Graded Multicategories of
Polynomial-time Realizers

R.A.G. Seely™
Department of Mathematics and Computer Science
John Abbott College, Ste. Anne de Bellevue
and
McGill University, Montréal, Québec

Extended Abstract—Preliminary Version

Abstract

We present a logical calculus which imposes a grading on a sequent-style calculus
to account for the runtime of the programmes represented by the sequents. This
system is sound for a notion of polynomial-time realizability. An extension of the
grading is also considered, giving a notion of “dependant grades”, which is also
sound. Furthermore, we define a notion of closed graded multicategory, and show
how the structure of polynomial-time realizers has that structure.

0 Introduction

In [4], a restricted notion of realizability is defined, a special case of which is polynomial-
time realizability: this is like Kleene’s original realizability, save for three features. First,
closed atomic formulae are realized only by realizers that express a reason for the “truth”
(or provability) of the formula, unlike Kleene’s system which only reflects the fact that the
formula is provable. Second, open formulae are treated as the corresponding closed for-
mulae with all free variables universally quantified simultaneously. (There is a difference
between the quantifiers V{(¢,n) and V£Vn.) And third, the realizers code polynomial-time
(“p-time”) functions, rather than arbitrary recursive functions.

In [4], only the p-time realizability of single formulae is discussed—in [5] these notions
are extended to logical rules, to give a sequent calculus that is sound for p-time realiz-
ability. This sequent calculus is much like Gentzen’s formulation for intuitionist logic,
with three main points of difference, which we summarize again here. First, a sequent
of the form A, B — (' is interpreted as if it were a formula A D (B D), rather than
(AN B) D C (which would be the Gentzen interpretation). As was shown in [4], these
are not equivalent. Indeed, if |- (A A B) D C then |- A D (B D C), but not conversely.

*This work was done following a visit to Monash University and is based on the joint work done there
by J. N. Crossley, G.L. Mathai, and the author, who wishes to express his thanks to those two for their
many kindnesses during his visit.

Research partially supported by a grant from Le Fonds F.C.A.R., Québec.

(I A means “A is realizable”; similarly e |- A means “e realizes A”.) Second, among
the structure rules we keep thinning, but drop exchange and contraction, (roughly the
opposite of Girard’s linear logic [7].) Again, it was shown in [4] that one could have
- A D (B D () without having |- B D (4 D ().

Our structure is then a closed multicategory [9, 10] with finite products and coprod-
ucts: D gives the internal hom but this is not a hom for the product structure given by
A. We do not have a tensor @ —the comma in the sequent notation takes that role—but
if we did, it would not be symmetric. Furthermore, it would not satisfy the expected
axiom A, B — A ® B, for we could then deduce |- A ® B = A A B, which is false.
However, |- A, B — A A B is valid (take C'= A A B in the result quoted above).

Third, we extend the usual notion of “sequent” by the addition of variable declara-
tions. A variable declaration (# :) delimits the scope of a free variable in a sequent, and
gives finer control over the functional aspect of realizing open formulae. For example,
suppose B is a closed formula and A(z) contains exactly @ as free variable. It is not the
case that |- B D A(z) implies |- B D VEA(E), according to the definitions of [4]. The
point is that such an implication involves an exchange in the order of the realizers m, a
standard numeral realizing z, and b |- B—in the first m comes first, while in the second
b does. If we can shift the functional dependence so that m only enters when wanted
then this problem will disappear. The (valid) rule corresponding to our discussion then

ecomes
U () — Ax)
I' — VEA(E)

where (z :) indicates the beginning of the scope of the variable z, (its end being the end
of the sequent), I' being a finite sequence of formulae (and possibly other variable decla-
rations). Such variable declarations should be thought of as the eponymous statements
in computer programmes; as in programming, a variable may only appear locally, and so
we wish to capture that locality in the functionality of our realizers. In the above rule,
both lines in fact are realized by the same realizer.

In this note, we shall modify the calculus presented in [5] by the introduction of
grading: instead of the usual implication A D B, we shall have a countable set of

different “graded” implications, A g B, which indicate a bound on the degree of the
runtime of the relevant algorithm. These grades will, initially, be natural numbers, as in
the graded A-calculus of [11], but we shall see that this requirement leads to a weakening
of the system of [5], and so at the end of this note we shall present a variant in which
the grades may be natural-number-valued functions, dependant on “previously realized
data”.

Aside The use of dependent grades is really the point of the exercise, since it is the
ability to capture instances of “dependent realizability” that distinguishes [4, 5] from [11].
For example, in [4] there is an example (my “Favorite Example”) that occurs frequently.
In the notation of this paper, it can be given in these three flavours:

(), (y:) — ¥ =2v-u (1)
(yo),(x:) — a¥tl=2a¥. 2 (2)
(r,y:) — 2Vt =u¥. 2 (3)

(These examples may also be presented as quantified formulae.) Of course, there is
no way that Examples 1, 3 can be realizable in polynomial time, but with dependent

realizers, Example 2 is realizable in polynomial time. However, in the system of this
paper, with integer grades, we cannot realize Example 2 because the second realizer (of
(z:) — 2™T1 = 2™ . z) depends on the first realizer (the m realizing y) for the degree
of its runtime. However, at the time of this writing, [5] is still in preparation, and so
I have thought it best to concentrate on the integer-graded system for the time being.
This system is in some ways an extension of [11], from which it derives its inspiration,
but there are some differences, as the reader will see.

Analagous to the graded implication, we shall have graded universal quantifiers

1
Y EA(€). We mentioned in [5] that the usual quantifier YEA(&) could be thought of

k k
as (z 1) D A(wz); analagously V¢ A(E) may be thought of as (# :) O A(z). Further, the
sequents in [5] are directly related to the notion of implication, and so in the graded

k
system we shall have graded sequents: for example A, B,C — D will be interpreted as

AB BB (5 D)), where k = (k1 ks, k).

Finally, we shall define a notion of graded multicategory, which extends Lambek’s
notion of a multicategory by associating with each morphism an index or grade in a
coherent manner. In fact, the graded multicategorical structure suitable for the graded
sequent calculus described above will have much more structure, e.g. it will be “graded
closed” since it has a “graded internal hom” given by the graded implication. Of course,
all this is directly analagous to the ungraded case, and follows the paradigm case of a
Gentzen multicategory [10]. (Also, in the intended example the grading is filtered—if a
morphism has grade k then it also has grade k’, for any k’ > k, in a suitable ordering.
However, it is not clear this should be part of the general definition.)

One final point: for simplicity, in this note we shall not consider the structure of
the natural numbers, and so shall make no reference to the non-logical axioms needed
to describe that structure. Of course, this is a serious oversight, but that structure
(essentially Buss’s axioms ([1, 2], see also [3]) together with the expected equality axioms)
is discussed in [5], as well as in [11] mutatis mutandis.

1 Polynomial-time realizers

We recall the basic definitions from [4] and [5]—for full details, the reader should refer
to those papers.

1.1 Realizers

We assume a formal language £ with constants including 0, function letters including +,
-, and ezp (exponentiation), and predicate letters including = (equality). As indicated

in the Introduction, £ is modified by replacing O with g and V with @’ (for all k) in the
formation rules for formulae. Realizers are taken as (codes of) pairs e = (e, €;), where
em 18 (the code of) a Turing machine and e; is (the code of) a polynomial: e acts as e,
except that it turns off after e;(|x|) steps, where |x| is the length of the input. In the
following, “function” means such a realizer, unless otherwise specified. (This includes

constants, as functions of 0 variables.)
We shall write e(f) to denote {en, }(f), { } denoting the Kleene bracket.

Definition 1 A realizer e = (e, , €;) is said to have grade k if the logarithm of the degree
of ey 1s < k, that is, if

deg(es) < 2°.

For some of the function symbols, in particular, +, - , but not exp, there is associated
a realizer e; with the function symbol f, and likewise for some of the predicate symbols,
including = , a realizer ep is associated with P. Terms are realized by this definition:

Definition 2 e Ift is closed:

1. Ift is a constant ¢, with realizer e., then e, [¢.

2. Ift = f(t,..,tn), e |t for i = 1,...,n, ep is the realizer of f, then
er(er, ... en) |t

o Ift contains free variables x1,... ,x,, then e [¢ iff e is (the code of) a function
that, for standard numerals my, ..., my,, gives e(my,...,my) |- t(my, ..., my).

Definition 3 Closed atomic formulae are realized by the realizers of predicate symbols: if
ei |t (fori=1,...,n)and ep is the realizer of P, then ep(e1,...,en) | P(t1,...,tn).
Finally, we modify Kleene’s original inductive definition of e |- A as in [5], with the

k k
addition of grading to account for the graded connective D and the graded quantifier V .

Definition 4 ¢ |- A in the following situations:
o [f A 1s closed:

1. L is never realized.

2. Ais BAC, e ={eg,e1), eo | B and ey |- C.

3. Ais BV, e = {eger1), and either eg is 0 and ey |- B or eg is not 0 and
€1 ||— C.

4. Ais B f“) C, the grade of e is k, and, for all f, if f |- B then e(f) is defined
and e(f) |- C.

. A s AEB(E), e = {en,e1), eo ts a standard numeral and e1 [~ B(x = ep),
(where B(x := ey) denotes the substitution of eq for @ in B.)

N\

k
6. A is VEB(E), the grade of e is k, and for all standard numerals k, e(k) |-

Bz = k).
o If A is open with free vartables exactly x1,...,x, and for all standard numerals
my,..., My,

e(my,...,mp) |F Az :=my, ... 2y = my).

1.2 The sequent calculus

In the logical calculus we shall develop, it will be convenient to assume that all formulae
are “homogeneous” in their occurrences of free variables: in forming a compound formula
AOB, for any connective &, we shall suppose A and B have exactly the same free
variables, which then also occur in AOB. This may be done without loss in expressive
power by a liberal use of “dummy free variables”; perhaps the simplest technical way
to do this is to add new function symbols to £ corresponding to projections (—see [12]
for example, where first order logic with equality is handled this way.) Note that in
quantifying a formula, exactly one free variable disappears—uwiz. the one quantified.

Definition 5 A graded sequent T’ i A consists of a usual sequent I' — A together with
a finite sequence k (of natural numbers) of the same length as the sequence I'. Recall
from [5] that T is a finite sequence of formulae and variable declarations, where a variable
declaration (x 1) must precede all formulae in which x appears. Furthermore, a variable
may only be declared once within the sequent.

emarks

1. There may be formulae within the scope of x in which # does not appear—such
formulae will be treated as if they have ‘dummy’ occurrences of x.

2. We can declare several variables simultaneously via pairing: (x :) will mean
({z1,...,2n) 1), where x = @1,...,2,. These variables can also be declared se-
quentially: (z1 :),(z2:),..., (@ :). These forms of declaration are not equivalent.

Definition 6 Qur theory consists of all sequents generated * from the following axioms
by the following rules:

Logical Axioms

0,0
1. (x:),A <—Z A (where x lists all free variables of A.)

0,0,1
2. (x:),A,B (—Z AN B (where x lists all free variables of AN B.)

k 0,0,k
3. (x:),VEA(E), (z 1) (—Z A(z) (where x lists all free variables of A other than

Structural Rules

k
r—A
kl
I'— A
where k' > k in the sense that each coordinate k; > k.

(grade filtering)

1 As outlined by Definition 7.

k
IA—A
kl
B A— A
where k' is the sequence k with a 0 inserted in the position corresponding to
the position of B in the sequent.

(thinning)

k k
I ({z,y) :),A —>lA I, ((y, =) :),A—>lA

k k
Lz, (y:),A— A Lz, (y:),A— A
where k' is the sequence k with a 1 inserted in the position corresponding to
the position of (x :) in the conclusion-sequent.

(curry)

(ki1,k k2) 1
A B O —s r—nB
(cut) (ki,l’+k‘,k2)
AT, —m—
where

o IV is I' with the variable declarations for B omitted, (see Remarks follow-
ing),
o 1 is1 with the entries corresponding to variable declarations for B deleted,

o ki s ky with the entries corresponding to the variable declarations for
B augmented by adding 1 + the corresponding entries from 1 (i.e. those
deleted to getl'), and

o ki, U+ k means add k to the last entry in the sequence ki, 1.

Logical Rules

(k1,k,k2) 1
A B O —s r—A
h (k3,01 +k+h ko)
A(ADB)I'® —C
where T7, k', 1" are as in (cut).

G 1)

. (k,k)
(O R) F’k—_’k
I' = (ADB)
FAAkC FBAkC
)) —)) —
(A L) Kk’ k’
I''(AAB),A = C I'N'(AAB),A —=C

where k' is the sequence k with no less than 1 in the position corresponding
to the position of AN B in the conclusion-sequent.

k 1
r—A I'—15B

maz’(k,l)
r——AAB
where maa' (k,1) means take the mazimum at each coordinate, and where the
last entry is no less than 1.

(A R)

k 1
TAA—C T,BA—=C
k,1
I (AV B), A—(30

where maa' (k,1) means take the mazimum at each coordinate, and where the
entry in the AV B position is no less than 1.

(VL)

r . A r . B
— —
VR) —p -
I' —AVB I' —AVB
where k' 1s the sequence k with the last position no less than 1.

. r {(k.k) 4
Ry Al

' —VEA(E)

A W NRA 5

@ —LU ’

),
(k,maz’(k,0),1)
T 3eAge), A e B0 g
l

where maz’(k,) means max(k,l,1).
k
r—A4
GR) —p——
I — 3EA¢)

where k' means k with the last entry no less than 1.

Remarks: There are several restrictions on these rules, as discussed in [5]. Some
of the restrictions are no longer relevant, because they are subsumed by the grading.
However, the following restrictions remain:

(thinning) B must be a formula whose variables are declared in T'.

(cut) The variable declarations for B must be identical in T' and in A, and must occur
at the beginning of I'. In the conclusion of the rule, these declarations are dropped
from I' to give I".

k
(D L) Similar restrictions on variable declarations to those above in (cut).
(3 L) Implicit in the syntax is that & occurs free only in A, not in A nor in B.

(3 R) I must begin with the declaration (z :), where z is the variable quantified.

Definition 7 A derivation of a graded sequent consists of a finite tree such that each
branch ends in an axiom and each step is one of the rules of inference given in Definition 6
above, or 1s a substitution instance of such an axiom or rule.

k
We remark here that by a “substitution instance” of a graded sequent I' — A we mean

e the replacement throughout the sequent of a free variable x, say, occurring in the
sequent, by a realizable term ¢(x) which has only new free variables x, not occurring
in the sequent,

o the replacement of the declaration (z :) by the simultaneous declaration (x :), and

o the replacement of k by the sequence k’, which differs from k by adding to the
coordinate in the (x :) position the grade of the realizer of ¢ of least grade, (or 1 if
that is larger.)

A substitution instance of a rule is defined similarly—take the corresponding substitution
instances of the sequents involved in the rule.
Note that we only allow substitution instances of realizable terms.

1.3 Graded realizability

As discussed in the Introduction, we shall treat realizability for sequents as if the sequents
consisted of a successive introduction of premisses, 7.e. a nested sequence of implications.
Within these successive hypotheses, a variable declaration amounts, in effect, to another
such hypothesis. Finally, a rule is realized by a function (not necessarily p-time, however)
that assigns a realizer of the conclusion to a simultaneously-presented tuple of realizers
of the premisses of the rule. These points are summarized in the following definitions:

k k
Definition 8 For a graded sequent I' — A, we define e | I' — A inductively:
k k
1.e|F B—Aiffe|-BDA.

2 el (x0) = A iff e |VEA).

bk
3. el BT <—)> A iff e is (the code of) a function of grade k which to any b ||- B,

k
produces an output e(b) |- T' — A.

bk
4. el (z:),T <—Z A iff e is (the code of) a function of grade k which to any standard

k
numeral m, produces an output e(m) |- T'(z := m) — A(x :=m).

Definition 9 Given a rule of the form

P ... P,
C

where Pi(i = 1,...,n), C, are sequents, we say f realizes the rule iff f is a function (not

necessarily p-time) so that for realizers e; |- P;, f(e1,...,en) |- C.

Proposition 1 Each of the rules of Definition 6 is realizable.

Proof In each case we shall define the realizer by giving an equation for the “fully
evaluated form”. Lower case letters will represent realizers of the corresponding for-
mulae given by upper case letters. We shall write e(y) for e(ai)(as2)...(a,) when
I' = Ay, As, ..., A,. Variable declarations are realized by standard numerals m. Formu-

k k
lae involving functions (A D B or VEA(€), as appropriate) will be realized by p; e, f will
denote realizers of the premisses of the rule. Finally we shall denote the realizer of the
rule by the same name as the rule.

e B RIOM)(@) = e(7)(a)

o (A L)()(7)(a,B)(6) = e(7)(a)()
o (A LY()(){a, B)(8) = e(7)(B)()
s (ARG 1) = (@), 7))

Of course, now we must justify the grading given in the rules. For the most part this
is based on that in [11], but reflecting the difference in our definition of grading, which
makes it unnecessary to go up a grade when adding a routine of low degree runtime to a
given routine. Notice in particular the frequent references to “not less than 1”—these are
to account for the pairing — unpairing operations—which in [11] require a “4 1” instead.

The main point here is our grading of cut, which we now illustrate with some exam-
ples.

First, consider the simplest case, “composition”:

k 1
B—A (C—2B
k+
C— A

This grading is the result of the way polynomial-time functions are composed: the
runtime of the composite is given by composing the runtimes (see [4, 5, 11].)
Now, let’s extend this one step:

k1, k 1
e|l-DB—A fIFC—B
Y
gl-D,C——A

The programme ¢ is as follows. First we compute g(d), for d | D. This is: compute
e(d), (this has a runtime of grade k;, by assumption); output e(d) composed with f,
(this is the previous algorithm, and amounts to just providing the given f with a tail
end. Notice that we are not yet running this, so we have merely added some constant to
the runtime, and have not changed the grade.)

Next we compute g(d)(¢) for ¢ |- C. This is where we actually run the composition
above, and so as we saw earlier, this step has grade [+ k.

Next, consider a simple case with variable declarations:

(k1,k) !
el-(x:),B—C fl-(z:)— B
ki+i+1+k
gl-(@:) ——C

(Notice how the grading instructions work here: we have, in the notation of Defini-
tion 6, that ky = k1, 1=0V =, ki = (ki +{+ 1), and k|, YV + k= (k1 +{+ 1+ k), as
shown.)

The point about this instance of cut is that now we have an instance of an implicit
contraction rule at play here: we have lost an hypothesis (« :) in the conclusion (because
we cannot declare variables more than once in a sequent). This will require us to step up
one degree to access an appropriate Universal Turing Machine (UTM) which can perform
the required joint application/composition operation for us. So, the algorithm g(m), for

m |- (x :), is to calculate both e(m) |- B L C and f(m) |- B, plug these into the uTM
for grade k to compose the results and get a realizer for C'. (Notice we actually run this,
we do not just output the instructions “compose e(m), f(m)”. Calculating e(m) takes
runtime of grade k1, calculating f(m) takes runtime of grade {, and since e(m) itself has
grade k, using the UTM pushes us up a grade to give an additional grade of k£ 4 1 (see
[11]), as shown above.)

Now an induction on the structure of the sequents in the cut rule, similar to that
above (going from the simple composition to the one-step extension), gives the general
grading formula. As an example, consider:

(k1,k2,ka,ka,k) (11,12,13)
6||— Ala(y Z),(l‘ :)aAZaB—>C f”_ (l‘ Z),(Z :)aD—’B

(ky,koka+ly+1,l2,ks+13)
g ||_ A, (y :)a (l‘ :)aAZa (Z :)aD
The crucial step is the third, where m; | (2 :) is read, e(ai)(my)(m;) and

fla1)(my)(mg) are calculated, plugged into an appropriate UTM, and so composed to
produce a realizer of Ay, (2 :),D — C. (Note that if we wish, we can always bring

k
hypotheses to the right hand side, via (g R) and (¥ R).)

Theorem 1 The sequent calculus given in Definttion 6 1s sound with respect to realiz-
ability.

Proof All that remains to be shown is that the axioms are realizable. But Axiom 1 is
trivially realized. Also Axiom 2 is proven in [4], and discussed in the introduction here.

k k
Axiom 3 is virtually the identity, given our interpretation of ¥ and — . The grading
is quite straightforward.

10

2 Multicategories

In this section, we consider the structure of the propositional part of the calculus of
polynomial-time realizers. In particular, we shall ignore variable declarations, and so
the “primes” in the cut rule may be dropped. This gives us the structure of a “graded
multicategory”. (Due to deadline constraints, I must leave the strange structure of the
quantifiers to a promised sequel. It is clear that we have something more complicated
there than a straightforward notion of “weak adjoint”, especially with the universal

&
quantifiers ¥ . The existential quantifier is a little more straightforward, and will be
remarked upon briefly at the end of the paper.)

2.1 Definitions
Recall from [9, 10] that
Definition 10 A multicategory C consists of a set Ob(C) of objects and a set Mp(C)

of morphisms, (also called arrows, multimorphisms, ...,) just like a category, except that
the source of a morphism s a finite sequence of objects, rather than a single object. The
target of a morphism is a single object as usual. So we have the two maps

source : Mp(C) — 0b(C)*

target : Mp(C) — Ob(C)
(where X* = the free monoid generated by X.)

As with categories, we have identity morphisms 14 : A — A, and a notion of compo-
sttton which 1s most stmply given by the following “inference diagram”:

rAAlp ola

f
re.a™p
We have the following axioms:
la f
P r L 4 - A—A T —A
La(f)
— A

T AALB aa

1
roaap

9. T,AALB =

rantp ola

h f
3. ®, B, — C F,@,Ag(—)>B

h{g{f
o104 v ¢

h
& BY—-C T.AALB

h
= <I>,F,A,A,\Il(—g)>0 @LA

h{g){f
o104 v 2" ¢

11

h
A 0.BY—-C ALB

h
4 @Aamwﬁk7 @iA

h{g){f
o104 v 2" ¢

h
D AOBUC T4

r{f
= 6.1.0.B.0 " ¢ AL B

e
o.1,0,av 2% ¢

(We have made slight changes to the notation of [10], mainly in reversing the order of
presenting the composition, in order to make the comparison with Definition 6 more
obvious. As Lambek pointed out, there is an ambiguity in the notation g{f), which we
shall ignore, appealing to diagrams when necessary.)

As an example of a multicategory, we offer the following:

Example: Finite sequences of natural numbers form a multicategory N<¢ which has
one object (which we shall not bother to name), and whose morphisms are finite sequences
of natural numbers. We shall denote such a morphism by the sequence concerned, and
not refer to the objects giving the source and target, as they are obvious. The identity
is the singleton (0); composition is given by the diagram:

<k1akak2> 1
<k1;1+ k;k2>

Of course, this example is inspired by the grading of Definition 6. It is a simple exercise
to verify the four axioms in this case.

Definition 11 A graded multicategory (C,G) consists of a multifunctor G between a
malticategory C and N<¥ .,

This means that to every morphism f : ' — A of C there is associated a “grading”
G(f) = k , usually denoted by a superscript, as we have been doing for our graded
sequent calculus:

k
FiT — A

The point of this grading being a multifunctor is that it should be defined in such a way
as to make the grading of a composite as suggested by the cut rule (of Definition 6), viz.:

(ki1,k k2) 1
g INAA—B [0 A
(k1,1+k ko)
g<f> ZF,@,A—>B

And finally, the grading ought to respect the axioms 1 to 4 of Definition 10.

I have presented this definition in such a way as to leave open the possibility of
other types of grading than by sequences of natural numbers. However, in the absence
of interesting examples, I prefer to leave this definition in this more restrictive form.
A point, however: it will not be correct to merely change the target multicategory in
order to capture the notion of dependent grading, since there must be a greater degree

12

of interaction between the morphism f:I' — A being graded and the grade k = G(f).
For instance, if f: A B — C', then G(f) = (k1, k2), where k;y is a number, and ks is a
number-valued function that may depend on both ky and a € A, (where € is a suitable
“membership” or “typing” relation—in our main example, € would be |- .)

2.2 The main example

Now we come to the point of this note: it is clear from the notation that what is in-
tended is to have the structure of realizers form a multicategory, with grading as given
in Definition 6.

So we define the multicategory C as follows:

0b(C) consists of all formulae of £, the propositional part of our logical system. (In
fact we shall really be dealing with a set [A] of graded realizers of A, rather than with
A itself, for any formula A—however, the identification is generally harmless.) M¢(C)
consists of all graded realizers of the corresponding sequents: this means that we are
not allowing dependencies of the sort exemplified by Favorite Example 2. To have the
axioms of Definition 10, we must factor out by those equations, in the usual manner.
The grading G is of course then given by the “least grading” function, (i.e. take the
least possible entry in each coordinate.) (Here is where we have included less structure
in the definition of grading than our model shows, by ignoring the filtering.) We have
then already shown that

Proposition 2 The structure (C,G) is in fact a graded multicategory.

2.3 Structured graded multicategories

In [10], Lambek defines the notion of a right closed multicategory, with Cartesian products
and coproducts. Here we sketch the corresponding notions for the graded case, and
indicate how the main example has these properties.

Definition 12 A right closed graded multicategory is a graded multicategory (C, G) with

a family of (graded) internal homs 5, (one for each natural number k), and graded

morphisms
k {0,k)
evap : ADB,A— B

mducing a bijection
k k
f : I'=(ADB)

(k k)
evAB(f) ;. I'NA—B

(k,k) k k
This means to each f: ' A —— B there is a (unique) f* : ' — A D B such that
(

evap(f*) = f. (Uniqueness amounts to (evap(f))* = f.) (The equations for grading
are automatic.)

k
In our situation, f* is constructed by the (O R) rule, and evap is constructed from

(f“) L) as follows:

13

0 0
B—B A—A
k {0,k}
ADBA—B

(We might note that C is not left closed in any meaningful sense, as that would
require some exchange:)

AT —C

The structure of Cartesian products and coproducts is straightforward, and can be

k

found in [10] without alteration. Of course, the product structure is not a tensor for D.
. . (0,1)

However, C does have some extra structure given by the axiom scheme A, B — A A B.

3 Final remarks

3.1 Dependent grading

We have made reference throughout to allowing the grades of realizers of formulae that
ocurr in sequents to depend on realizers of previous formulae in the sequent and on
previous grades. Some final remarks are all that need be made here.

1. With dependent grading, we must now be more careful with the restrictions
imposed on the deduction rules in Definition 6. Of course, the restriction from [5] must
be imported: (we use the notation of Definition 6, but now understanding that the grades
may be functions of appropriate arities.)

(3 L) k must be a constant, (or at least, must be a bounded function.)

k k
In addition to this we also have two further restrictions caused by the fact that D and V¥
are graded by constants:

k

(D R) k must be a constant.
k

(V R) k must be a constant.

k
2. In the graded system described in Definition 6, the rule (O R) in effect defines a
bijection. In a system with dependent grades, this would no longer be possible, unless

k
one replaced D with D—but as pointed out by [11], there are problems there. It is hoped

that this will be discussed in the final version of [5]. A similar remark holds for ‘s’ .

3. From the preceeding remarks, it is clear that the multicategorical structure for the
dependently graded situation is no longer as simple. (For example, the closed structure
has been weakened by the absence of the bijections referred to above.) I have not had
time to look into this properly, so that will have to await a sequel.

14

3.2 The quantifiers

The structure of the quantifiers is more complicated than I have time to give it at the
time of writing, so as I mentioned earlier must await a sequel. The main complication
is that with variable declarations, the definition of “graded multicategory” must change,
in view of the implicit contraction allowed by the cut rule. A further complication with
the universal quantifiers (not to mention that there are many of these) comes from the
absence of a (V L) rule—in place of that, we have a “counit” represented by Axiom 3 of
Definition 6.

However, the existential quantifier does have some more recognizable structure—
ignoring for the moment the problems with cut, we can see the possibility of a bijection

A, 7nA — =B
YA, A—B

where Y is the multifunctor corresponding to the existential quantifier, and 7 the multi-
functor corresponding to adding a dummy free variable. But we must leave the details
of this for another day.

References

[1] S. Buss, Bounded Arithmetic, Doctoral dissertation, Princeton University, 1985.

[2] S. Buss, “The polynomial time hierarchy and intuitionistic bounded arithmetic”,
Proceedings of the First Symposium on Structures and Complexity, 1986, (IEEE
Publications).

[3] S. Cook and A. Urquhart, “Functional interpretations of feasibly constructive arith-
metic”, Technical Report 210/88, Department of Computer Science, University of
Toronto, 1988.

[4] J.N. Crossley, “Proofs, programs and run-times”, Preprint, Monash University, 1989.

[6] J.N. Crossley, G.L. Mathai, and R.A.G. Seely, “A logical calculus for polynomial
time realizability”, Preprint, Monash University, 1989, (final version in preperation).

[6] G. Gentzen, “Investigations into logical deductions”, in M.E. Szabo (ed.), The Col-
lected Papers of Gerhard Gentzen, North-Holland, 1969.

[7] J.-Y. Girard, “Linear logic”, J. Theoretical Computer Science 50 (1987), 1 — 102.

[8] J. Lambek, “Deductive systems and categories I”, J. Math. Systems Theory 2 (1968),
278 — 318.

[9] J. Lambek, “Deductive systems and categories 11", Springer LNM 86 (1969), 76 —
122.

[10] J. Lambek, “Multicategories revisited”, Proceedings of the A.M.S. Summer Confer-
ence on Categories in Logic and Computer Science, Boulder 1987.

15

[11] A. Nerode, J.B. Remmel, and A. Scedrov, “Polynomially graded logic”, Proceedings
of the Fourth Symposium on Logic in Computer Science, Asilomar 1989 (IEEE
Publications).

[12] R.A.G. Seely, “Hyperdoctrines, natural deduction, and the Beck condition”, Zeitsch.
f. math. Logik und Grundlagen d. Math. 29 (1983), 505 — 542.

Springer Lecture Notes in Computer Science 389, pp 182 - 197.

16

