Do Free Distribution Algebras Exist?

Marta Bunge

October 19, 2000

Abstract

If \mathcal{S} is an elementary topos and $\Omega_\mathcal{S}$ is its subobjects classifier, then the adjoint pair $F \dashv U$ given by $\Omega_\mathcal{S}^(-) \dashv \Omega_\mathcal{S}^(-) : \mathcal{S}^{op} \to \mathcal{S}$ is tripleable (R.Paré, Colimits in Topoi, Bulletin of the AMS 80(1974) 556-561). Moreover, there exists an equivalence between \mathcal{S}^{op} and the category of complete atomic Heyting algebras in \mathcal{S} (over \mathcal{S}, the latter equipped with the forgetful functor and its left adjoint – the free complete atomic Heyting algebra functor).

In [M.Bunge, J. Funk, M. Jibladze, T. Streicher, Distribution Algebras, to appear in Advances in Mathematics156(2000)] we prove a relative version of this result with an interesting interpretation in terms of distributions and their algebraically duals. This is done by replacing \mathcal{S} by a topos \mathcal{E} bounded over \mathcal{S}, and by replacing \mathcal{S}^{op} by the category of \mathcal{S}-valued distributions on \mathcal{E} in the sense of [F.W. Lawvere, Extensive and Intensive Quantities, Lectures at Aarhus University Workshop, 1983]. However, we are seemingly forced to make a hypothesis on \mathcal{E} as a topos over \mathcal{S} for the tripleableness to hold. The tripleableness question is in fact only dependent on the existence of a left adjoint to the forgetful functor from the category of distribution algebras in \mathcal{E} to \mathcal{E}, that is on the existence of free distribution algebras. The theorem holds for any topos \mathcal{E} which is an essential localization of a presheaf topos, as well as when the base topos \mathcal{S} is Set. The question itself as well as related matters will be discussed in this talk.