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1.  Commutative ring :

a set  R; 

operations:
 
 plus = +:RxR--->R ,  a binary operation;
    times = *:RxR--->R, another binary operation;
        constant elements  zero = 0, one = 1 in R ; 
 
laws: 
 unit laws – zero for plus; one for times;    
      associative laws   (A+),   (A*)
           commutative laws   (C+),   (C*)
                          for plus and times
          distributive law (D) : “times distributes over 
plus”.

The (A) and (D) laws are ternary in the sense that 
they use three independent variables. The © laws 
are binary. The unit laws are unary. 



The concept of commutative ring (CR) is 
equational, defined by operations and identities. In 
category theory, we have a way of saying this: the 
category of CR's is finitary-monadic over  Set, the 
category of sets. 

 I am going to define a more complicated, but also 
quite similar concept, that of omega category.

First, 

2. Omega graphs and operations on them

An omega-graph  X is a graded set  

    {X-sub-n}-sub-n-in N

(elements of  X-sub-n are called n-cells of X )

together with functions  

       d -sub-n : X-sub-n  -------> X-sub-(n-1) ,

       c -sub-n : X-sub-n  -------> X-sub-(n-1),



for every  n>0 , 

called domain and codomain functions (sometimes 
also source and target, respectively),

and the following laws are required: 

for every  n>1,

            see (*), T1  . 

Notation: see    T2,   T3.

When the set  X-sub-(n+1) is empty  –  and 
therefore, necessarily  X-sub-m is empty for  all  
m>=n+1 –- we have an  n-graph. In practice, most 
of the time we deal with n-graphs, with varying 
finite n . A 0-graph is just a set; a 1-graph is what is
usually called in category theory a graph. 

For convenience, I now stop using “omega” in 
“omega graph”; I just say “graph”; for the ordinary 
graph, I will say 1-graph.



The category of graphs, OmegaGraph, or OG for 
short, is the obvious category: objects are the 
graphs (“U-small” graphs, in the sense of being in a
fixed but arbitrary Grothendieck universe U); 
morphisms are the obvious structure preserving 
maps: 

    see  T4

An omega category will have an underlying 
omega-graph – just as a CR has an underlying set. 
Moreover, the concept of omega category will be 
equational – but now not over Set, but over OG. 
Operations will no longer have tuples (x,y,...) of 
elements as arguments , but rather systems of 
elements indexed by finite graphs; the “arities” are 
not (just) finite sets as in ordinary algebra, but 
(certain) finite graphs. 

Given a(n omega) graph X, and a finite graph A, an
“arity”, a system of elements of X indexed by A is, 
naturally I hope, a graph-morphism  a:A--->X, a 
morphism in OmegaGraph. 

Example: In an ordinary category (which will, 
essentially, be an example of an omega category) 



we want to talk about composing two 1-cells  f and 
g, with the proviso that  c(f)=d(g)=y :

                              f            g
                       x ------> y -----> z ,

and we intend that the composite, denoted  gf, 
should be a 1-cell with  d(gf)=x , c(gf)=z :

                                   gf
                       x ----------------> z. 

This can be expressed by saying that the 
composition operation  comp is a function on the 
set of all morphisms   <2>----->X  to   X-sub-1 , 
where  <2>  is the graph
        
                                              3                 4

               [ 0 ---->1 ---->2] . 

with some commutative diagrams expressing the 
domain/codomain information on the composite.

Let us write  [A,X] for  

           hom-sub-OG(A,X) ,

the set of all morphisms from the graph  A. Also 



note that  X-sub-1 is, essentially, the same as
                                                                                                                               2

  [<1>,X], where  <1>  is the graph  [0--->1]. Thus, 
we will have that comp, the composition operation, 
will be a function of sets,

           comp: [<2>,X] –------> [<1>,X] .

In fact, all the operations, even the composite ones 
(the analogs of terms in ordinary logic/algebra), in 
all the many different versions of strict, semistrict, 
and “weak” omega categories, will be of the form

                PHI: [A,X] –-> [B,X]  

on an (omega) graph X, with A, B finite graphs – in
fact, very special finite graphs, the so-called 
Batanin cells (my name for them). 

3. The main examples

An  n-category, in a general sense of the term  is a 
“category” structure on an n-graph. More 
particularly, it is a concept monadic over the 
category of n-graphs. This is not a definition yet. I 
first give the main examples. 



We all know what a 1-category is: it is what is 
usually called a category. The main example of a 1-
category is the category of sets, Set. There is just 
one problem with this: size. The more rigorous 
concept is category of U-small sets,  Set-sub-U, 
with any Grothendieck universe  U. However, we 
will usually suppress reference to U. 

With the notion of category, the morphism of 
categories is an immediate notion: it is that of a 
functor, structure-preserving map from a category 
to another. Thus, we get the category  Cat of 
(U-)small categories; to be sure, no longer U-small,
but U-sub-1 small, for the next Grothendieck 
universe  U-sub-1, for which  U is an element of U-
sub-1.  However,   Cat  has an additional structure, 
that of natural transformations: we have the 
concept of a natural transformation  h:F--->G  for 
two parallel functors  F  and  G: 



                             F
                       -----^---->
                   X        | h         A
                       ---------->
                             G

Thus,  Cat becomes a 2-category, “2-category” 
being an algebraic (monadic) concept over 2-
Graph, the category of 2-graphs. 2-categories 
appear early in category theory; Mac Lane 
introduces them early in his book. 

You will not be surprised to hear that the category 
of 2-categories (with the obvious, structure-
preserving morphisms, is in fact, not only a 2-
category, but a 3-category as well. And so on, for 
all finite  n. 

What about the main example for a “real” omega-
category? I am sorry to say this, but this is the 
omega category of all small omega categories! No 
such thing, in a natural way, as an omega+1 
category!



4. Strict omega categories

For the definition, see T5 to T13.

Summary: An omega category X has an underlying 
(omega) graph , also denoted by X. It has

  unary operations

    id_r : X_n  –----> X_n+1 , 

  and  binary operations

   comp_m,n : X_m,n ------> X_r ,

for each pair  (m,n) of positive  integers, where  
r=max(m,n) , and the set   X_m,n  consists of those 
pairs (a,b) where   a  is in  X_m,  b  is in  X_n, and  

    (c^k)(a)  =  (d^k)(b) ; 

        here,  k=min(m,n)-1, and  c^k is the “k-
dimensional codomain”, i.e., for  a   in  X_m,



           (c^k)(a)  =  c c  ...   c  (a) 
                              -----------
                               m-k times 

and similarly for  d^k. 

Briefly put, the composite  ab  is defined provided  
a  and  b  “meet” at the level 

                    k  =  min(dim(a),dim(b))-1,
 
meaning that the k-level codomain of  a  equals the 
k-level domain of b . 

Note that we are using here a diagrammatic 
notation, whereby we write  fg  for what, usually in 
category theory with the functional notation, one 
would write as gf.

We have five categories of laws:

1) domain/codomain laws, regulating the 
domain/codomain of the identity and composite 
cells,



2) unit laws,
3) associative laws,
4) distributive laws
5) commutative laws.

 The associative and distributive laws are ternary, 
meaning that each has three independent variables; 
the unit and the commutative laws are binary.

 The associative and distributive laws have the 
usual forms:

     (ab)e = a(be) , 
     (ab)e = (ae)(be),
      a(be) = (ab)(ae).

 Although these formulas are completely precise, 
their simplicity is deceptive. In the second formula,
a “distributive” law, the operation  (-)e  distributing
over the “addition”  a(+)b, we see five 
compositions:

ab ,  (ab)e ,   ae ,  be,   (ae)(be) .



The meanings of these compositions are 
determined by the dimensions of the variables  
a,b,e. With those dimensions given, the elements 
a,b,e  also have to satisfy composability conditions 
for the composites to make sense.  

The equalities are required to hold provided all 
expressions involved  are well-defined;  “ ab  is 
well-defined” means that  (a,b)  is in X_m,n, where 
a is in X_m, b is in X_n. 

To be more precise, for instance in the case of 
associativity: there is one identity as an axiom for 
every triple (m,n,p) of positive integers such that :

     whenever  a  is in X_m,  b  is in  X_n  and  e  is 
in X_p, then each of the four  composites  

     ab,   be,   (ab)e,   a(be)     

are well-defined. 

I say that when this is the case, the triple  (m,n,p) of



integers is associative. It turns out that  this is the 
case if and only if  two of the numbers  m,n,p  are 
equal, and the third is greater than or equal to 
they/them. If so, then, as a consequence, (ab)e  and 
a(be)  will be parallel cells of dimension  max(m,n);
the axiom requires that they be equal.

It is very important to the story that we only require
an equality of two terms when we already know 
that they denote elements  u  and  v  of some equal 
dimansion that are parallel to each other:  
d(u)=d(v),  c(u)=c(v) . 

The commutative law, although it is “only” binary, 
referring to  two independent variables, it is a bit 
more complicated.  For the formal statement, see 
T11 to T13. To a motivating discussion, we return 
after “Batanin cells”. 

By omega-category, we will mean strict omega 
category thus defined. For a finite n, an n-category 
could be defined as an omega-category in which all
m-cells, for all  m>=(n+1), are identity cells. 
Essentially equivalently, an n-category is a 



structure with an underlying n-graph; with 
operations   id_r  and  comp_l,m  as above, but for  
r<n  and  l,m<=n only; and with the laws as above 
involving the restricted set of operations.  

5. Batanin cells

Batanin cells (my terminology), or B-cells for 
shorter, are for omega categories as multi-variable 
polynomials with integer coefficients for 
commutative rings.

Given a set  x[n]  ={x_1,...,x_n} of  n distinct 
variables, the free CR on the set  x  is the ring of 
polynomials Z[x[n]] = Z[ x_1,...,x_n], with  Z  the 
ring of integers, and with indeterminates   
x_1,...,x_n . I take Z[x[n]] to be the set of the usual 
normal form sum of non-zero monomials
 Now, let  X  be an arbitrary set; denote by Z[X] the
CR that is freely generated by  X. Given any  n , 
any map  a:x[n] –--> X, and any polynomial  f  in  
Z[x[n]], we have  f(a), an element of  Z[X], “the 
value of  f  at  a  “, as  F(a)(f)  for 



                F : Set –-----> CR

the left adjoint to the forgetful  functor CR--->Set  
(F([x[n])  = Z[x[n]] ,  F(X) = Z[X]). We have a 
simple fact: the mappings

    PHI-n : Z[x[n]]  x  [x[n], X]  ----->  Z[X

     (f in Z[x[n]],  a in  [x[n], X])
                                             |------>f(a)  in Z[X]
form a family  <PHI-n >(n-in-N)  that is almost 
(jointly) a bijection. 

 First of all,  the PHI-n's are jointly surjective. Now,
impose an arbitrary linear order on the set  X, and 
on x[n], the natural order; allow only strict (1-1) 
order-preserving maps  a:x[n] –--> X only, and 
allow only polynomials  f in  Z[x[n]]  that contain 
all of the variables in  x[n]  at least once (in a 
monomial with a non-zero coeefficient). With these
restrictions, the modified map  PHI-n  forms a 
jointly bijective family.

This statement is a way of saying – somewhat 



pedantically – that every element of  Z[X]  can be 
uniquely written in the usual normal form of a 
polynomial.

       


