd and
characterizes the minimizer. We will shortly prove this result rigorously and show
that this lower bound is sharp.

Observe that we now turn to the full range of Riesz potentials, that is, to the
regime −d < p < 0. To prove the existence of set minimizers for the energy E

when the mass m is sufficiently large, we will first prove that the characteristic
function of a ball satisfies the necessary conditions for local minimality of the
relaxed problem (RP).

Lemma 5.5 (Large balls satisfy the necessary condition of Lemma 4.2). Let
any q > 1 and −d < p < 0. For sufficiently large massm, the characteristic function
of a ball of massm satisfies the conditions (4.2).

Proof. We split the kernel into its attractive and repulsive parts by defining
Kq := (1/q)|x|q and Kp := (1/|p|)|x|p so that K = Kq + Kp. Let R be the
radius of the ball of mass m. Since Kq and Kp are radial, so are Kq ∗ χBR and
Kp ∗ χBR .

Since Kq is radially increasing, so is Kq∗χBR . For |x| á R/2, we can estimate
the radial derivative by(

∇(Kq ∗ χBR)(x) ·
x

|x|

)
=

∫

|y|àR
|x −y|q−2(x −y) ·

x

|x|
dy(5.1)

á CqR
d+q−1,

where the constant

Cq = inf
tá1/2

∫

|y|à1
|te1 −y|

q−2(t −y1)dy

is positive since q > 1 and e1 denotes a unit vector in Rd.
Similarly, Kp∗χBR is a decreasing function of |x|: we estimate for |x| á R/2,

(5.2)
(
∇(Kp ∗ χBR )(x) ·

x

|x|

)
á −CpR

d+p−1

for some constant Cp > 0.
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Let R be sufficiently large so that CqRq > CpRp. Such a number R exists
since p < q. From (5.1) and (5.2), we get that (Kq + Kp)∗ χBR(x) is increasing
in |x| for |x| á R/2. Therefore,

K ∗ χBR (x) á λR := K ∗ χBR(x)
∣∣
|x|=R

for |x| á R. Furthermore,

(5.3) K ∗ χBR (x) < λR

for R/2 à |x| < R.
We need to show that (5.3) extends to |x| < R/2. We first note that, since

both Kq ∗ χBR and Kp ∗ χBR are radially symmetric, we have that

λR =

∫

|y|àR

|Re1 − y|
q

q
+
|Re1 −y|

p

|p|
dy(5.4)

= Rd+q
∫

|y|à1

|e1 −y|
q

q
dy + Rd+p

∫

|y|à1

|e1 −y|
p

|p|
dy

= C̃qR
d+q + C̃pR

d+p,

where C̃q = Kq ∗ χB1
(x)||x|=1 > 0 and C̃p = Kp ∗ χB1

(x)||x|=1 > 0.
Using the fact that Kq∗χBR is increasing in |x| and Kp ∗χBR is decreasing in

|x|, we estimate

(K ∗ χBR )(x) à (Kq ∗ χBR)(x)
∣∣
|x|=R/2 + (Kp ∗ χBR )(0)

=
˜̃
CqR

d+q +
˜̃
CpR

d+p,

where
˜̃
Cq := Kq ∗ χB1

(x)
∣∣
|x|=1/2.

Hence, ˜̃
Cq < C̃q as Kq∗χBR is radially increasing. Comparing this inequality with

(5.4), we see that (5.3) also holds for |x| à R/2, if R is sufficiently large. ❐

Proof of Theorem 1.1 (ii). Lemma 5.5 implies that the function χB(0,R) with

R = (m/ωd)
1/d satisfies (4.2), provided m is sufficiently large. By Lemma 5.1,

E(ρ) is strictly convex when restricted to the convex subspace of densities with
zero mean. Therefore, by Lemma 4.3, the function χB(0,R) is the unique solution
of (RP) up to translations, and the result follows by Proposition 4.1. ❐

Finally, as we noted in the Introduction, in the case of Coulomb repulsion,
that is, when p = 2−d, the thresholds of mass for existence/nonexistence appear-
ing in Theorems 1.1 (i) and (ii) coincide and can be computed explicitly. This
provides the complete picture regarding the minimization of E either over Sm or
Am,1 in this special regime.
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Proof of Theorem 1.1 (iii). Consider the relaxed energy E over Am,1, and let
ρR := χB(0,R) with R = (m/ωd)1/d and ρ1 := (m/ωd)χB(0,1). Note that both
ρR and ρ1 are in Am,1.

Using the fact that (d − 2)−1

∫

B(0,R)
|x − y|2−d dy = dωdΦ(x) where Φ(x)

solves the equation −∆Φ = ρR on Rd, we can explicitly compute that

K ∗ ρR(x) =





m−ωd

2
|x|2 +

dωdR
2

2(d− 2)
+

dmR2

2(d+ 2)
if |x| à R,

m

2
|x|2 +

ωdR
d

(d− 2)
|x|2−d +

dmR2

2(d+ 2)
if |x| > R.

This shows ρR satisfies (4.2) if and only if m á ωd. Then, by Lemma 5.1, we
get that ρR is the unique minimizer of E(ρ) if and only ifm áωd. On the other
hand, when m < ωd, a simple calculation shows that E(ρ1) < E(ρR). Moreover,
by [13, Theorem 2.4], ρ1 is the unique global minimizer of E over Am,1 when
m<ωd. Hence, the result follows by Theorem 4.5. ❐

Remark 5.6 (Failure of minimality of balls in two dimensions). For more
singular repulsive powers in two dimensions, we can determine the threshold be-
low which the ball fails to be the global minimizer of E(ρ) by explicit calculations.
When d = 2, q = 2, and −2 < p < 0, the energy of a ball of radius R = (m/π)1/2

is given by

E(χB(0,R)) =
π

2
R6 +

2π2Γ (2+ p)
(−p)Γ (2+ p/2)Γ (3 + p/2)R

4+p,

where Γ denotes the Γ -function. Observe that the computation of the attractive
part of the energy is trivial; the computation of the repulsive part is given in
Corollary 3.5 of [26]. On the other hand,

E(R2χB(0,1)) =

(
π

2
+

2π2Γ (2+ p)
(−p)Γ (2+ p/2)Γ (3+ p/2)

)
R4.

Thus, choosing Rc so that

π

2
R2
c +

(
2π2Γ (2+ p)

(−p)Γ (2+ p/2)Γ (3 + p/2)

)
R
p
c >

π

2
+

2π2Γ (2+ p)
(−p)Γ (2+ p/2)Γ (3+ p/2) ,

and noting that Rc < 1, we see that for any R à Rc , we have that

E(R2χB(0,1)) à E(χB(0,R));

hence, χB(0,R) is not a global minimizer of E over Am,1.
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6. THE REGIME OF q > 0

As we noted before, the quadratic attraction case is special, as the attractive part
of the energy either over Am,1 or P(Rd) is linear in its argument when we fix the
center of mass of competitors to zero. This allows us to conclude the uniqueness
of solutions to (RP). The uniqueness of minimizers is key to the existence of
solutions to (P), as we utilize this to conclude that any stationary state to (RP)
has to minimize the energy E over Am,1. When q ≠ 2, on the other hand, even
though Lemma 5.5 shows that the balls are stationary states in the parameter
regime q > 1, −d < p < 0 when m > 0 is large, because of the possible lack
of uniqueness of minimizers, we cannot conclude the existence of solutions to (P)
for large measure. Nevertheless, we believe that the problem (P) admits a solution
for large values m > 0 when q > 1, as the energy is dominated by the attractive
term which is minimized by balls of measurem.

The uniqueness of minimizers is also an important ingredient in establishing
nonexistence of solutions to (P). Indeed, it is the uniqueness of solutions to (RP)
which allows us to conclude that any solution of (RP) can be written as mµ for
some µ that minimizes E over P(Rd). Intuitively, for smallm > 0, the L∞-bound
in the problem (RP) is not active, and the morphology of minimizers should be
the same as of those over P(Rd). When m > 0 is large, on the other hand, the
L∞-bound becomes active and introduces additional repulsive effects that penalize
accumulations.

When q > 0 and −d < p à 2 − d, nonexistence of solutions to (P), as in
Theorem 1.1 (ii), would also be true if the L∞-bound found in Lemma 5.3 and
Remark 5.4 were uniform for any measure minimizer µ. In that case, the proof
of Theorem 1.1 (ii) would translate almost verbatim to the power regime q > 0,
−d < p à 2− d. A result in this direction is the following.

Proposition 6.1. Let K be of the form (1.1). Then, for q > 0, −d < p < 0,
and for m > 0 sufficiently small, the ball of measurem is not a solution of (P).

Proof. We will proceed by contradiction. If B(0, rn) with ωdrdn = 1/n were
solutions of (P) withm = 1/n for any n ∈ N, then the weak limit of the sequence
ρn = nχB(0,rn) ∈ P(Rd) would also minimize the energy E over P(Rd). This

follows by noting that, for fixed µ that globally minimizes E over P(Rd), we have
that for sufficiently large n ∈ N,

E(µ) à E(ρn) = n
2 E(χB(0,rn)) à n

2 E(n−1µ) = E(µ).

The second inequality follows from (4.4). Thus,

lim
n→∞

E(ρn) = inf
µ∈P(Rd)

E(µ),

that is, {ρn}n∈N is a minimizing sequence for the energy E over P(Rd). Argu-
ing as in [34, Theorem 3.1] via Lions’s Concentration Compactness Theorem, we
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obtain that ρn has a weakly convergent subsequence, and by the weak lower semi-
continuity of E, its limit minimizes E over P(Rd). However, as n → ∞, {ρn}n∈N
converges weakly to δ0, the Dirac measure at x = 0, which has infinite energy. ❐

A possible way of generalizing this result to conclude nonexistence of (P) for
smallm is via the energy-per-particle-pair,

η(m) := inf
ρ∈Am,1

E(ρ)

m2
,

associated with (RP). Because of the positivity of K, it is easy to see that if (P)
admits a solution for all m > 0, then η(m) is nondecreasing in m. Moreover, if
η(m) is strictly increasing in m (which is true when q = 2, −d < p < 0), then
we would have the following sufficient condition for nonexistence of minimizers:
if η′(mc) = 0 for some mc > 0, then (P) does not have a solution for m < mc .
Together with Lemma 5.3 and Remark 5.4, this would prove nonexistence of (P)
for sufficiently small m > 0 when q > 0 and −d < p à 2 − d. These remarks
highlight the fact that the (strict) monotonicity of η determines whether or not
the L∞-constraint in Am,1 is active for the given value ofm.

Finally, it remains to be proved whether or not there exists a regime of m, q,
and p where the minimizers are not balls. When q is sufficiently large, we expect
that solutions to (P) are rings rather than balls. Formally, the sequence of energies
{E(ρ)}q>0 converges to

E∞(ρ) =




−

1
p

∫

Rd

∫

Rd
|x −y|pρ(x)ρ(y)dx dy if diam(suppρ) à 1,

+∞ otherwise,

as q →∞. Because of the purely repulsive effects in the energy E∞, its minimizers ρ
should have convex supports and accumulate on the boundary of suppρ; however,
these questions are open even in the Newtonian case.
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