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1. Introduction.

The Frobenius theorem states that a finite dimensional division algebra over the reals is
one of the reals R, the complex numbers C or the quaternions H. Recently, Peter Freyd
showed me a proof that is simpler than the known proofs. Assuming the dimension is
not 1, it uses conjugation by a square root of −1 to simplify the argument. We outline
his proof. It is valid on the assumption that R is a real closed field and A is a finite
dimensional R-algebra with no zero divisors. In addition, we give an example that shows
that the result fails if we don’t suppose that R lies in the center of the algebra.

2. Peter Freyd’s proof.

If K is a commutative ring, then by a K-algebra A we mean a ring together with a
additive map K ⊗A→ A that satisfies the equations k(aa′) = (ka)a′ = a(ka′) for k ∈ K
and a, a′ ∈ A. We do not assume that either ring contain an identity. But if they do these
equations imply that the induced image of K → A lies in the center of A.

An ordered field is called real closed if no algebraic extension can be ordered. Real
closed fields are characterized by the facts that every positive element has a square root in
and every odd order polynomial has a root. In an ordered field, −1 cannot have a square
root, but if R is real closed then C = R[i] is algebraically closed, where i is a square root
of −1.

The proof of the last is the same as that of one of the standard proofs that the complex
numbers is algebraically closed. Take an irreducible polynomial and adjoin all its roots.
Let G be the Galois group and H be a 2-Sylow subgroups of G. Then Fix(H) is an odd
order extension of R, which is not possible since every odd order polynomial has a root
in R. Thus G is a 2-group. Since p-groups are solvable, the extension is by a sequence
of square roots. The first step in the sequence must be to adjoin the square root of a
negative number since positive numbers already have square roots in R. It is easy to see
that every element of C has a square root in C so there can be no next step.

Below, we denote by R a real closed field, C = R[i] its algebraic closure and H =
R[i, j, k] its obvious quaternionic extension.

2.1. Theorem. Let A be an R-algebra without zero divisors and of finite dimension over
R. Then A is one of R, C, or H.

The proof is by a sequence of steps. The claims are in italics and their proofs in roman.

1. There is an identity in A. Let x be a non-zero element of A. Left multiplication by x
is a linear transformation of A to itself and, being injective is also surjective, so there is
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an element e ∈ A with xe = x.

2. e is a left identity for A. For any y ∈ A, we have x(y − ey) = 0.

3. Every non-zero element of A has a left inverse with respect to e. For any non-zero
x ∈ A, right multiplication by x is an injective, hence surjective, linear transformation on
A so there is an x′ with x′x = e.

4. A is a division ring. The monoid of non-zero elements of A is a group and hence A is
a real division algebra (with R in its center). We will write 1 = e and x−1 = x′.

5. Assume that dimA > 1. Then for any x ∈ A − R, the subring R[x] generated by x
has dimension 2. Since x /∈ R, this subalgebra cannot give a subalgebra of degree 1. The
powers of x can not all be linearly independent so x satisfies an irreducible polynomial
equation over R. But R has no irreducible polynomial equation of degree greater than 2,
so the polynomial must have degree exactly 2 and R[x] ≡ C. We denote by i a square
root of −1 in R[x] so that R[x] = R[i].

Assume from here on that A 6= R[i]

6. For x ∈ A−R[i], xi 6= ix. Thus the function σ : A→ A given by σ(x) = ixi−1 = −ixi
is an involution of A over R whose fixed field is R[i]. For if xi = ix, then R[i, x] is a
commutative field of finite degree larger than 2 over R, which is not possible.

7. Let A′ = {x ∈ A | σ(x) = −x}. Then as a vector space, A = A′ ⊕R[i]. Just write

x =
x− σ(x)

2
+
x+ σ(x)

2

8. A is 4-dimensional. For any x ∈ A′, left multiplication by x interchanges A′ and R[i].
Hence A′ is also 2-dimensional and A has dimension 4.

9. If x ∈ A′, then x2 is real and negative. Since σ(x) = −x, it is immediate that
σ(x2) = x2 and then x2 ∈ R[i]. Since x2 commutes with x, it cannot have any imaginary
component and is therefore real. If it were positive, then x2 would have a square root in
R, which is impossible.

10. There is a j ∈ A′ such that j2 = −1. Take any non-zero x ∈ A′ and let j = x/
√
−x2.

11. If k = ij, then k2 = ijk = −1. For k2 = ijk = ijij = −iijj = −1.

12. A = R[i, j, k] is the quaternions over R.

3. Centrality of centrality.

It was central to the proof above that R be central in A. This is an example to show that
the theorem may fail for the ordinary reals if R does not lie centrally in A. It was created,
if I recall correctly, by Nathan Fine and Murray Gerstenhaber about 60 years ago when I
was asked to lecture on Pontrjagin’s more complicated proof of a badly stated version of
the theorem above. I had to ask them if it was necessary to add the assumption that R lie
in the center of A. It was. Whether this was an omission by Pontrjagin or the translator
I have not been able to determine.
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Let S = RN/u where u is a non-principal ultrafilter on N. Then R has cardinality 2ℵ0

since RN does and hence transendence degree is the same. It is also real closed since that
is a first order property preserved by ultrapowers. Therefore R[i] ≡ C and R[i] contains a
copy of R of index 2. Since the order relation on real closed fields is completely determined
by the fact that the positive elements are exactly the squares, it follows that R cannot
be isomorphic to R since R contains infinitesimals. Thus R[i, j, k] is an example of a ring
that contains R and is finite dimensional over it, but is not isomorphic to H since their
centers are not isomorphic.


