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Abstract Since the pioneering work of Canham and Helfrich, variational formulations
involving curvature-dependent functionals, like the classical Willmore functional, have
proven useful for shape analysis of biomembranes. We address minimizers of the Canham–
Helfrich functional defined over closed surfaces enclosing a fixed volume and having fixed
surface area. By restricting attention to axisymmetric surfaces, we prove the existence of
global minimizers.
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1 Introduction and main result

For compact surfaces � embedded in R
3, the Canham–Helfrich functional is defined by

H (�) =
∫

�

{κH

2
(H − H0)

2 + κG K
}

d A, (1)

where the integration is with respect to the ordinary 2-dimensional area measure, H is the sum
of the principal curvatures of �, i.e., twice the mean curvature, K is the Gaussian curvature,
κH , κG ∈ R are constant bending rigidities and H0 ∈ R is a given spontaneous curvature.

We prove the existence of a global minimizer for H in the class of finite systems of
axisymmetric surfaces, under the constraints that the total area and the total enclosed volume
of the surfaces are fixed.
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Biological membranes and their shapes have attracted attention from researchers across
many areas of mathematics. For example, membranes connect classical problems of dif-
ferential geometry involving Willmore’s functional to studies of shape configurations of
biological cells in physics and biology (see, e.g., [21,23]). More recently, researchers in
both mathematical analysis and scientific computing have directed efforts to understanding
multiphase membranes, where phase transitions and pattern formation can be observed (see,
e.g. [3,15,16,25,34,35]). The modeling of multiphase membranes has numerous applications
associated with artificial membranes in pharmacology and bioengineering (e.g., [33]).

In his seminal work [9], Canham proposed the functional (1), in the case H0 = 0, in order
to model the elastic bending energy of biological membranes formed by a double layer of
phospholipids. When immersed in water, these molecules, which are composed by a hydro-
philic head and a hydrophobic tail, spontaneously aggregate in order to shield the tails from
water, forming a closed bilayer with the heads pointing outwards. Since the thickness of a
layer is generally three to four orders of magnitude smaller than the size of the observed cells
or vesicles, the bilayer is usually approximated as a two-dimensional surface� embedded in
R

3. The functional H is the most general example of energy which is quadratic in the prin-
cipal curvatures. The parameter H0 ∈ R, added by Helfrich [18], accounts for an asymmetry
in the composition of the layers and gives rise to a spontaneous curvature of the membrane
in absence of other constraints. The bending rigidities κH and κG are also material-depen-
dent parameters. Under the simplifying assumption that the membrane is homogeneous, we
choose H0, κH and κG constant. In reality, phases with different levels of aggregation and
different rigidities are observed [22].

There are two natural constraints associated with the membrane configuration. Since lipid
membranes are inextensible, the total area of the membrane should be fixed. On the other
hand, the membrane is permeable to water but not to dissolved ions. The resulting osmotic
pressure leads then to a constraint on the volume enclosed by the membrane, which can
therefore be regarded as constant [23]. From the point of view of our analysis, the constraint
on the area plays a crucial role in obtaining a priori bounds and compactness. The constraint
on the volume, instead, does not add any property or difficulty, but it is the combination of
these two constraints that makes highly nontrivial the problem of determining the minimizer.

Another important feature of membranes is that they can undergo topological changes, for
example, a spherical vesicle can shrink at the equator and eventually split into two vesicles
(fission) or a small dome can rise from a point of the surface and grow into a new entity
which separates from the original one (budding), see e.g. [30, Sect. 3.9] and [4]. In order to
be able to describe these kind of phenomena, we do not impose restrictions on the number
of components of the minimizers.

Helfrich’s functional can be regarded as a generalization of the classical Willmore func-
tional, defined by

W (�) = 1

4

∫

�

|H |2 d A.

In the seminal paper [31], Leon Simon proved that for each n ≥ 3 there exists a compact
embedded real analytic torus in R

n which minimizes W among compact embedded surfaces
of genus 1. Following the direct method of the calculus of variations, he first shows that
sequences of minimizers are compact in the sense of measures, and then proves that the limit
measure is actually an analytic surface. Simon’s proof of regularity relies on the invariance of
Willmore functional under conformal transformations and on the fact that a minimizing sur-
face� must satisfy 4π ≤ W (�) ≤ 8π . Owing to the presence of the spontaneous curvature
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H0 and to the combined area and volume constraints, Helfrich’s functional is not conformally
invariant, and for general values of area and volume, we only know that 0 ≤ H . There-
fore, though measure-compactness can be easily transferred to our case, Simon’s method
for regularity cannot be employed, and we have to find a different approach. Regarding
minimization with area and volume constraints in the case H0 = 0, existence of genus 0
minimizers with fixed isoperimetric ratio was recently proved in [29], while [26] gives a
complete classification of smooth critical points with low energy.

Existence of minimizers for functionals with weak second fundamental form in L2 was
addressed also in [20], using the theory of varifolds (see also the end of Sect. 1.2). However,
in contrast to the mean curvature vector, the scalar mean curvature H does not have a var-
iational characterization and there is no definition of scalar mean curvature for an arbitrary
integral varifold. This obstacle can be removed using the generalized Gauss graphs intro-
duced in [2] and developed in [13]. Compactness and lower-semicontinuity properties allow
to obtain a minimizer, but it is not trivial to understand whether the limit, which in general is
only a rectifiable current, is actually a classical surface. This is certainly true in the case of
one-dimensional curves in R

2, see for example, [8,5,6], but the question remains open for
surfaces in R

3.
A different approach, based on a new formulation for the Euler–Lagrange equation of

Willmore functional, was introduced in [28]. One of the results therein is a new proof of the
existence of minimizers. In the attempt to apply this new method to Helfrich functional, the
same difficulties as above appear, in particular, the lack of an equivalent of Li–Yau minimal-
ity condition [24, Theorem 6] for Helfrich functional necessitates another approach in order
to guarantee that minimizers are embedded.

Regarding the existence of minimizers for the constrained Willmore functional, in [12] it
is proven existence and regularity of axisymmetric solutions of the Euler–Lagrange equations
with symmetric boundary conditions. In [29], adopting the techniques introduced in [31],
the author proves the existence of minimizers with prescribed isoperimetric ratio. We are not
aware of any extension of these methods to the constrained Helfrich functional.

Our existence result is only partial since we restrict to axisymmetric surfaces. We note
that our result cannot be obtained from the above-mentioned results for W 2,2-regular curves,
since if a curve γ generates a surface with bounded Helfrich energy H , it is not true in
general that γ is W 2,2-regular (see Sect. 1.2). The class of axisymmetric surfaces is probably
the most interesting from the point of view of applications. In fact Seifert ([30, Sect. 3.1.4])
notes that “it turns out that in large regions of the interesting parameter space the shape of
lowest energy is indeed axisymmetric for vesicles of spherical topology”. We actually con-
jecture that for any given area and volume satisfying the isoperimetric inequality, and for
any constant spontaneous curvature, the problem of minimizing (1) in the class of embedded,
constrained surfaces has at least one solution which is axisymmetric.

After this work was completed, we became aware of the preprint [19], which studies
the �-limit of a diffuse-interface approximation of Helfrich’s functional for two-phase axi-
symmetric surfaces, and where many of the same technical difficulties that we encounter are
addressed. We are independently treating the sharp-interface case of two-phase axisymmetric
surfaces in [11].

1.1 The class of minimizers

In this article, an axisymmetric surface is a surface� obtained by rotating a curve γ contained
in the xz plane in R

3 around the z-axis. Since we follow the direct method of the calculus
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of variations wherein the minimizer of H is obtained as a limit of a sequences, we need the
admissible class to be closed with respect to a reasonable topology. Simple curves alone are
not sufficient as, for example, a curve depicted in Fig. 3-left can be obtained as a uniform
limit of smooth simple curves. Below we define two classes which are (i) sufficiently regular
to allow for a definition of a generalized Helfrich energy, surface area, and enclosed volume,
and (ii) closed under the convergence induced by H .

Notation. Let γ : [a, b] → R
2, t �→ (γ1(t), γ2(t)), be a plane curve of class C1. Denote

γ̇ := dγ /dt . Let (γ ) := γ ([a, b]) = {γ (t) : t ∈ [a, b]} be the trace of γ and let �(γ ) be its
length. We mostly parametrize γ on the interval [0, 1] with constant speed |γ̇ | = �(γ ).

In some cases, where specified, we use the arc-length parameterization |γ̇ | ≡ 1 on the
interval [0, �(γ )].
Definition 1 A curve γ : [0, 1] → R

2 belongs to the class (G0) of curves generating a
genus-0 surface with bounded weak curvature if and only if

γ ∈ C1((0, 1); R
2) ∩ W 2,2

loc ((0, 1); R
2) (2)

|γ̇ (t)| ≡ �(γ ) ∀ t ∈ (0, 1), (3)

γ1(0) = γ1(1) = 0, γ1(t) > 0 ∀ t ∈ (0, 1). (4)

Definition 2 A curve γ : [0, 1] → R
2 belongs to the class (G1) of curves generating a

genus-1 surface with bounded weak curvature if and only if

γ ∈ W 2,2((0, 1); R
2), (5)

|γ̇ (t)| ≡ �(γ ) ∀ t ∈ [0, 1], (6)

γ (0) = γ (1), γ̇ (0) = γ̇ (1), γ1(t) > 0 ∀ t ∈ [0, 1]. (7)

We note that the condition γ2(0) 
= γ2(1) cannot be imposed in Definition 1, since a curve
with γ2(0) = γ2(1) could be obtained as a continuous limit of curves in either (G0) (see,
e.g., Fig. 3-left) or (G1).

Let γ be a curve as in (G0) or (G1). By rotating γ around the z-axis we obtain the surface
� parametrized by:

r(t, θ) = [
γ1(t) cos θ, γ1(t) sin θ, γ2(t)

]
, (t, θ) ∈ [0, 1] × [0, 2π]. (8)

If a surface � admits the parametrization (8), we say that � is generated by γ (Fig. 2).

Fig. 1 Generating curves in (G0) (left) and (G1) (right)
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Fig. 2 Generated surfaces

A standard computation (see Sect. 2.2), shows that if a curve γ generates a smooth surface
�, the 2-dimensional surface area, the enclosed volume, and the principal curvatures of the
generated surface are given by

|�| = 2π

1∫

0

γ1|γ̇ | dt, Vol (�) = π

1∫

0

γ 2
1 γ̇2 dt, (9)

k1 = (γ̈2γ̇1 − γ̈1γ̇2)

|γ̇ |3 , k2 = γ̇2

γ1|γ̇ | . (10)

Using the fact that H = k1 + k2 and K = k1k2, the Helfrich energy can be written as

H (�) =
∫

�

{κH

2
(H − H0)

2 + κG K
}

d A

=
1∫

0

{κH

2
(k1 + k2 − H0)

2 + κGk1k2

}
2πγ1|γ̇ | dt. (11)

If the surface generated by γ in (G0) or (G1) is not smooth, as is the case of Fig. 3, we
define the generalized 2-dimensional surface area, enclosed volume, principal curvatures
and Helfrich energy of the generated surface by the quantities in (9)–(10).

Since the integral of the Gaussian term of the energy is constant for a surface of fixed
genus (see Sect. 2.1), it is often disregarded in the analysis of minimizers. Nonetheless, since
we are not imposing a fixed genus, nor a fixed number of components, we cannot drop this
term. Furthermore, we note that the Gaussian term is expected to play an important role in
the case of multiphase membranes [4, p. 1068].

The main result of this paper is the following.

Theorem 1 Let A, V > 0 be given such that

V ≤ A3/2

6
√
π
. (12)

Assume that κH > 0, κG , H0 ∈ R be such that κG
κH

∈ (−2, 0). Let A(A, V ) denote the set
of finite families S = (�1, . . . , �m), for some m ∈ N (not fixed), of axisymmetric surfaces
generated by disjoint curves in (G0)∪ (G1), as in Definition 1 and Definition 2, and satisfying
the generalized area and volume constraints
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m∑
i=1

|�i | = A,
m∑

i=1

Vol (�i ) = V .

Let H be the Helfrich energy functional defined in (1) and let

F : A(A, V ) → R ∪ {+∞}, F (S) :=
m∑

i=1

H (�i ).

Then the problem

min {F (S) : S ∈ A(A, V )}
has a solution.

Condition (12) ensures that the constraints satisfy the isoperimetric inequality and hence
the admissible set A(A, V ) is non empty. When (12) is an equality, the only element in
A(A, V ) is the sphere of area A. If it is a strict inequality, A(A, V ) contains an infinite
number of elements. The range of the parameters κH and κG specified in the assumptions
of Theorem 1 is the mathematical range for which H is positive definite on the principal
curvatures, that is, for which H (�) controls the full squared norm of the second fundamental
form of �. On the other hand, the physical range in which these parameters are typically
found is contained in our assumption, see e.g. [4,32] (note that the latter cites the former, but
inverting numerator and denominator, by mistake).

Note that the functional F does not depend on the reciprocal position of the components
�i . Therefore, by translation along the vertical axis, we can transform a system with self
intersections into one with the same energy and without crossings, thus avoiding unphysical
situations.

1.2 Discussion

On the index I (γ, p) of a curve. Even if a curve has a smooth parametrization, it can generate
a surface of revolution with singularities which cannot represent any physical lipid bilayer
(Fig. 3). A way to restrict to physical surfaces is to prescribe the index of the system of
generating curves.

Fig. 3 Smooth parametrizations of self-intersecting curves
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If γ is a closed curve, p ∈ R
2\(γ ), let I (γ, p) be the index of γ with respect to p

[10, Chapter II, Sect. 1.8]. If γ is not closed, γ1(0) = γ1(1) = 0 and γ1 ≥ 0, we can
extend it symmetrically with respect to the z-axis in order to define its index. For a system
of surfaces S = (�1, . . . , �m), generated by (γ1, . . . , γm), and p ∈ R

2\ ∪m
i=1 (γi ) define

I (S, p) := ∑m
i=1 I (γi , p). Note that if E ⊂ R

2 is a smooth connected bounded open set
and γ is counterclockwise parametrization of ∂E , then E = {p ∈ R

2 : I (γ, p) = 1} and
R

2\E = {p ∈ R
2 : I (γ, p) = 0}. More generally, points with index 1 represent the internal

volume of a vesicle also for surfaces generated by curves which are not the parametrization
of a boundary (as in Fig. 3-right). In order to eliminate situations like Fig. 3-left, we may
look for minimizers in the class of systems of surfaces S ∈ A(A, V ) such that, additionally,

I (S, p) ∈ {0, 1} for a.e. p ∈ R
2. (13)

The advantage in using the index as a condition is its continuity with respect to uniform
convergence of the curves, and thus its compatibility with the convergence induced by the
bound F (Sn) ≤ 
 (see Sect. 1.3 and Definition 6). In particular, the proof of Theorem 1
can be directly used to prove existence of minimizers in A(A, V ) satisfying (13). On the
other hand, by removing the condition on the index, the minimizer of Helfrich functional
could actually be found in non-embedded surfaces, like Delauney surfaces or the Wente torus.

On the lack of W 2,2-regularity. In Corollary 2 we prove that any curve that generates a
surface with bounded Helfrich energy is W 2,2-regular on any stretch at positive distance from
the z-axis. Since the area element vanishes on the z-axis, the second derivative of a curve
in (G0) need not be square-integrable near the intersection with the z-axis, and therefore we
cannot expect to control the L2-norm of γ̈ . Loosely speaking, the reason why the regularity
of a surface � does not imply the same regularity for the generating curve is simply the fact
that a function (e.g., |x |−1) can be integrable in a neighborhood of the origin in R

2, but not
in R. For example, let 0 < δ < 1 and consider the curve defined by

γ1(t) := 2

3

(
1 − (1 − t)3/2

)
, γ2(t) := 2

3
t3/2, t ∈ [0, δ].

Clearly, γ̇ ∈ C0([0, δ]; R
2), |γ̇ | ≡ 1, γ̈2 /∈ L2((0, δ); R

2), and a quick computation shows
that k2

1γ1 ∼ 1/4, k2
2γ1 ∼ 1, as t → 0+. Therefore, k1, k2 are square-integrable with respect

to the area measure on (0, δ).

On generalized area and varifolds. Returning to the example in Fig. 3-left, we note that
there could be two ways to describe the area of the middle annulus of the revolution surface
generated by this curve. If we see it as a single layer of membrane, it should simply measure
4π(R2 − r2). On the other hand, if we obtained this curve as a limit of a sequence of simple
curves, where the vertical distance between the layers of the membrane collapsed to zero in
the stretch between r and R, it should be seen as a double layer, and measure 8π(R2 − r2).
Since we are imposing a constraint on the total area of the membrane and the objects we
wish to describe are closed vesicles, the second interpretation, in which the horizontal stretch
represents two overlapping layers, should be preferred. This is a drawback of modeling a
three-dimensional object (i.e. a membrane with positive thickness) as a two-dimensional one:
Even though overlapping is not a physical possibility for the original three-dimensional mem-
branes, the only way to represent adjacent layers is to allow them to overlap. Our choice of
using parametrized curves to model membranes lends itself well to this second interpretation.
In particular, the generalized area defined in (9) counts the multiplicity of every self-inter-
section. In this respect we obtain the same result as if we described the curves with varifolds.
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Without going into details (which can be found in [20]), we may think of the weight-measure
of an integral varifold V associated to a 2-rectifiable set � ⊂ R

3 as μ := θH2��, where
H2 is the two-dimensional Hausdorff measure, and θ is a measurable N-valued function
representing the density of V . For example, if the surface� generated by the γ of Fig. 3-left
is obtained as limit of smooth surfaces �n , we would have θn ≡ 1, θnH2��n ⇀ θH2��,
in the sense of measures, θ(x) = 1 for |x | < r and |x | > R, and θ(x) = 2 for r ≤ |x | ≤ R.
Thus we would count the horizontal stretch twice, exactly as definition (9) does with curves.

1.3 Plan of the paper and structure of the proof

In Sect. 2.1 we recall first some basic facts concerning the Gaussian curvature and the Euler
characteristic, and then show that Helfrich’s energy controls the L2-norm of the principal
curvatures with respect to the area measure. In Sect. 2.2 we derive the main geometrical
quantities for surfaces of revolution. In the following subsections we study which properties
of a general generating curve can be obtained from the L2 bound on the principal curvatures.
In particular, we estimate the length of the curves (Sect. 2.3), control the regularity of the
tangents on the z-axis (Sect. 2.4), and bound the total variation of γ̇1 (Sect. 2.5).

The proof of Theorem 1 is given in Sect. 3 and follows the direct method of calculus of
variations; That is, once we establish that the sub-level sets of the functional F are compact,
we consider a minimizing sequence Sn and extract a converging subsequence Snk → S.
Proving that F is lower-semicontinuous implies that S is a global minimizer for F . The
crucial ingredients, which are not prescribed by the general direct method, are the class of
admissible surfaces and the topology with respect to which compactness and lower-semi-
continuity must be verified. This is discussed at the beginning of Sect. 3 and in Sect. 3.1.
Regarding the topology, it is natural to expect (or request) at least strong W 1,1 convergence
for the generating curves in order to preserve the surface area in the limit. Moreover, it is
straightforward to show that the second fundamental form of�n is uniformly bounded in L2,
but only with respect to the surface area measure. Hence, one needs to study, simultaneously,
convergence of the curvatures (expressed via γ n, γ̇ n, γ̈ n) and of the area measure μγ n . A
suitable tool for this purpose is provided by the measure-function pairs introduced in [20].
The main definitions and theorems regarding measure-function pairs are recalled in Sect.
3.1. The main body of the proof consists then in the lower-semicontinuity result (Proposition
1) and in the compactness result (Proposition 2). Continuity of the constraints follows from
the choice of the topology, and it is described in Sect. 3.2. All these steps are summarized in
Sect. 3.5 by presenting the proof of Theorem 1.

2 Preliminaries and geometrical inequalities

2.1 Gauss–Bonnet theorem and positive definiteness of H

Let χ(�) be the Euler–Poincaré characteristic of a compact surface�, see, e.g., [14, Propo-
sition 3, Sect. 4-5]. Recall that every compact connected surface is homeomorphic to a sphere
with a certain number g of handles, and the number g = 2−χ(�)

2 is called the genus of �.
The Gauss-Bonnet Theorem states that if � has no boundary, then

∫

�

K d A = 2πχ(�).
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Since we are dealing with surfaces of revolution, we are interested only in two cases:

– curves in (G0) (Fig. 2-left), which generate surfaces homeomorphic to a sphere, hence
g = 0, χ(�) = 2, and

∫
K d A = 4π , and

– curves in (G1) (Fig. 2-right), which generate surfaces homeomorphic to a torus, hence
g = 1, χ(�) = 0, and

∫
K d A = 0.

The next Lemma contains the fundamental coercivity estimate for Helfrich’s functional.
It can be considered a standard observation (see e.g. [7]), but we report the proof for com-
pleteness.

Lemma 1 Let � be generated by γ ∈ (G0)∪ (G1), and let κH > 0, κG , H0 ∈ R such that
κG
κH

∈ (−2, 0). Then there exists C > 0 such that
∫

�

(k2
1 + k2

2) d A ≤ C
(|�| + H (�)

)
. (14)

Proof Let λ ∈ R, note that

1

2
(k1 + k2)

2 + λk1k2 = 1

2
(k2

1 + k2
2)+ (1 + λ)k1k2 ≥ 1 − |1 + λ|

2
(k2

1 + k2
2),

and the coefficient in front of the last term is positive if and only if λ ∈ (−2, 0). For all ε > 0
it holds

H2

2
= (H − H0 + H0)

2

2
≤ 1 + ε

2
(H − H0)

2 + 1 + ε

2ε
H2

0 ,

and thus

1 + ε

2
(H − H0)

2 + 1 + ε

2ε
H2

0 + λ(1 + ε)K ≥ 1 − |1 + λ(1 + ε)|
2

(k2
1 + k2

2).

Choosing κH > 0, λ = κG/κH ∈ (−2, 0) and ε > 0 such that (1 + ε)κG/κH ∈ (−2, 0), we
get

κH

2
(H − H0)

2 + κG K + c1 H2
0 ≥ c2(k

2
1 + k2

2),

where c1 = κH/2ε and c2 = κH −|κH +κG (1+ε)|
2(1+ε) > 0. Integrating on � we obtain the thesis.

We note that since we restrict to surfaces of revolution, the genus of which can only be 0 or
1, we could extend the range of parameters to κH/κG > −2. Indeed, if λ = κG/κH ≥ 0, by
Gauss–Bonnet theorem∫

�

1

2
(k1 + k2)

2 + λk1k2 d A =
∫

�

1

2
(k2

1 + k2
2)+ (1 + λ)k1k2 d A

≥ 1

2

∫

�

k2
1 + k2

2 d A + 2πχ(�).

For a family of surfaces S = (�1, . . . , �n), we can then find a constant C > 0 such that

n∑
i=1

⎛
⎜⎝
∫

�i

(k2
1,i + k2

2,i )d A + #{�i ∈ S : g(�i ) = 0}
⎞
⎟⎠ ≤ C

(|�| + H (�)
)
.
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Since in physical applications the parameters are as in the assumptions of Lemma 1 (see,
e.g., [4,32]), we will not use this estimate on the cardinality of the system, and rely only
on (14).

2.2 Surfaces of revolution

From this section onwards we restrict to surfaces of revolution. We first derive certain geo-
metrical quantities which can be found also, e.g., in [14, Section 3-3, Example 4] (with
opposite orientation). With the parametrization

r(t, θ) = [
γ1(t) cos θ, γ1(t) sin θ, γ2(t)

]
, (t, θ) ∈ [0, 1] × [0, 2π],

we compute the tangent vectors

rt := ∂

∂t
r(t, θ) = [

γ̇1(t) cos θ, γ̇1(t) sin θ, γ̇2(t)
]
,

rθ := ∂

∂θ
r(t, θ) = [ − γ1(t) sin θ, γ1(t) cos θ, 0

]
.

Note: rt · rθ = 0, i.e., the tangents are always orthogonal. The first fundamental form is
given by

g(t, θ) =
[

E F
F G

]
=

[
rt · rt rt · rθ
rθ · rt rθ · rθ

]
=

[ |γ̇ (t)|2 0
0 γ1(t)2

]
,

√
g :=

√
det(gi j ) = γ1(t)|γ̇ (t)|.

Note that the first fundamental form does not depend on the longitude parameter θ . The
normal vector can be oriented inwards or outwards, depending on the direction of γ .

n(t, θ) = rt × rθ√
g

= 1

γ1(t)|γ̇ (t)|
[ − γ1(t)γ̇2(t) cos θ,−γ1(t)γ̇2(t) sin θ, γ1(t)γ̇1(t)

]

= 1

|γ̇ (t)|
[ − γ̇2(t) cos θ,−γ̇2(t) sin θ, γ̇1(t)

]
.

For the computation of the second fundamental form we make use of a constant-speed param-
etrization

nt := ∂

∂t
n(t, θ) = 1

|γ̇ (t)|
[ − γ̈2(t) cos θ,−γ̈2(t) sin θ, γ̈1(t)

]

nθ := ∂

∂θ
n(t, θ) = 1

|γ̇ (t)|
[
γ̇2(t) sin θ,−γ̇2(t) cos θ, 0

]

I I (t, θ) =
[

L M
M N

]
= −

[
nt · rt nt · rθ
nθ · rt nθ · rθ

]
= 1

|γ̇ |
[
γ̈2γ̇1 − γ̈1γ̇2 0
0 γ1γ̇2

]
.

We can then express the Gaussian curvature

K = k1k2 = L N − M2

EG − F2 = (γ1γ̇2)(γ̈2γ̇1 − γ̈1γ̇2)

(γ1)2|γ̇ |4 ,

(twice) the mean curvature

H = k1 + k2 = LG − 2M F + N E

EG − F2 = γ 2
1 (γ̈2γ̇1 − γ̈1γ̇2)+ γ1γ̇2|γ̇ |2

(γ1)2|γ̇ |3 ,
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and the principal curvatures

k1 = γ̈2γ̇1−γ̈1γ̇2
|γ̇ |3 (meridian), k2 = γ̇2

γ1|γ̇ | (parallel).

Note that k1 is just the curvature of γ , with the sign depending on the orientation. Let L1�[0,1]
be the one-dimensional Lebesgue measure restricted to the closed interval [0, 1], define the
Radon Measure

μγ := 2πγ1|γ̇ |L1�[0,1]. (15)

The area of the generated surface is given by

|�| =
∫

�

d A =
2π∫

0

1∫

0

√
g(t) dt ds = 2π

1∫

0

γ1(t) |γ̇ (t)| dt =
1∫

0

dμγ , (16)

and the enclosed volume by

Vol (�) = π

1∫

0

γ1(t)
2γ̇2(t) dt.

Owing to (14) and recalling that we are using a constant-speed parametrization,

C(H (�)+ |�|) ≥
∫

�

k2
1 + k2

2 d A = 2π

1∫

0

(
|γ̈ |2
|γ̇ |4 + γ̇ 2

2

γ 2
1 |γ̇ |2

)
γ1|γ̇ | dt.

Since H and the total area are invariant under reparametrizations of γ , we can write the last
inequality in the case of arc-length parametrization, obtaining the crucial estimate

C(H (�)+ |�|) ≥
�(γ )∫

0

(
|γ̈ |2γ1 + γ̇ 2

2

γ1

)
dt.

2.3 A bound on the length

In this subsection we derive a uniform bound on the length of the generating curves.

Lemma 2 Let γ be a curve generating a revolution surface � as in (G0) or (G1). Then

|�|
2π diam(�)

≤ �(γ ) ≤
√|�|

2π

⎧⎪⎨
⎪⎩

⎛
⎝
∫

�

k2
1 d A

⎞
⎠

1/2

+
⎛
⎝
∫

�

k2
2 d A

⎞
⎠

1/2
⎫⎪⎬
⎪⎭ .

Proof In order to obtain the left inequality, we compute

|�| = 2π

1∫

0

γ1(t)|γ̇ (t)| dt ≤ 2π �(γ ) max
t∈[0,1] |γ1(t)| ≤ 2π �(γ )diam(�).

Regarding the right inequality, it is not restrictive to assume that γ is parametrized by arc-
length, on the interval [0, L], where L := �(γ ), so that
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|γ̇ | ≡ 1, (17)

|k1| = |γ̈ × γ̇ |
|γ̇ |3 = |γ̈ |. (18)

We compute

L =
L∫

0

1 dt =
L∫

0

|γ̇ (t)|2dt =
L∫

0

γ̇1(t)γ̇1(t)+ γ̇2(t)γ̇2(t) dt. (19)

By either (G0) or (G1) above, γ̇1γ1(L) = γ̇1γ1(0), and γ1(t) > 0 for all t ∈ (0, L), so the
first term of the right-hand side of (19) becomes

L∫

0

γ̇1(t)γ̇1(t) dt = −
L∫

0

γ1(t)γ̈1(t) dt +
[
γ1(t)γ̇1(t)

]t=L

t=0

=
L∫

0

γ1(t)γ̈1(t) dt

=
L∫

0

√
γ1(t)

(√
γ1(t)γ̈1(t)

)
dt

≤
⎛
⎝

L∫

0

γ1(t) dt

⎞
⎠

1/2 ⎛
⎝

L∫

0

γ1(t)γ̈
2
1 (t) dt

⎞
⎠

1/2

(16)=
( |�|

2π

)1/2
⎛
⎝ 1

2π

L∫

0

|γ̈ (t)|2 2πγ1(t) dt

⎞
⎠

1/2

(18)=
√|�|

2π

⎛
⎝
∫

�

k2
1 d A

⎞
⎠

1/2

.

On the other hand, the last term of (19) gives

L∫

0

γ̇2(t)γ̇2(t) dt ≤ max
t∈[0,L] |γ̇2(t)|

L∫

0

|γ̇2(t)| dt

≤ |γ̇ |
L∫

0

√
γ1(t)

|γ̇2(t)|√
γ1(t)

dt

(17)≤
⎛
⎝

L∫

0

γ1(t) dt

⎞
⎠

1/2 ⎛
⎝

L∫

0

γ̇ 2
2 (t)

γ1(t)
dt

⎞
⎠

1/2

= 1

2π

⎛
⎝|�|

∫

�

k2
2 d A

⎞
⎠

1/2

.
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Noting that

2
√|�|

⎧⎪⎨
⎪⎩

⎛
⎝
∫

�

k2
1

⎞
⎠

1/2

+
⎛
⎝
∫

�

k2
2

⎞
⎠

1/2
⎫⎪⎬
⎪⎭ ≤ |�| +

⎧⎪⎨
⎪⎩

⎛
⎝
∫

�

k2
1

⎞
⎠

1/2

+
⎛
⎝
∫

�

k2
2

⎞
⎠

1/2
⎫⎪⎬
⎪⎭

2

≤ |�| + 2
∫

�

k2
1 + k2

2

we get the following bound for a system of curves.

Corollary 1 Let γi , i = 1, . . . ,m be a finite family of curves in (G0)or (G1)generating the
revolution surface �i . Then

2π
m∑

i=1

�(γi ) ≤
m∑

i=1

⎛
⎜⎝ |�i |

2
+

∫

�i

k2
1,i + k2

2,i d Ai

⎞
⎟⎠ . (20)

2.4 Regularity of generators

Definition 3 We say that γ : [0, 1] → R
3 is a generalized generator if γ is Lipschitz-con-

tinuous, |γ̇ (t)| ≡ �(γ ) and γ1(t) > 0 for almost every t ∈ (0, 1), γ̈ ∈ L1
loc({γ1 > 0}; R

2)

and
1∫

0

k2
1 + k2

2 dμγ < C. (21)

In particular, (21) implies that γ ∈ L2(μγ ; R
2).

Lemma 3 (Internal regularity) Let γ be as in Definition 3. For every subinterval [a, b] ⊂
[0, 1] ∩ {γ1 > 0}

γ ∈ W 2,2((a, b); R
2), and γ̇ has a unique extension to C0([a, b]; R

2).

Proof It holds

b∫

a

k2
1 dμγ =

b∫

a

|γ̈ |2
|γ̇ |4 2π |γ̇ |γ1 dt ≥ 2π

�(γ )3
min

s∈[a,b]{γ1(s)}
b∫

a

|γ̈ |2 dt. (22)

Thus, γ̈ ∈ L2((a, b); R
2) and γ ∈ W 2,2((a, b); R

2). By standard Sobolev inclusions, γ̇ ∈
W 1,2((a, b); R

2) ↪→ C0((a, b); R
2), and there is a unique function which extends γ̇ to

C0([a, b]; R
2). We denote this extension by γ̇ .

In particular, if γ ∈ (G1), then γ ∈ W 2,2((0, 1); R
2) and γ̇ has a unique extension to

C0([0, 1]; R
2).

Lemma 4 (Tangents on the z-axis) Let γ be as in Definition 3. Let a, b ∈ [0, 1] be such that
γ1(a) = γ1(b) = 0, γ1(t) > 0 for all t ∈ (a, b). Then, the limits of γ̇2(t) as t → a+ and
t → b− exist, and

lim
t→a+ γ̇2(t) = lim

t→b− γ̇2(t) = 0.
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Moreover, either

lim
t→a+ γ̇1(t) = �(γ ), lim

t→b− γ̇1(t) = −�(γ ),
or

lim
t→a+ γ̇1(t) = −�(γ ), lim

t→b− γ̇1(t) = �(γ ).

Proof It is not restrictive to assume |γ̇ | ≡ 1 as before. For any (s, r) ∈ (a, b)

|γ̇ 2
2 (r)− γ̇ 2

2 (s)| =
∣∣∣∣∣∣

r∫

s

2γ̇2 γ̈2 dσ

∣∣∣∣∣∣ = 2

∣∣∣∣∣∣
r∫

s

γ̇2√
γ1
γ̈2

√
γ1 dσ

∣∣∣∣∣∣

≤
r∫

s

γ̇ 2
2

γ1
+ |γ̈ |2γ1 dσ ≤ 1

2π

r∫

s

k2
2 + k2

1 dμγ . (23)

Since γ̇ 2
2 /γ1 and |γ̈ |2γ1 belong to L1(a, b) by (21), we can define an absolutely continuous

function

G(r) :=
r∫

a

γ̇ 2
2

γ1
+ |γ̈ |2γ1 dσ,

satisfying

lim
r→a+ G(r) = 0. (24)

By (23) and (24), for every ε > 0 there exists a δ > 0 such that

sup
r,s∈(a,a+δ)

∣∣γ̇ 2
2 (r)− γ̇ 2

2 (s)
∣∣ ≤ ε,

thus, the limit of γ̇ 2
2 (s) as s → a+ exists. We can now prove that this limit is 0. Recall that

|γ̇ | = 1 and γ1(a) = 0 by hypothesis, then for all ε > 0 we have

max
s∈[a,a+ε] γ1(s) = max

s∈[a,a+ε]

s∫

a

γ̇1(σ ) dσ ≤ ε|γ̇ | = ε,

and

0
(24)= lim

ε→0+

t+ε∫

t

γ̇ 2
2

γ1
dσ ≥ lim sup

ε→0+

1

ε

t+ε∫

t

γ̇ 2
2 dσ = lim sup

ε→0+
−
t+ε∫

t

γ̇ 2
2 dσ.

Since the integrand is nonnegative, we conclude that limt→a+ γ̇2(t) = 0. The proof of the
corresponding statement for the limit as t → b− is identical. The statement on the limit of
γ̇1 follows by the assumption |γ̇ |2 = �(γ )2 = γ̇ 2

1 + γ̇ 2
2 and by the continuity of γ̇ in (a, b)

obtained in Lemma 3.

Corollary 2 (Regularity) Under the assumptions of Lemma 4

γ ∈ W 2,2
loc

(
(a, b); R

2), γ̇ ∈ C0([a, b]; R
2).

Proof Since γ1 > 0 in (a, b), by Lemma 3 it holds γ ∈ W 2,2
loc

(
(a, b); R

2
)
. By Lemma 4, γ̇

has a continuous extension to ∈ C0([0, 1]).
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2.5 A bound on the oscillations

Lemma 5 Let γ be as in Definition 3. Let (a, b) ⊆ (0, 1) be such that γ1(t) > 0 for all
t ∈ (a, b), then

|γ̇ |
b∫

a

k2
1 + k2

2 dμγ ≥ 4π |γ̇1(b)− γ̇1(a)| (25)

and

√|γ̇ |
⎛
⎝

b∫

a

k2
1 dμγ +

b∫

a

γ̇ 2
1 (t)

γ1(t)
dt

⎞
⎠ ≥ 2

√
2π |γ̇2(b)− γ̇2(a)|. (26)

Proof By Lemma 3, or Corollary 2, we can assume that γ̇ ∈ C0([a, b]; R
2) and γ ∈

W 2,2
loc ((a, b); R

2). Recall that |γ̇ |2 = γ̇ 2
1 + γ̇ 2

2 ≡ �2(γ ) and |k1| = |γ̈ |/�2(γ ). On {γ̇2 
= 0}
we compute

γ̇ 2
2 = �2(γ )− γ̇ 2

1 , γ̇2 = ±
√
�2(γ )− γ̇ 2

1 ,

γ̈2 = ∓ γ̇1γ̈1√
�2(γ )− γ̇ 2

1

, γ̈ 2
2 = γ̇ 2

1 γ̈
2
1

�2(γ )− γ̇ 2
1

.

Defining

η(t) :=
{

1 if γ̇2(t) 
= 0
0 if γ̇2(t) = 0,

we have

�(γ )

2π

b∫

a

k2
1 d A = �(γ )

2π

b∫

a

|γ̈ |2
�4(γ )

2πγ1�(γ ) dt = 1

�2(γ )

b∫

a

(γ̈ 2
1 + γ̈ 2

2 )γ1 dt

≥ 1

�2(γ )

b∫

a

η

(
γ̈ 2

1 + γ̇ 2
1 γ̈

2
1

�2(γ )− γ̇ 2
1

)
γ1 dt

= 1

�2(γ )

b∫

a

ηγ̈ 2
1

(
1 + γ̇ 2

1

γ̇ 2
2

)
γ1 dt

= 1

�2(γ )

b∫

a

ηγ̈ 2
1

(
γ̇ 2

2 + γ̇ 2
1

) γ1

γ̇ 2
2

dt =
b∫

a

ηγ̈ 2
1
γ1

γ̇ 2
2

dt

≥ inf

⎧⎨
⎩

b∫

a

φ̇2 γ1

γ̇ 2
2

dt : φ ∈ W 1,2
loc ((a, b); R

2), φ(a) = γ̇1(a),

φ(b) = γ̇1(b), φ̇
2 γ1

γ̇ 2
2

= 0 on {γ̇2 = 0}
}
. (27)
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Let ψ := γ1/γ̇
2
2 , xa := γ̇1(a), xb := γ̇1(b). The unique minimizer of the above problem is

the solution of the Euler–Lagrange equation

d

dt
(φ̇ψ) = 0, φ(a) = xa, φ(b) = xb, φ̇2 ψ = 0 on {γ̇2 = 0}.

By integration, we compute

φ̇ = C

ψ
, φ(t) = C ′ + C

t∫

a

1

ψ(t)
dt.

Define J := ∫ b
a 1/ψ(t) dt , imposing the boundary conditions we get

C ′ = xa, C = xb − xa

J
, φ(t) = xa + xb − xa

J

t∫

a

1

ψ(t)
dt. (28)

Note that if γ̇2 ≡ 0 in (a, b), then γ̇1 is constant in (a, b), and (25) is trivially satisfied.
If γ̇ 2

2 (t) > 0 in a point t , by continuity it is positive in an open interval containing t, and
therefore J > 0. Then, φ in (28) is well-defined and, in particular φ̇2ψ = 0 on {γ̇2 = 0}.
The minimum value is then given by

b∫

a

φ̇2(t) ψ(t) dt =
b∫

a

(
xb − xa

J ψ(t)

)2

ψ(t) dt =
(

xb − xa

J

)2 b∫

a

1

ψ(t)
dt = (xb − xa)

2

J
.

Since

J =
b∫

a

1

ψ(t)
dt = �(γ )

b∫

a

γ̇ 2
2 (t)

γ1(t)�(γ )
dt = �(γ )

2π

b∫

a

k2
2 d A,

by inserting the minimum value in (27) and multiplying by J we obtain
⎛
⎝

b∫

a

k2
1 d A

⎞
⎠

⎛
⎝

b∫

a

k2
2 d A

⎞
⎠ ≥ 4π2

�2(γ )
|γ̇1(b)− γ̇1(a)|2.

Noting that

⎛
⎝

b∫

a

k2
1 d A

⎞
⎠

⎛
⎝

b∫

a

k2
2 d A

⎞
⎠ ≤ 1

4

⎛
⎝

b∫

a

k2
1 d A +

b∫

a

k2
2 d A

⎞
⎠

2

=
⎛
⎝1

2

b∫

a

k2
1 + k2

2 d A

⎞
⎠

2

and taking the square root, we obtain (25).
In order to prove (26), we follow the same computations, inverting the roles of γ̇1 and γ̇2.

Let

η(t) :=
{

1 if γ̇1(t) 
= 0
0 if γ̇1(t) = 0,
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we have

�

2π

b∫

a

k2
1 dμγ = 1

�2

b∫

a

(γ̈ 2
1 + γ̈ 2

2 )γ1 dt

≥ 1

�2

b∫

a

η

(
γ̇ 2

2 γ̈
2
2

�2 − γ̇ 2
2

+ γ̈ 2
2

)
γ1 dt =

b∫

a

ηγ̈ 2
2
γ1

γ̇ 2
1

dt

≥ inf

⎧⎨
⎩

b∫

a

φ̇2 γ1

γ̇ 2
1

dt : φ ∈ W 1,2
loc ((a, b); R

2), φ(a) = γ̇2(a),

φ(b) = γ̇2(b), φ̇
2 γ1

γ̇ 2
1

= 0 on {γ̇1 = 0}
}
. (29)

Let ψ := γ1/γ̇
2
1 , xa := γ̇2(a), xb := γ̇2(b). By the same computations as in (28) and

following lines, the minimum value is then given by

b∫

a

φ̇2(t) ψ(t) dt = (xb − xa)
2

J
, with J =

b∫

a

1

ψ(t)
dt =

b∫

a

γ̇ 2
1 (t)

γ1(t)
dt.

If J = +∞, then (26) is trivially true. If J < +∞, by inserting this minimum value in (29)
and multiplying by J we obtain

⎛
⎝ �

2π

b∫

a

k2
1 dμγ

⎞
⎠

⎛
⎝

b∫

a

γ̇ 2
1 (t)

γ1(t)
dt

⎞
⎠ ≥ |γ̇2(b)− γ̇2(a)|2.

Using the simple inequality (x + y)2 ≥ 4xy we obtain

�

⎛
⎝

b∫

a

k2
1 dμγ +

b∫

a

γ̇ 2
1 (t)

γ1(t)
dt

⎞
⎠

2

≥ 8π |γ̇2(b)− γ̇2(a)|2.

Taking the square root yields (26).

Remark 1 In the case γ1 ∈ W 2,1(a, b), |γ̇ | = 1, γ̇2 
= 0 in (a, b),

1

4π

b∫

a

k2
1 + k2

2 dμγ ≥ 1

2π

b∫

a

|k1k2| dμγ =
b∫

a

|γ̈ ||γ̇2| dt

=
b∫

a

|γ̇2|
√
γ̈ 2

1 + γ̇ 2
1 γ̈

2
1

1 − γ̇ 2
1

dt

=
b∫

a

|γ̇2||γ̈1|
√

1

γ̇ 2
2

dt =
b∫

a

|γ̈1| dt ≥ |γ̇1(b)− γ̇1(a)|.

However, we will make use of Lemma 5 rather than this simpler estimate since it allows for
a rigorous treatment of the set {γ̇2 = 0} and of the jump points for γ̇1.
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For x ∈ R we denote the integer part of x by �x�.

Lemma 6 Let γ be as in Definition 3. Then, there cannot be more than
⌊ C

8π

⌋
intervals

(a j , b j ) such that

γ̇1(a j ) = ±�(γ ), γ̇1(b j ) = ∓�(γ ).
As a consequence,

#{γ1 = 0} ≤
⌊

C

8π

⌋
+ 1.

Proof Let (a, b) ⊂ [0, 1] be an interval such that

γ̇1(a) = �(γ ), γ̇1(b) = −�(γ ) and γ1 > 0 in (a, b). (30)

By Corollary 2 we have that γ ∈ W 2,2
loc

(
(a, b); R

2
)
, γ̇ ∈ C0([a, b]; R

2). Since |γ̇1(b) −
γ̇1(a)| = 2�(γ ), by Lemma 5

�(γ )

b∫

a

k2
1 + k2

2 dμγ ≥ 4π |γ̇1(b)− γ̇1(a)| = 8π�(γ ).

Therefore, there cannot be more than
⌊ C

8π

⌋
intervals satisfying (30). In particular, by Lemma

4, there cannot be more than
⌊ C

8π

⌋ + 1 points where γ1 = 0.

The results obtained in this section imply that a generalized generator γ with bounded Helf-
rich energy is either in (G1), if γ1 > 0 and γ is closed, or it can be decomposed into a finite
number of curves in (G0). More precisely, we have the following result.

Corollary 3 If γ as in Definition 3 generates� and satisfies γ1(0) = γ1(1) = 0, then there
exist k ∈ N and curves ηi generating �i and satisfying (2)–(4) for i = 1, . . . , k, such that

|�| =
k∑

i=1

|�i |, Vol (�) =
k∑

i=1

Vol (�i ), H (�) =
k∑

i=1

H (�i ). (31)

Moreover, the generated surfaces �i admit a C1-regular parametrization.

Proof By Lemma 6, #{γ1 = 0} < +∞. Therefore, there exist 0 = t0 < t1 < . . . < tk−1 <

tk = 1 such that {ti }k
i=0 = {γ1 = 0}. For i = 1, . . . , k, let �i := ti −ti−1 and define the curves

ηi : [0, 1] → R
2, ηi (τ ) := γ (�iτ + ti−1) .

It is immediate to check that ηi satisfies (3), (4) and (31), while (2) is ensured by Corollary
2. The latter and Lemma 4 also imply that �i has a C1-regular parametrization.

3 Existence of a minimizer

Definition 4 (Systems of generalized surfaces) We say that a system of surfaces S belongs
to the class G of systems of generalized surfaces if

– there exists m ∈ N such that S = (�1, . . . , �m),
– for each i = 1, . . . ,m there is a curve γi as in Definition 3 which generates �i ,
– (γi ) ∩ (γ j ) = ∅ for all i 
= j .
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Note that the number of components may depend on the choice of parametrization. For exam-
ple, a system of two spheres S

2 touching in one point on the z-axis can be parametrized by
one generator γ of length |γ̇ | = 2π or by two generators γa, γb of length |γ̇a | = |γ̇b| = π . In
Sect. 2.2 we proved that generalized generators γ are piecewise-C1 and are not differentiable
only in a finite number of points on the z-axis. Therefore, the number of components we are
interested in is the (minimum) number of C1 components, that is

#S :=
m∑

i=1

(#{γ1,i (t) = 0, t 
= 0, t 
= 1} + 1).

We recall that area, volume, and Helfrich energy of a system S = (�1, . . . , �m) are simply
defined as the sum of the correspondent generalized quantities over all the components of
the system, i.e.,

|S| =
m∑

i=1

|�i | =
m∑

i=1

2π

1∫

0

γ1,i (t)|γ̇i (t)| dt, F (S) =
m∑

i=1

H (�i ), (32)

Vol (S) =
m∑

i=1

Vol (�i ) =
m∑

i=1

π

1∫

0

(γ1,i (t))
2γ̇2,i (t) dt.

3.1 Convergence of measure-function couples

We now turn to the suitable notion of convergence for such systems. We recall that a sequence
of Radon measures μn is said to converge weakly-∗ to μ ∈ RM(R) if

lim
n→∞

∫

R

φ(t) dμn(t) →
∫

R

φ(t) dμ(t)

for every φ ∈ C0
c (R). We define the space of p-summable functions with respect to a positive

Radon measure μ as

L p(μ; R
2) :=

⎧⎨
⎩ f : R → R

2 μ-measurable, such that
∫

R

| f (x)|p dμ(x) < +∞
⎫⎬
⎭ .

Definition 5 (Convergence of measure-function couples) Following [1, Definition 5.4.3],
given a sequence of measuresμn ∈ RM(R) converging weakly-∗ toμ, we say that a sequence
of (vector) functions f n ∈ L1(μn; R

2) converges weakly to a function f ∈ L1(μ; R
2), and

we write f n ⇀ f in L1(μn; R
2), provided

lim
n→∞

∫

R

f n(t) · φ(t) dμn(t) →
∫

R

f (t) · φ(t) dμ(t) (33)

for every φ ∈ C∞
c (R; R

2). For p > 1, we say that a sequence of (vector) functions f n ∈
L p(μn; R

2) converges weakly to a function f ∈ L p(μ; R
2), and we write f n ⇀ f in

L p(μn; R
2), provided

sup
n∈N

∫

R

| f n(t)|p dμn(t) < +∞ and f n ⇀ f in L1(μn; R
2). (34)
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For p > 1, we say that a sequence of (vector) functions f n ∈ L p(μn; R
2) converges strongly

to a function f ∈ L p(μ; R
2), and we write f n → f in L p(μn; R

2), if (34) holds and

lim sup
n→∞

‖ f n‖L p(μn;R2) ≤ ‖ f ‖L p(μ;R2).

Lemma 7 (Weak-strong convergence in L p(μ; R
d) [27, Proposition 3.2]) Let p, q ∈ (1,∞)

such that 1/p+1/q = 1. Suppose thatμn andμ are Radon measures on R such thatμn ∗
⇀ μ

and that f n ∈ L p(μn; R
d), f ∈ L p(μ; R

d), gn ∈ Lq(μn; R
d), g ∈ Lq(μ; R

d) be such that

f n ⇀ f weakly in L p(μn; R
d), gn → g strongly in Lq(μn; R

d).

Then

f ngn ⇀ f g weakly in L1(μn; R
d).

Theorem 2 (Lower-semicontinuity [1, Theorem 5.4.4—(ii)]) Let p > 1, let μn and μ be

Radon measures on R such thatμn ∗
⇀ μ, and let f n ∈ L p(μn; R

2) be a sequence converging
weakly to a function f ∈ L p(μ; R

2) in the sense of Definition 5. Then

lim inf
n→∞

∫

R

g( f n(t)) dμn(t) ≥
∫

R

g( f (t)) dμ(t),

for every convex and lower-semicontinuous function g : R → (−∞,+∞].
Definition 6 (Convergence of systems of surfaces) We say that a sequence of systems of
surfaces Sn ∈ G as in Definition 4 converges to a finite system S ∈ G if S admits a param-
etrization γ1, . . . , γw and there exist n̄ ∈ N and m̄ ≥ w such that #Sn = m̄ for all n ≥ n̄
and

(i) for each i = 1, . . . , w the generating curves γ n
i converge in the following sense

γ n
i → γi uniformly in C0([0, 1]; R

2), (35)

γ̇ n
i → γ̇i strongly in L2 ((0, 1); R

2) , (36)

γ̈ n
i ⇀ γ̈i weakly in L2(μγ n ; R

2), in the sense of (34); (37)

(ii) for each i = w+1, . . . , m̄

γ n
i → 0 strongly in W 1,2(0, 1; R

2).

Note that (35) and (36) imply that μγ n
∗
⇀ μγ , so that (37) is well-defined.

3.2 Compatibility of constraints

With this definition of convergence the passage to the limit of the area and volume con-
straints is straightforward. Let Sn ∈ A(A, V ) be a sequence of systems converging to a
system S = (�1, . . . , �w) ∈ G in the sense of Definition 6, then

lim
n→∞ |Sn | = |S|, (38)

lim
n→∞ Vol (Sn) = Vol (S). (39)

Indeed, by (35) and (36), using the fact that the for the last (m̄ − w) components γ̇ n
i → 0

strongly in L2(0, 1),

123



Global minimizers for the doubly-constrained Helfrich energy

A = lim
n→∞

m̄∑
i=1

|�n
i | = lim

n→∞

m̄∑
i=1

2π

1∫

0

γ n
i,1|γ̇ n

i | dt

=
w∑

i=1

2π

1∫

0

γi,1|γ̇i | dt =
w∑

i=1

|�i | = |S|.

and

V = lim
n→∞

m̄∑
i=1

Vol (�n
i ) = lim

n→∞

m̄∑
i=1

π

1∫

0

(γ n
i,1)

2γ̇ n
i,2 dt

=
w∑

i=1

π

1∫

0

γ 2
i,1γ̇i,2 dt =

w∑
i=1

Vol (�i ) = Vol (S).

3.3 Lower-semicontinuity

Proposition 1 Let S, Sn ∈ G be a family of systems of surfaces such that Sn → S
in the sense of Definition 6. Then

lim inf
n→∞ F (Sn) ≥ F (S).

Proof Let S = (�1, . . . , �w). First of all, we notice that, according to Definition 6, since
F ≥ 0, for all n big enough

F (Sn) =
w∑

i=1

F (�n
i )+

m̄∑
i=w+1

F (�n
i ) ≥

w∑
i=1

F (�n
i ).

Therefore, it is enough to show that

lim inf
n→∞ F (S̃n) ≥ F (S)

for S̃n = (�n
1 , . . . , �

n
w). This is reasonable, since by Definition 6-(ii) the i th component, for

i > w, vanishes as measure.
Let then i ∈ {1, . . . , w} be fixed, we write γ n = γ n

i for the generating curve and�n = �n
i

for the generated revolution surface. Define the family of measures

μγ n := 2π γ n
1 |γ̇ n | L1|[0,1] ∈ RM(R).

By (35) and (36)

μγ n
∗
⇀ μ := 2π γ1|γ̇ |L1|[0,1] in RM(R). (40)

Recall that

k1 = γ̈2γ̇1−γ̈1γ̇2
|γ̇ |3 , |k1| = |γ̈ |

|γ̇ |2 , k2 = γ̇2
γ1|γ̇ |

(kn
1 and kn

2 are defined analogously) and

H (�n) =
∫

R

{κH

2
(kn

1 + kn
2 − H0)

2 + κGkn
1 kn

2

}
dμγ n . (41)
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Let �nk be a subsequence realizing the liminf of H , i.e., such that

lim
k→∞ H (�nk ) = lim inf

n→∞ H (�n).

For sake of notation, we drop the index k from the subsequence in the rest of the proof. All
we need to prove is that

kn
1 ⇀ k1 weakly in L2(μγ n ; R), (42)

kn
2 → k2 strongly in L2(μγ n ; R), (43)

in the sense of Definition 5. Indeed, if (42) and (43) hold, by Theorem 2 and (40)

lim inf
n→∞

∫

R

(kn
1 + kn

2 − H0)
2 dμγ n ≥

∫

R

(k1 + k2 − H0)
2 dμ

and by Lemma 7

lim
n→∞

∫

R

kn
1 kn

2 dμγ n =
∫

R

k1k2 dμ.

Therefore, for every component �n
i

lim inf
n→∞ H (�n

i ) ≥ H (�i ), (44)

and to conclude the proof, it is sufficient to notice that

lim inf
n→∞ F (S̃n) = lim inf

n→∞

w∑
i=1

H (�n
i )

≥
w∑

i=1

lim inf
n→∞ H (�n

i )
(44)≥

w∑
i=1

H (�i ) = F (S).

Convergences (42)–(43) are addressed in the next Lemma, which concludes the proof of
Proposition 1.

Lemma 8 Let γ n : [0, 1] → R
2 be a sequence of generating curves for admissible surfaces

�n, and assume that γ n → γ as in (35)–(37). Then

kn
1 = γ̈ n

2 γ̇
n
1 − γ̈ n

1 γ̇
n
2

|γ̇ n |3 converges weakly to k1 = γ̈2γ̇1 − γ̈1γ̇2

|γ̇ |3 ,

kn
2 = γ̇ n

2

γ n
1 |γ̇ n | converges strongly to k2 = γ̇2

γ1|γ̇ | ,

in the sense of Definition 33, where k1 and k2 are defined μ-a.e.

Proof Note that, in case (i), we can assume that

|γ n | ≤ M < ∞, (45)

|γ̇ n | ≥ L > 0. (46)

Denote by Rψ the π/2 rotation of the function ψ = (ψ1, ψ2), i.e., Rψ = (−ψ2, ψ1). Then,
for all φ ∈ C1

c (R) ∫

R

kn
1φ dμγ n =

∫

R

(
γ̈ n · Rγ̇ n

|γ̇ n |3
)
φ dμγ n .
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By (35) and (36)

lim
n→∞

∫

R

(
Rγ̇ n

|γ̇ n |3
)2

dμγ n = lim
n→∞ 2π

∫

R

1

|γ̇ n |3 γ
n
1 dt

= 2π
∫

R

1

|γ̇ |3 γ1 dt =
∫

R

(
Rγ̇

|γ̇ |3
)2

dμγ ,

therefore, Rγ̇ n/|γ̇ n |3 converges strongly in L2(μγ n ; R
2) to Rγ̇ /|γ̇ |3, according to Definition

5. By (37) and Lemma 7

lim
n→∞

∫

R

kn
1φ dμγ n = lim

n→∞

∫

R

(
γ̈ n · Rγ̇ n

|γ̇ n |3
)
φ dμγ n

=
∫

R

(
γ̈ · Rγ̇

|γ̇ |3
)
φ dμγ =

∫

R

k1φ dμγ .

Regarding k2, let φ ∈ C1
c (R), then

∫

R

kn
2 (t)φ(t) dμn(t) = 2π

1∫

0

γ̇ n
2 (t)

γ n
1 |γ̇ n |φ(t) γ

n
1 |γ̇ n |dt = 2π

1∫

0

γ̇ n
2 (t)φ(t) dt,

so that, by (36),

lim
n→∞

∫

R

kn
2 (t)φ(t) dμn = 2π

1∫

0

γ̇2(t)φ(t) dt =
∫

R

k2(t)φ(t) dμ(t). (47)

By (35) and (36) we also have that

lim
n→∞ ‖kn

2‖2
L2(μγ n ;R2) = lim

n→∞

∫

R

(kn
2 (t))

2 dμn = lim
n→∞ 2π

1∫

0

(γ̇ n
2 )

2

γ n
1

dt

= 2π

1∫

0

(γ̇2)
2

γ1
dt =

∫

R

k2
2 dμγ = ‖k2‖2

L2(μγ ;R2).

This concludes the proof of Lemma 8, which completes the proof of the lower-semicontinuity
statement.

As a direct consequence of Lemma 8 and Theorem 2 it holds

Corollary 4 Under the assumptions of Proposition 1, by Lemma 8 and Theorem 2

lim inf
n→∞

∫

R

(kn
1 )

2 + (kn
2 )

2 dμγ n ≥
∫

R

(k1)
2 + (k2)

2 dμγ . (48)

3.4 Compactness

Let {Sn} be a family of finite systems generated by curves in (G0) or (G1). We assume that
there exist constants 
, A such that for all n ∈ N
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|Sn | ≤ A, F (Sn) ≤ 
. (49)

Owing to Lemma 2 and (14), the diameter of every component of a system satisfying (49) is
bounded by a constant which depends only on the data of the problem. Consequently, since
we are interested only in the shape of the components, and not in their relative position in
the space, it is not restrictive to assume that there exists R > 0 such that for all n ∈ N

�n ⊂ BR . (50)

Let us say that a finite system S generated by curves in (G0) and (G1) satisfying (49) and
(50) is an admissible system. Note that in (49), for more flexibility in the proofs we are
not fixing the total area but requiring only an upper bound. Note further that owing to the
isoperimetric inequality, no separate bound on the volume is necessary, and, owing to the
restrictive geometry of surfaces of revolution, the only possible genus is 0 or 1.

Lemma 9 Let S = (�1, . . . , �m) be a finite system generated by curves in (G0) or (G1)
and satisfying (49), then there exists a constant C = C(H0, κH , κG , A,
) such that #S =
m ≤ C.

Proof If γ is in the class (G0), by Lemma 4 we have

|γ̇1(1)− γ̇1(0)| = 2�(γ ). (51)

If γ is in (G1), then γ ∈ C1([0, 1]) by Corollary 2, and therefore there must be two points
s, t ∈ [0, 1] such that

|γ̇1(s)− γ̇1(t)| = 2�(γ ) (52)

(e.g, choose s ∈ argmin(γ2) and t ∈ argmax(γ2): since γ is closed and differentiable, the
tangents in these points are horizontal and have opposite orientation). By (51), (52) and
Lemma 5, for every i = 1, . . . ,m

8π�(γi ) ≤ 4π max
s,t∈[0,1] |γ̇1(s)− γ̇1(t)| ≤ �(γi )

1∫

0

k2
1,i + k2

2,i dμγi ,

8π ≤
1∫

0

k2
1,i + k2

2,i dμγi .

By (14) there is a constant C1 > 0, depending only on the data, such that summing over i

8πm =
m∑

i=1

8π ≤
m∑

i=1

1∫

0

k2
1,i + k2

2,i dμγi ≤ C1(F (S)+ |S|).

We conclude that m ≤ C1(
+ A)/8π := C .

Since every admissible sequence Sn satisfies 1 ≤ #Sn ≤ C , we can now study the com-
pactness property for each component separately. From here onwards we omit the component
index i .

Proposition 2 (Compactness) Let γ n : [0, 1] → R
2 be a sequence of generating curves for

admissible surfaces �n. Then, either
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(i) there exists a subsequence γ nk and a generalized generator γ as in Definition 3 such
that γ nk converges to γ in the sense of (35)–(37), or

(ii) there exists a point (0, z) ∈ R
2 such that γ n → (0, z) strongly in W 1,2((0, 1); R

2).

Proof Let �n be a sequence of admissible surfaces generated by γ n : [0, 1] → R
2, param-

etrized so that |γ̇ (t)| ≡ �(γ n). It holds

sup
n∈N

1∫

0

(kn
1 )

2 + (kn
2 )

2 dμγ n
(14)≤ C(H (�n)+ |Sn |) (49)≤ C(
+ A). (53)

Step I. Proof of case (ii) and convergence (35) in case (i). By (50), Lemma 2 and (53), there
exists a constant C > 0 such that

max
t∈[0,1] |γ

n(t)| + |γ̇ n(t)| ≤ max
t∈[0,1] |γ

n(t)| + |�(γ n)| ≤ C (54)

for every n ∈ N. Therefore, by Arzelà–Ascoli Theorem and weak-∗ compactness in L∞ there
exists a subsequence, which we do not relabel, and a continuous limit curve γ : [0, 1] → R

2

such that

γ n → γ uniformly in C0([0, 1]; R
2), (55)

γ̇ n ∗
⇀ γ̇ weakly-∗ in L∞((0, 1); R

2). (56)

Moreover, up to extracting a further subsequence, since {|γ̇ n |} is just a bounded sequence of
real numbers we can assume that |γ̇ n | → L . The point now is to prove that |γ̇ | = L .

If L = 0, by lower-semicontinuity of the L2-norm with respect to the weak topology

0 = lim
n→∞

1∫

0

|γ̇ n |2 dt ≥
1∫

0

|γ̇ |2 dt ≥ 0, (57)

i.e., γ̇ n → 0 strongly in L2((0, 1); R
2) and γ n strongly converges in W 1,2((0, 1); R

2) to a
constant γ . Suppose γ1 > 0, then there exists ε > 0 such that γ n

1 (t) > ε for all n sufficiently
large. Thus (as in [8, Lemma 3.1])

(2π)2 ≤ �(γ n)

�(γ n)∫

0

|γ̈ n |2 dt ≤ �(γ n)

ε

�(γ n)∫

0

|γ̈ n |2 γ n
1 dt ≤ �(γ n)

ε

∫

�n

(kn
1 )

2d A,

and therefore, �(γ n) > 4π2ε



, contradicting (57). This covers case (i i) of Proposition 2. We
also note that

lim
n→∞ |�n | = 0 if and only if lim

n→∞ |γ̇ n | = 0.

Indeed, the “only if” part follows directly from Lemma 2 and (53), while the “if” part is a
consequence of (16), (55) and (57). In order to prove case (i), we assume in the following
steps that

|γ̇ n | → L > 0. (58)
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Step II. Convergence (36) in case (i). We have to show that

γ̇ n → γ̇ strongly in L2 ((0, 1); R
2) .

Recall that the Total Variation of a function f : [0, 1] → R is defined as

V[0,1]( f ) := sup

⎧⎨
⎩

N−1∑
j=0

| f (ti+1)− f (ti )| : {0 = t0, . . . , tN = 1} is a partition of [0, 1]
⎫⎬
⎭ .

By Lemma 5, for any interval (a, b) ⊆ (0, 1)

4π |γ̇ n
1 (b)− γ̇ n

1 (a)| ≤ |γ̇ n |
b∫

a

(kn
1 )

2 + (kn
2 )

2 dμγ n .

Therefore, by (58) and (53), there exists a constant C > 0 such that

V[0,1](γ̇ n
1 ) ≤ |γ̇ n |

4π

1∫

0

(kn
1 )

2 + (kn
2 )

2 dμγ n ≤ C.

By standard compactness in BV spaces (see, e.g., [17]), there exists a subsequence γ nk
1 and

a limit function σ ∈ BV ((0, 1); R
2) such that

γ̇
nk
1 → σ strongly in L1(0, 1).

Since γ̇1 is also bounded in L∞(0, 1)

γ̇
nk
1 → σ strongly in L p(0, 1) ∀ p ∈ [1,+∞),

and by (56) we can identify the weak limit γ̇1 with the strong limit σ . We have thus proved

γ̇ n
1 → γ̇1 strongly in L p(0, 1) ∀ p ∈ [1,+∞).

Since, by hypothesis, γ n
1 (t) > 0 for all t ∈ (0, 1), γ1 ≥ 0 for all t ∈ [0, 1]. Let

E := {t ∈ [0, 1] : γ1(t) = 0}.
Note that E is a compact subset of [0, 1], so, in particular, it is Lebesgue-measurable. Assume,
by contradiction, that |E | > 0. Owing to the bound on the energy, there is a constant C > 0
such that

C ≥
∫

�n

(kn
2 )

2 d A ≥ 2π

1∫

0

(γ̇ n
2 )

2

γ n
1 |γ̇ n |dt ≥ 2π

∫

E

(γ̇ n
2 )

2

γ n
1 |γ̇ n |dt ≥ 2π

|γ̇ n |
∫

E

(γ̇ n
2 )

2

ε
dt.

By (58) |γ̇ n | is bounded from above and we can find a new constant C such that

∀ ε > 0 ∃ n̄ ∈ N : ‖γ̇ n
2 ‖2

L2(E) ≤ εC ∀ n > n̄,

which implies that γ̇ n
2 → 0, strongly in L2(E). Since (γ̇ n

1 )
2 = �(γ n)2 − (γ̇ n

2 )
2, by (58)

|γ̇ n
1 | → L strongly in L2(E). Since strong convergence implies pointwise convergence (up

to extracting a subsequence), we obtain that γ̇1(t) ∈ {−L , L} for a.e. t ∈ E . On the other
hand, since every t ∈ E is a point of minimum for γ1, it must be γ̇1(t) = 0 for a.e. t ∈ E .
We have thus obtained a contradiction and we conclude that |E | = 0.
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For h ∈ N define

Ah :=
{

t ∈ [0, 1] : γ1(t) >
2

h

}
.

Since Ah ⊂ Ah+1 and [0, 1]\E ⊆ ∪h∈N Ah , we have that

lim
h→∞ |[0, 1]\Ah | = 0. (59)

Our aim is now to show that

γ̇ n
2 → γ̇2 strongly in L1(Ah). (60)

In fact, since

1∫

0

|γ̇ n
2 − γ̇2|dt ≤

∫

Ah

|γ̇ n
2 − γ̇2|dt + (|γ̇ n | + L)|[0, 1]\Ah |,

then (59) and (60) imply that γ̇ n
1 → γ̇1 strongly in L1(0, 1) and thus

γ̇ n
1 → γ̇1 strongly in L p(0, 1), ∀ p ∈ [1,+∞).

In order to prove (60), note that since γ n
1 converges uniformly to γ1, for every h ∈ N there

is n̄ ∈ N such that

γ n
1 (t) >

1

h
∀ t ∈ Ah, ∀ n > n̄. (61)

Let now h be fixed, n̄ given as above and let (a, b) ⊂ Ah . By (26), for all n > n̄

2
√

2π |γ̇ n
2 (b)− γ̇ n

2 (a)| ≤ |γ̇ n |1/2
⎛
⎝

b∫

a

(kn
1 )

2dμγ n +
b∫

a

(γ̇ n
1 )

2

γ n
1

dt

⎞
⎠

(61)≤ |γ̇ n |1/2
⎛
⎝

b∫

a

(kn
1 )

2dμγ n + h

b∫

a

(γ̇ n
1 )

2 dt

⎞
⎠ .

As we did for γ̇ n
1 , we can then control VAh

(γ̇ n
2 ) ≤ C(1 + h), and conclude (60). Strong

convergence of γ̇ n
1 and γ̇ n

2 , in particular, implies

lim
n→∞ |γ̇ n | = |γ̇ |. (62)

Step III. Convergence (37) in case (i). The proof of convergence (37) follows from the
strong-L2 convergence of γ̇ n . Integrating by parts on (0, 1), for all φ ∈ C1

c (R)

∫

R

γ̈ n
1 (t)φ(t) dμγ n (t) = 1

|γ̇ n |3
1∫

0

d

dt

{
γ̇ n

1 (t)
}
φ(t) γ n

1 (t) dt

= − 1

|γ̇ n |3

⎧⎨
⎩

1∫

0

(γ̇ n
1 (t))

2φ(t) dt +
1∫

0

γ̇ n
1 (t)γ

n
1 (t)φ̇(t) dt

⎫⎬
⎭ .
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By (55) and (62) we can pass to the limit as n → ∞ and integrate back by parts

lim
n→∞

∫

R

γ̈ n
1 (t)φ(t) dμγ n (t) = − 1

|γ̇ |3

⎧⎨
⎩

1∫

0

(γ̇1(t))
2φ(t) dt +

1∫

0

γ̇1(t)γ1(t)φ̇(t) dt

⎫⎬
⎭

= 1

|γ̇ |3
1∫

0

γ̈1(t)φ(t) γ1(t) dt

=
∫

R

γ̈1(t)φ(t) dμγ (t). (63)

In the same way, we get that

lim
n→∞

∫

R

γ̈ n
2 (t)φ(t) dμγ n (t) =

∫

R

γ̈2(t)φ(t) dμγ (t). (64)

Limits (63) and (64) prove convergence (37).

We now have all the ingredients to prove Theorem 1.

3.5 Proof of Theorem 1

Let the area and volume constraints A, V be given, such that the isoperimetric inequality
(12) is satisfied. Let the set A(A, V ) and the functional F be given as in the statement of
Theorem 1. Let Sn = (�n

1 , . . . , �
n
m(n)) ∈ A(A, V ), where m(n) = #Sn , be a sequence of

systems of revolution surfaces such that

lim
n→∞ F (Sn) = inf

S∈A(A,V )
F (S). (65)

Note that by (14)

m(n)∑
i=1

⎛
⎜⎝ |�n

i |
2

+
∫

�n
i

(kn
1,i )

2 + (kn
2,i )

2 d A

⎞
⎟⎠ ≤ C(A + F (Sn)).

Since Sn satisfies F (Sn) ≤ 
, for a suitable 
 > 0, by Lemma 9 there is a constant C > 0
such that #Sn < C for all n ∈ N. We can thus extract a subsequence (not relabeled) and find
m ∈ N, such that #Sn ≡ m for all n. By Corollary 1 the total length of the curves gener-
ating Sn is uniformly bounded and therefore it is not restrictive to assume that there exists
R > 0 such that every Sn is contained in the ball of radius R centered at the origin. Thus Sn

is admissible in the sense of Sect. 3.4. We can therefore apply the compactness result, i.e.
Proposition 2. Up to extracting m subsequences, we find generalized generators γ1, . . . , γ j

and real numbers z1, . . . , zm− j , for 0 < j ≤ m, such that, as n → ∞
(γ n

1 , . . . , γ
n
j ) → (γ1, . . . , γ j ),

in the sense of convergence (35)–(37) and

(γ n
j+1, . . . , γ

n
m) → ((0, z1), . . . , (0, zm− j ))

strongly in W 1,2((0, 1); R
2). Denoting by S the system of surfaces generated by (γ1, . . . , γ j ),

by the lower-semicontinuity Proposition 1
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lim inf
n→∞ F (Sn) ≥ F (S),

so that, by (65), F (S) = inf F . To conclude, we have to show that S ∈ A(A, V ), or, more
precisely, that S can be (re)parametrized by curves in (G0) or (G1), which satisfy the area
and volume constraints. By Sect. 3.2, the constraints are continuous with respect to strong
convergence in W 1,2((0, 1); R

2), so that |S| = A and Vol (S) = V . Let γ be a generator of S,
we distinguish two cases. If γ1(t) > 0 for all t ∈ [0, 1], then γ is the limit of a sequence γ n ∈
(G1), which implies that γ is closed; by Lemma 3 γ satisfies (5) and we infer that γ ∈ (G1).
In the second case, {γ1 = 0} 
= ∅. Since it’s not restrictive to assume that γ1(0) = γ1(1) = 0,
we can apply Corollary 3 and conclude that γ can be reparametrized as a union of curves in
(G0), which generate a family of surfaces with the same area, enclosed volume, and Helfrich
energy as the one generated by γ . The proof of Theorem 1 is thus complete.

As a final note, recalling Section 1.2 on the index of a system of curves, if we restrict
the minimization to the class of systems of disjoint curves such that I (S, p) ∈ {0, 1} for
almost every p ∈ R

2, by continuity of the index under uniform convergence, we obtain that
the index takes values 0 or 1 also for the limit system. In particular, this implies that the
minimizer is without self-crossings.
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