The Relative Pure-Entire Factorization for Geometric Morphisms

Marta Bunge

October 19, 2000

Abstract

A locale A in a topos \mathcal{E} is said to be a Stone locale if it is a compact and zero-dimensional locale. An equivalent description says that A is the locale of ideals of a Boolean algebra in \mathcal{E}. A geometric morphism $\varphi : \mathcal{F} \to \mathcal{E}$ is called entire (respect. pure) if φ is localic and defined by a Stone locale (respect. if $\varphi_* (2_{\mathcal{F}}) \cong (2_{\mathcal{E}})$, where $2 = 1 + 1$). In [P.T. Johnstone, Factorization Theorems for Geometric Morphisms II, Categorical aspects of Topology and Analysis, Springer, LNM 015 (1982) 216-233] it is shown that every geometric morphism φ admits a unique factorization $\varphi \cong \psi \cdot \pi$ where ψ is entire and π is pure.

Suppose now that there is a base topos \mathcal{S} over which the toposes are defined and that we only consider geometric morphisms “over \mathcal{S}”. Also suppose that instead of $2 = 1 + 1$ in the above, we take the object $\Omega_{\mathcal{S}}$ of truth-values in the topos \mathcal{S}. The question that we answer here is the following: under what conditions on $\varphi : \mathcal{F} \to \mathcal{E}$ (over \mathcal{S}) does one obtain a relativized version of the pure-entire factorization mentioned above. In the process of answering it in [M. Bunge, J. Funk, M. Jibladze, T. Streicher, Relative Stone Locales, in preparation], we encounter several interesting versions of well-known notions, constructive versions of classically known results, and new problems.