A Logical Calculus for
Polynomial-time Realizability

J.N. Crossley G.L. Mathai R.A.G. Seely”
Monash University Monash University McGill University &
John Abbott College

February 14, 1991

Abstract

A logical calculus, not unlike Gentzen’s sequent calculus for intuitionist logic, is described which is
sound for polynomial-time realizability as defined by Crossley and Remmel. The sequent calculus admits
cut elimination, thus giving a decision procedure for the propositional fragment.

0 Introduction

In [4], a restricted notion of realizability is introduced, a special case of which is polynomial-time realizability:
this is like Kleene’s original realizability, save for three features. First, closed atomic formulae are realized by
realizers that give a measure of the resources required to establish the formula, unlike Kleene’s system which
only reflects the fact that the formula is provable. Second, open formule are treated as the corresponding
closed formulae with all free variables universally quantified simultaneously. (There is a difference between
the quantifiers V{(¢,n) and VEVn.) And third, the realizers code polynomial-time (“p-time”) functions, rather
than arbitrary recursive functions.

In [4], only the p-time realizability of single formule is discussed—in this paper we shall extend these
notions to logical rules, to give a calculus that is sound for p-time realizability. This will be a sequent
calculus, much like Gentzen’s formulation for intuitionist logic, with three main points of difference. First, a
sequent of the form A, B — C is interpreted as if it were a formula A D (B D C), rather than (AAB) D C
(which would be the Gentzen interpretation). As was shown in [4], these are not equivalent. Indeed, if
- (AAB)DC then |- A D (B DC), but not conversely. (|- A means “A is realizable”; similarly e |- A
means “e realizes A”.)

Second, among the structure rules we keep thinning, but drop exchange and contraction, (roughly as in
Girard’s linear logic [7]). Again, it was shown in [4] that one could have |- A D (B D C) without having
|- B D (A D (). For example, in [4] there is an example that occurs frequently. In the notation of this
paper, it can be given in these three flavours:

(x:),(y:) — 2Vt =2a¥. 2 (1)
(y),(x:) — ¥t =u¥.u (2)
(r,y:) — 2Vt =2V.x (3)

(These examples may also be presented as quantified formulee.) Of course, there is no way that Examples 1,
3 can be realizable in polynomial time, but Example 2 is realizable in polynomial time, essentially because

*Partially supported by grants from Le Fonds F.C.A.R. Québec, N.S.E.R.C. Canada, Australian Research Council (Grant
no. 20.155.009.288), and the Departments of Mathematics and Computer Science, Monash University. Thanks are particularly
due to John and Gerald, and to Dr. and Mrs. L.E. Clemens and their family, for the hospitality the third author received
during his visits to Monash.

initially one only need produce in polynomial time (in |y|) a program which gives the instructions to read
the and compute and compare the given polynomials; (at the time the expressions are actually computed
they are polynomials since by then y has been fixed.) (There is a need to be careful about the question of
realizing the terms here, since exponentiation, as a two-variable term, is not itself realizable—again we refer
the reader to [4].)

In this vein, we should remark that the class of functions we shall be able to represent is an extension
of the usual class of polynomial-time functions, which we may call “polynomially curried functions”. The
prototypical example is exponentiation: exp(z,y) = x¥ is not p-time as a function of two variables, but if
suitably curried (viz. as AyAz.z¥) then it is p-time at each step of the way. (Note that being polynomially
curried depends on the order in which the variables are taken.) These notions coincide for one-variable
functions, and so by coding strings of variables as tuples, we recover the complete class of p-time functions
as part of the class of polynomially curried functions. We expect to present more details in a separate paper.

An aside for the category-theorist: our structure is essentially a closed multicategory [9, 10] with finite
products and coproducts: D gives the internal hom but this is not a hom for the product structure given
by A. We do not have a tensor ®—the comma in the sequent notation takes that role—but if we did, it
would not be symmetric. We can find no operational significance for any such tensor—in particular, what
might I' — A ® B signify?—other than as a notational alternative to the comma. (So the only sequents
I' — A ® B would be those obtained from I'y — A, 'y — B by “tensoring”, where I' = I';T's.) However,
it is stronger than ordinary conjunction (which is, of course, symmetric): |- A, B — A A B is valid (take
C' = A A B in the result quoted above). (See [13] for some details concerning categorical structure for a
related system.)

Third, we extend the usual notion of “sequent” by the addition of variable declarations. A variable
declaration (« :) delimits the scope of a free variable # in a sequent, and gives finer control over the functional
aspect of realizing open formula. For example, suppose B is a closed formula and A(z) contains exactly « as
free variable. Tt is not the case that |- B D A(z) implies [B D VEA(E), according to the definitions of [4].
(Note that we use lower case Greek letters to indicate bound variables.) For if e [[- B D A(x), then e is the
code of a function which, for each standard numeral k, gives e(k) [B D A(k), which in turn is (the code
of) a function which for each b |- B gives e(k)(b) | A(k). The point is that the degree of (the polynomial
bounding the run-time of) Ab.e(k)(b) depends on k£, and so therein lies the problem in finding the realizer for
B DVEA() : f|F B D VEA(E) would require (in the above notation) f(b)(k) |- A(k); but f(b)(k) = e(k)(b)
cannot be solved for p-time functions. On the other hand, if we can shift the functional dependence so that &
only enters when wanted then this problem will disappear. The (valid) rule corresponding to our discussion
then becomes

I'(x:) — A(x)
I — VEA(E)

(VR)

where (z :) indicates the beginning of the scope of the variable z, (its end being the end of the sequent),
I' being a finite sequence of formulae (and possibly other variable declarations). Such variable declarations
should be thought of as the eponymous statements in computer programmes; as in programming, a variable
may only appear locally, and so we wish to capture that locality in the functionality of our realizers. In the
above rule, both lines in fact are realized by an e, which is (the code of) a function which to any v |- I' gives
(the code of) a function e(y), which to any standard k gives e(y)(k) |- A(k). (I',(z :) — A becomes in
effect I' D (¢ D A); since one can think of VEA(E) as (x D A), it is easy to see this rule becomes a triviality.)

There is an elaboration of this idea that we shall also need, involving markers for variable declarations
that have been “quantified out” (as is (¢ :) in (V R) above). We call these markers “shadow declarations”;
they have no effect on the realizers (just ignore them), but are necessary for correct management of the cut
rule.

A final remark: the sequent calculus will be more a calculus for p-time realizability than a logical system,
as some rules make explicit reference not only to the logical form of the sequents that form the premises of
the rules, but also to the nature of the realizers of those sequents. A key case in point is the (3 L)-rule:
traditionally this rule is (roughly) of this form:

A(x)A — B

(3 L) TAA — B

with the restriction that the free variable « (that becomes quantified) does not occur freely in B nor in any
other assumption, 7.e. nor in A. The intention is that & only occur in A, not in any other aspect of the proof
of B. For us, this rule omits a crucial other way in which & may affect matters, namely the efficiency of the
algorithm. A realizer e of the top sequent is (the code of) a function which to any & assigns (the code of) a
function e(k) which to any aj, | A(k) assigns (the code of) a function e(k)(ay) which realizes A — B. If
any k is to be “as good as any other” | then the runtime degree of e(k) must not depend on £, or equivalently,
must be bound for all k. So k enters the story only in that e(k) is defined on realizers ay |- A(k), but not
in the degree (or “efficiency”) of the polynomial bounding the run-time of Aa.e(k)(a). Hence e is p-time in
the pair of variables (k, a;), given simultaneously. We should note, however, that k& may play a role in the
rest of the sequent: the runtime degree of e(k)(ay), as a function of § | A may well depend on both k and
ay. (This is, of course, because it may depend on ay; the role of k here is as an “index” placing ay properly.)
The point, then, is that the (3 L)-rule should only apply to realizers of sequents that have this property, and
so the rule is not only dependent on the logical form of the sequent, but also on the particular “derivation
tree” in which it occurs. (This restriction is automatic in the “decorated system” of [13], but that system is
more restrictive than that of this paper in general.)

(We shall call such declarations (z :) “tame” with respect to the realizer e.)

Restrictions in the same vein are made to various other of the logical and non-logical rules and axioms
of our systems; (see especially the treatment of (PIND), where we have replaced a restriction based on the
logical structure of a formula with a restriction based on properties of the realizers.)

1 Review of polynomial-time realizability

We review informally the basic definitions from [4]—for full details, the reader should refer to that paper.

We assume a formal language £ based on that in [1], with constants including 0, function letters including
+, -, ezp (exponentiation), S (successor), f (smash product), | | (greatest integer), and | | (length), and
predicate letters including = (equality). Realizers are taken as (codes of) pairs e = (e, e;), where ey, is
(the code of) a Turing machine and e, is (the code of) a polynomial: e acts as e, except that it turns off
after e;(]x]) steps, where [x] is the length of the input. In the following, “function” means such a realizer,
unless otherwise specified. (This includes constants, as functions of 0 variables.)

We shall write e(f) to denote {en, }(f), { } denoting the Kleene bracket.

For some of the function symbols, in particular, +, - , but not ezp, there is associated a realizer e;
with the function symbol f, and likewise for some of the predicate symbols, including = , a realizer ep is
associated with P. Terms are realized by this definition:

Definition 1 1. Ift is a constant ¢ and e = e, s the realizer for ¢ then e |- t.

2. Ift is a variable x;, then (id;, | |) |- ¢ (where id; is the ith projection function and | | s the appropriate
length-of-input function).

3. Ift = f(t1,...,tn) is a closed term, e; |- t; fori=1,...,n, es is the realizer of f, thenes(eq, ..., en) |-
i.

4. Ift = f(t1,...,1,) contains free variables xy1, ..., &y, then e ||—t iff e is (the code of) a function that,
for standard numerals kq, ... kn, gives e(k1,..., kn) = (intended value of) t(k1, ... k), within the
specified time (given by e).

(Some liberties have been taken here for simplicity—a more precise definition may be found in [4].)

We make the convention that if y = y1,...,y, is a string of arguments, and if n = 0, then f(y) = f;
(recall this = {f}(y).)

Observe that if e |- ¢(z) and €' || t/(y), then e o €e'(y)) |- t(¢'(y)) since composition of functions is
associative and e, e’ are made up by composition according to clause 3 above.

Each natural number will be regarded as having a normal form which will be the usual binary string
representation. k£ € AN means k is such a binary string.

Definition 2 o Closed atomic formule are realized as follows: if e; | ¢; (fori=1,...,n) and ep is
the realizer of P, if P(t1,...,t,) is true and if ep computes that P(t1,...,1,) ts true using ey, ..., ey,
then we set ep(er,...,en) [P(t1, ... tn).

o Next, we continue as in Kleene’s original inductive definition:

e[A in the following situations:

— If A 1s closed:
1. L is never realized.
. Ais BAC, e = {eg,e1), eg |- B and ey |- C.
. Awis BV, e= ey, er1), and either eq is 0 and ey |- B orep is not 0 and ey |- C.
. Ais BD O, and, for all f, if f | B then e(f) is defined and e(f) |- C.

A s YE |t B(E), e =(e1,...,ey), and e; |- B(x :=1) , fori=1,...,|t| . (Note that here
t is closed, and so determines a standard numeral t.)

Gr B e e

6. AisVEB(E), and for allk e N, e(k) |- B(z := k).
7. A is AEB(E), e = (en,e1), eo is a standard numeral € N and e; |- Bz := ep), (where
B(x :=eq) denotes the substitution of eq for x in B.)
— If A is open with free variables exactly x1,...,x, and for all my,...,m, € N,

e(my,...,mp) |- Az :=my, ... ¢y = my).

(Note above that V¢ < [t| A(§) is well formed only if £ does not occur in ¢.)

2 The sequent calculus

In the logical calculus we shall develop, 1t will be convenient to assume that all formulee are “homogeneous”
in their occurrences of free variables: in forming a compound formula AGB, for any connective &, we shall
suppose A and B have exactly the same free variables, which then also occur in ACGB. This may be done
without loss in expressive power by a liberal use of “dummy free variables”; perhaps the simplest technical
way to do this is to add new function symbols to £ corresponding to projections (see [12] for example, where
first order logic with equality is handled this way). Note that in quantifying a formula, exactly one free
variable disappears—uwiz. the one quantified.

Definition 3 A sequent I' — A is a pair, where I' is a finite sequence of formule and variable declara-
tions, and A is a formula, where a variable declaration (x :) must precede all formule in which x appears.
Furthermore, a vartable may only be declared once within the sequent.

Remarks

1. There may be formulae within the scope of # in which x does not appear—such formulee will be treated
as if they have ‘dummy’ occurrences of x.

2. We can declare several variables simultaneously via pairing:

(x :) will mean ((x1,...,2,) :), where x = ®1,...,2,. (Such pairing is treated as unordered.) These
variables can also be declared sequentially: (z; :), (22 :),..., (2, :). These forms of declaration are not
equivalent.

3. We shall also “decorate” sequents with “shadow declarations” [¢ :]. These are needed for the cut
rule (only), but are ignored as far as the realizers are concerned. (In other words, realizability for
such “decorated” sequents is just the realizability of the corresponding “undecorated” sequent, with
all “shadow declarations” removed.) Shadow declarations in some respects resemble the “discharged
assumptions” of natural deduction. Their use is to control the “interleaving” of formula in the cut
rule—see below. Shadow declarations are introduced by the rules (]¥| R), (¥ R), and (3 L). These are
the rules that “quantify out” a variable declaration.

Definition 4 OQur theory consists of all sequents generated ! from the following azioms by the following
rules:

Logical Axioms

(L1) (x:),A— A (where x lists all free variables of A.)
(L2) (x:),L— A (where x lists all free variables of A.)

Non-logical Axioms

First we define ¢ <y =qey (y=2+95(), e <y=qefx<yVae=y, and z # 0 =gy I((x = 5¢).

(Z1) (z:)—ax=0Vae#0

(Z2) (z:)— (z=0Az#0)
(Z3) (z:),2=0—(x#0)
(Z4) (z:),2#0— (x=0)

We also have the following versions of Buss’s [1] axioms of arithmetic, or equivalently, those of Cook
and Urquhart [3]:

(1) (r,y:),e<yVe=y—x<Sy

(2) (x:), 2 =95 —L1

(3)# (x:)—0<z

(4) (r,y:),e<y—a=yVSz <y

(5) (x,y:),z =Sy — 2 -2 =552 y)
(6) (z,y:) —ax<yVe=yVy<ez

(7) (,y:),e<y—(y<z)A-(z=y)
(8) (x,y,2),e<yAy<z—a<z

9% —oj=0

(10) (x), 2 #£0— 12 2| =S|z|A|S2 - z)| = S|z
(1) — |S0| = S0

(12) (z,y:),z<y—|z[<[y V|| = |yl

1 As outlined by Definition 6.

(13)" (z,y) — letyl = S(lz] - |y])
(1) (z:)— 0tz =250
(15) (z:),2#0— 112 2)=2-(142)A13(S(2 z) =2 (1)
(16)7 (v,y:) —aiy=yie
(An? (ry o) fel=ly —ardz=ytz
(18)" (z,y,u,v:) el = [ul+ o] — 2 fy=(uty) (viy)
(19)2 (z,y:)—z<az+y
(20) (r,y:),e<y— 52 -2)<2-y (see note below)
212 (v,y:)—z+y=y+=
(22)2 (z:)—a2+0=2z
(23)% (zv,y:) —x+Sy=S(r+y)
(24)% (ryz)— @ty +er=z+(y+2)
xz,y, THy=r+z—y==z2
(25) { xz, x+z<x+z—>z<z
(26)2 (z:)—2-0=0
27 (ey)—a-(Sy)=(x y) +u
(28)7 (a,y J—*wy—y x
(29)% (z,y,z :)—wv (y+2)=z-y+z-z

(,y,z),(x #0Az - y<a -z)—y<z
(31) (z:),2#0— |z|=5(=/2])
(32) {(x,y:),le_y/QJ—>(2-x:y\/S(2-x):y)
(z,y:),2 2=yVvS2 z)=y) — 2= ly/2]
Here (-)B denotes that the aziom is exactly as in [1]. Azioms (6)-(8) are equivalent to Buss’s (6)-
(8). Aziom (20) follows easily from (5), (21), (29), and the equality axioms. Similarly the first

half of (30) is redundant using (29) and (24). We assume |x| is p-time realized (by the obvious
function Ax.|z|).

(PIND) (x:), A(0)AVE(A([E/2]) D A(E)), (2 1) — A(x) (where x lists all free variables of A other
than x.) There is a restriction on this rule, as outlined below. This rule is slightly stronger than
the corresponding rule of [1].

(30) { 2y, 2:),(@#0ANy<z)—z-y<wz-z

Equality Axioms
(E1) (z:)—az==x
(E2) (z,yi),r=y—y=2

(E3) (z1,..,&n, Y1, Un), Z1 =Y A .. A2y =Yp — (21, .;0) = flyr, ..., yn) (where f is
a realizable function symbol.)

(E4) (21,...,Zn, Y1, Un), 21 =YL A ... A2y =y AP(21,...,20) — Py1,. .-, Yn)

Structural Rules

rLaAa—A
I'B,A— A

I(z,y:),A— A
(wy) TG60a—a
I(z:),(y:),A— A
F,(l‘,y:),A—>A
ABO—4 T—B8
AT O — A
where A', T are A T interleaved with some variable declarations omitted (see Remarks following).

(thinning)

(uncurry)

(cut)

Logical Rules

O L) ABO—C T'— A
A(ADB),I",0 —C
where A, T are as in (cut).

CRT F’—J?(I)DBB)

08 T Beryome—e Ry
S

B e
v FF—’jCB FF—>_;41\E/}B
(ML) 2 E;é((ﬂg)):fs—';'J’BA _—
(MBS e

UL TR I

OB LT v

R e

(3 R) %ﬂgig)

Remarks: There are several restrictions on these rules. As discussed in the introduction, many of these
rules will apply only to certain realizers of the premises and so are not solely determined by the logical form
of the sequents involved.

Before we start, however, there is a useful definition (again, this is a somewhat simplified version; a more
complete version will appear in the second author’s thesis.)

Definition 5 An occurrence of a formula A [respectively, a declaration of a variable (x :)] s tame with
respect to a realizer e |- A, A, © — B [respectively e |- A, (x 1), — B] iff, for each é |- A, there is
ks € N so that the runtime degree of e(8)(a) is < ks for any a |- A [respectively a realizing x]. (Hence the
runtime degree of e(8)(a) does not depend on the choice of a.)

We shall allow a tame declaration to be pushed past following declarations and past formulae in which it
does not occur (except as a dummy free variable), viz.:

A(r:),0 — A
AO(z:)— A

if the runtime of ® — A does not depend on z, and if x does not occur free in ©, except possibly as a
dummy. (This is sufficient for this paper, but further details will appear in the second author’s thesis.)

(PIND) applies to ag [A(0),p [F VE(A([€/2]) D A(€)) if there is a p-time function b(x) so that the
ao

function « defined by
{ a(0)
a(z) p(x)(e(lz/2]))

is bounded by b, i.e. a(z) < b(x). (In fact this shows how to realize (PIND) as well, since then
a = e(ag, p) will make e |-(PIND).)

(thinning) B must be a formula whose variables are declared in T'; or may itself be a new variable decla-
ration. (This new formula occurrence or declaration is tame.)

(uncurry) The declaration (z :) must be tame.
(cut) (In the following discussion, “variable declarations” will include shadow declarations as well as ordi-

nary ones.)

© and I may contain no variable declarations in common. (Actually, this follows from our assumptions
on dummy variables, since if © and I' did share a declaration, the two occurrences of the cut formula
B would differ in their dummy variables, invalidating the cut.)

If AT have a variable declaration (z :) (or [« :]) in common, say
Ay (z:),Ay, B,O — A ry,(z:),I's — B
we require I's to be non-empty, and then the conclusion of the rule is
ATy, (2:),A2, 19,0 — A

There is quite a bit of tameness built into this conclusion: it is possible to permute the Aq,I'7 in
any way that preserves the order of the entries of A; and the order of the entries of I'y (considered
separately). So the entries of I'y can be moved through A;. This also applies to the other cases below.

Should I'; be empty, the cut rule would still be valid if the last part of As—or (2 :) if A is empty—were
tame.

If T'; A have several declarations in common, they must be in the same order, and the conclusion
interleaves them in a similar manner. Again, we require that the last I';, =4.¢ IV be non-empty, unless
the last part of A is tame. So in the notation of the rule, A’ is some interleaving of A and that part
of T before the last declaration, and I' is the “tail” of T'.

If ') A have no variable declarations in common, (whence B must be closed), then we require that I'
be non-empty unless A is empty, and the conclusion of the cut rule is just

AT, 0 — A

(D L) Similar conditions on variable declarations to those above in (cut).

Aside: The form of the cut rule is somewhat different from what one might expect, by comparison
with other logical systems without the exchange rule. Furthermore, the conditions on non-emptiness
(and tameness) are somewhat non-standard. The reason for this is that cut is closely related to the
S-combinator, and so considerable care must be exercised with these “two-premise” rules (viz. the
cut rule and the related (D L) rule) to avoid the problems associated with the un-realizability of the
S-combinator (see [4]). One concession to these concerns is that we do not expect the rule to be
p-time itself (in the realizers of the premises), merely that its output is (see Definition 8). Another
is that we use the same trick that allows exp to be realizable (when suitably curried): the “function
application” implicit in the cut rule is postponed until its execution will be p-time in the current input.
(For example, this would be the case if I's were non-empty, in the notation above.) Finally, we must be
sure that the order of the inputs is preserved, unless tameness allows some permutation. For example,
consider this attempt at a cut:

(¢:),B— B C,(x:)— B
(¢:),C — B

As discussed in the introduction, this is unsound because the C' and (« :) have been permuted; it fails
to satisfy the restriction that I'y be non-empty, and so is not allowed in our system. However, if the
declaration (x :) were tame, then the restriction would no longer be imposed, and the cut (and the
permutation) would then become valid.

Note that the interleaving in these two rules provides the means whereby contraction—of variable
declarations—and exchange enter the system (without tameness). However, it can be seen that the
permutations allowed by cut preserve the order of inputs in the premise sequents; this is controlled by
the variable declarations, and it is here that shadow declarations are needed. In some of the quantifier
rules a variable declaration is “quantified out”, but there remains a “tacit” presence of the variable
in the quantified formula. The shadow declaration is there to signal this presence in any subsequent
application of cut. An instance of this can be seen in the proof below of the cut elimination theorem.

(A L))" (In the third (A L) rule,) the formula (occurrence) A must be tame.
(Y| L) The declarations (z :), (y :) must appear in I', (in any position).

(V] R) The usual restriction—a not free in I'—is built into the syntax. Furthermore, the declaration (z :)
must be tame. (Of course, the declaration (y :) must appear in I'.)

(V L) The declaration (z :) must be tame.
(V R) The usual restriction—a not free in I'—is built into the syntax.

(3 L) The usual restriction—that @ occurs free only in A, not in I'; A nor B—is (implicit in the syntax and
is) augmented as discussed in the introduction, viz. the declaration (z :) must be tame.

Note that the third (A L) rule implies the other (more conventional) two, given thinning. The converse
rule

INAABA—C

A/ BA—C
can be derived. So in effect A A B in the hypothesis of a sequent amounts to having A, B plus a certain
degree of tameness.

Definition 6 A derivation of a sequent consists of a finite tree such that each branch ends in an ariom and
each step 1s one of the rules of inference given in Definttion 4 above, or is a substitution instance of such an
artom or rule.

We remark here that by a “substitution instance” of a sequent I' — A we mean

e the replacement throughout the sequent of a free variable x, say, occurring in the sequent, by a realizable
term ¢(x) which has only new free variables x, not occurring in the sequent, and

o the replacement of the declaration (x :) by the simultaneous declaration (x :).

e There is one small problem, however, in case the term t is closed; the loss of the indicator provided
by the free variable declaration can destroy the realizability unless the formula occurrence or variable
declaration (if any) before the declared variable were tame. So we must add this tameness condition
when 7 is closed.

A substitution instance of a rule i1s defined similarly—take the corresponding substitution instances of the
sequents involved in the rule.
Note that we only allow substitution instances of realizable terms.

3 Realizability for sequents and rules

As discussed in the Introduction, we shall treat realizability for sequents as if the sequents consisted of a suc-
cessive introduction of premises, i.e. a nested sequence of implications. Within these successive hypotheses,
a variable declaration amounts, in effect, to another such hypothesis. Finally, a rule is realized by a function
(not necessarily p-time, however) that assigns a realizer of the conclusion to a simultaneously-presented tuple
of realizers of the premises of the rule. These points are summarized in the following definitions:

Definition 7 For a sequent I' — A, we define e |- I' — A inductively:
1. el|-B— Aiffe|F BDA.
2. el (x:) — Aiff e | VEA(E).

3. el B,T — A iff e is (the code of) a function which to any b |- B, produces an output e(b) |- T —
A,

4. el (x:), T — A iff e is (the code of) a function which to any standard numeral m € N, produces
an output e(m) |- I'(x := m) — A(z :=m).

Definition 8 Given a rule of the form

where Pi(i = 1,...,n), C, are sequents, we say f realizes the rule iff f is a function (not necessarily p-time)
so that for realizers e; |- P;, f(e1,...,en) | C.

Note that in this definition, although f will be (an index of) a recursive function, we do not insist that
f be p-time, only that the value f(ey,...,e,) be a polynomial-time realizer (of C'.)

Proposition 1 Fach of the rules of Definition 4 is realizable.

Proof (Sketch only) For each of the rules, we must show how to define the realizer of the conclusion
from the realizers of the premises; this means giving both the machine and clock parts e,,, e; of a realizer e.
In this sketch we shall leave the clock part to the reader except for a couple of examples, and shall define
the (machine part of the) realizer merely by giving an equation for the “fully evaluated form”. Lower case
letters will represent realizers of the corresponding formulee given by upper case letters. We shall write
e(y) for e(ar)(as)...(ap) when I' = Ay, Ay, ..., A,. Variable declarations are realized by standard numerals
m € N. Formula involving functions (A D B or YEA(£), as appropriate) will be realized by p; e, f will
denote realizers of the premises of the rule. Finally we shall denote the realizer of the rule by the same name
as the rule.

10

(thin)(e)(7)(8)(8) = e(7)(6)
(curry)(e)(y)(m)(m’)(8) = e(y)(m, m")(6)
(uncurry)(e)(y)(m, m’}(8) = e(y)(m)(m")(é)
(

(

Recall here that by hypothesis, the variable declaration (x :) is tame, and so e(y) is p-time in {m, m’).)
cut){e, £H(61)(y1)(m)(62)(72)(0) = e(é1)(m)(62)(f(y1)(m)(72))(0) (and similarly if there are more dec-

laratlons)

(Note that the é’s and y’s operate independently. Note also that if 42 is non-empty, then we compute
the machine e(é1)(m)(é2) before its input f(y1)(m)(y2), and so have the run-time bound we need
to guarantee we stay within the p-time context when calculating e(61)(m)(82)(f(y1)(m)(y2)). This
calculation will be p-time in the length of the last entry in ~5. Contrast this with the fact that
calculating e(m)(f(m)) is generally not p-time in |m/|, unless a tameness condition gives the run-time
bound for Az.e(m)(x) before we read m.)

(D L){e, /(61 (1) (m)(62)(p)(72)(0) = e(61)(m)(82)(p(f(71)(m)(72)))(#) (and similarly if there are

more declarations.)

o (O R)(e)(7)(a) = e(7)(a)
o (AL)(e)(7)(a,b)(8) = e(v)(a)(é)
o (A L) (e)(7){a,b)(8) = e(7)(b)()
o (A L)"(e)(7){a,b)(8) = e(7)(a)(b)(9)
(Recall here that by hypothesis, the formula A is tame, and so e(7y) is p-time in (a, b}.)
o (AR){(e, /)(7) = (e(7), F(7))

(vt Nae = { 00 120
(v R)) = (0,7)

(VRY(e)(7) = (1, e(7))

(Y] L)(e)(7)(p)(q)(8) = e(v)(B(m,p))(é) , where § is the standard projection function, and m repre-
sents the realizer for the variable declaration (z :), (part of T'.)

(V] R)(e)(v) = (e(7)(0)(p(0)),...,e(y)(Im])(p(|m|))) , where m realizes the declaration (y :), and

p(k) | &k < |m], for each k < |m].

(Recall here that by hypothesis, the variable declaration (x :) is tame, and so e(y) has runtime inde-
pendent of 4, p(i).)

o (VL)(e)()(p)(m)(8) = e(y)(m)(p(m))(8)

(Recall here that by the tameness hypothesis, the run-time of e(y)(m) is independent of m.)
(¥ R)(e)(3)(m) = e(7)(m)

(3 L)(e)(7)(m, a)(8) = e(3)(m)(a)(©)

(

(3

Recall here that by the tameness hypothesis, e(y) is p-time in (k, a).)

R)(e)(y) = (m,e(y)) where m is the realization of the variable declaration (z :) in T'.

11

Given the importance of the clock part of our realizers, we ought to illustrate how the rules generate them.
Since the details quickly become quite horrid (and rather heavily laden with notation), we shall give just
two simple examples for the cut rule.

(¢:),B— A (2:),C —B
(¢), — A

This is a straight-forward composition, the essence of the cut rule. Set (cut){e, f) = ¢ = {gm, 9:). Also we
shall write g, (2) = (g5, 97), 95 (c) = {(g5c, g7°), letting x represent its own realizer, ¢ |- C'. (And similarly
for e, f.) The clause above gives g(z)(c) = e(z)(f(x)(¢c)); let us see how that works.

gm takes @, calculates e(x), f(z), and outputs the appropriate code for the machine g%, that does the
following:

read input ¢

run the program module "f7 " on the input ¢

run the program module "el,'" using the output of "fJ " as input
produce this as output, together with the constant gf°

Finally g, also outputs the polynomial gf described below.

When run on input #, g, takes time e;(|z|) + f:(Jz|) to produce the required program modules; writing
the rest is at most linear in |z|, and so we get the required polynomial g; in |z|.

It is now clear that g7, (c) will run ef, on f¥ (¢) to produce the constant ¢-¢ | A; this will take time
ef(|fE(e)]) < ef(fE(lel)), giving the polynomial g7 in |¢|. (Notice that the instructions for producing ¢f are
available as soon as e(x), f(z) are calculated, and so can be produced as part of ¢,,(2).)

This completes the process, but for the trivial constant ¢7¢, which is completely arbitrary.

Now, consider an instance of cut (essentially the S-combinator) which needs some tameness since I's is
empty :

(¢:),B— A (z:)— B
(x:)— A

Here g,,, takes z, calculates e(x), f(x), runs eX, on f7 outputting the realizer g7, [A (and an arbitrary
constant ¢7¥). The time required to compute e, (@), fin (@) is e ([2]) + fi(J#]); to Tun e, (2) on fi, () takes
e (| fm(2)]) < eF(fi(Jz])). But here there is a problem: we do not know what €7 is until we have z, preventing
us from giving the clock polynomial ¢; as part of g. However, if (x :) is tame then we have, by definition, a
constant k£ so that the degree of ef is < £ for any x. So we can replace ef by any polynomial e] of degree
> k+ 1. Then we can bound the run-time by e;(|z]|) + fi(|z]) + el (f:(]z|)), giving g, a polynomial in |z| as
required.

Theorem 1 The sequent calculus given tn Definition 4 ts sound with respect to realizability.

Proof All that remains to be shown is that the axioms are realizable. But Axiom (L1) is trivially realized,
as is Axiom (L2), since L is not realizable. Likewise, the equality axioms are evident from the definition of
realizability. For the non-logical axioms, they are shown realizable in [1], except for our version of (PIND);
this is clearly realizable, as described above.

For completeness we ought to mention the following result, whose proof will appear elsewhere, along
with the appropriate definitions; (¢f. [4] and the second author’s thesis.) Of course, it was the belief in
the plausibility of such a theorem that motivated the three of us in developing this system. The proof uses
Cobham’s characterization of polynomial-time functions.

Theorem 2 Every polynomial-time computable function is realizably representable (in this logic), and con-
versely every realizably representable function ts polynomial-time computable.

12

4 Cut-elimination

Theorem 3 For any derivation-tree of a given sequent in the pure logic part of the calculus of Definition 4,
there is a derivation-tree of the same sequent in which the cut rule does not appear. Furthermore, in the full
calculus, cuts may be restricted to non-logical formule.

Proof This result is traditional—see, e.g. [6] for an account in the classical and intuitionistic cases. Our
proof of this result follows the traditional double induction used originally by Gentzen; we illustrate the
highlights so the reader can verify that the cut elimination process goes through for our calculus, and that
the restrictions in Definition 4 are respected.

We shall generally omit the “primes” in the conclusions of the cuts; for the most part this causes no
problem, but the case of implication is a bit special, so we shall be more careful there the first time. We
shall also illustrate the role of shadow declarations in the case of the quantifier rules.

First, we show that in a derivation that ends with a cut and in which no other cut appears, the cut can
be moved to a formula with fewer logical connectives or quantifiers. This is, of course, done by induction
on the logical complexity of the cut formula B. (If B is introduced on the left by thinning, the cut may be
trivially removed.)

Case B = By A By: Replace

A B,©0— A I' —B; ©I' — By
A, BiANBy, 0 — A I' — By A By (i=1or2)
AT, 6—A

with
A B, ©®— A I' — B;
AT, 06— A

(Note the homogeneity condition on subformula guarantees that the condition on variable declarations for
(cut) is preserved in the second derivation.)

Replace
A By,By, 0 — A I'—B I — B,
A,Bl/\Bz,@—>A F—>Bl/\BQ
AT, 6—A
with
AB,By,0—A T — B
AT, By, — A I' — By
AT, 60—A
AT, 6—A

The contraction of the I'’s is allowed by tameness: for all but the last entry of the second copy of I', the
cut rule itself gives the tameness necessary to move the duplicate entries of I' together and to contract them,
and the last entry of the first copy of I' inherits the tameness of By, and so can be contracted as well.

Case B = By V By: Handled similarly.

Case B =By D By: Replace

Al,(l‘ Z),A2,32,®2—>A @11,(13 Z),®12—>Bl Fl,(l‘ Z),Fz,Bl —>BQ
A1,011,(2 1), Ay, B1 D By,019,0, — A Iy, (x:), 'y — B D By
A1, 011,11, (20), A0, 1'2,012,0, — A

with
Ay, (x:),Ay,B3,05 — A Ty, (x:),I's, By — Bo
ATy, (x:), Ay, T9,B1,0 — A O11, (2 :),019 — By
AT, 001, (2:),89,19,019,0; — A
A1,011,11,(2:),A2,12,015,0; — A

13

(where we have explicitly indicated the “shifting” of 'y past ©1; allowed by the cut rule.)

There is a general phenomenon at work here: cuts may be permuted. If one regards (D L) as cut plus
the “evaluation” axiom A D B, A — B, then what we have really done here is interchange the order in
which two cuts were performed. This may generally be done. (This permutation of cuts is one of the axioms
for a multicategory, and we can see here why it is necessary.)

Again, notice that the variable declaration restrictions on (cut) and (D L) in the first derivation imply
the restrictions are met for each cut in the second.

Case B =V¢ < |y| B1(§): Replace

Ala(y Z),Az,(l‘ :)aA3aBla® — A Fla(y Z),Fz,(l‘ 5),13 < |y| — B
Ala(y Z),Az,(l‘ :),Ag,V&. < |y| Blax < |y|a® — A Flﬂ(y :);FZ; [l‘ :] —>V£ < |y| By
Alarla(y 5),A2,F2,(1‘ 5),A3,1‘ S |y|a® — A

wit
Ala(y Z),Az,(l‘ :)aA3aBla® — A Fla(y Z),Fz,(l‘ 5),13 < |y| — B
Alarla(y 5),A2,F2,(1‘ 5),A3,1‘ S |y|a® — A

Note here that the shadow declaration [# :] forces the correct interleaving in the first cut; without it
the x position would not be noted (# would not be a common variable), and the conclusion would appear
(incorrectly) as Ay, 'y, (y :), Az, (2 1), A, g, 2 < |y],© — A.

Another point: it could be the case that the positions of z,y were reversed in one of the sequents, but
not the other. Then without shadow declarations we could have this cut:

Ala(x :)aAZa(y :)aA3aBla® — A Fla(y Z),Fz,(l‘ 5),13 S |y| — Bl

Ala(x :)’Azﬂ(y :),Ag,V&. < |y| Blax < |y|a® — A Flﬂ(y :)aFZa_>V£ < |y| By
Ala(x :)ﬂAZarla(y :)aA3aF2ax S |y|a® — A

Quite apart from the matter of whether or not this is valid, (though our rules would permit it,) consider
how to push the cut down to By: the cut could not be done on the sequents Ay, (1), Ag, (v 1), Az, B1,0 —
A and Ty, (y @), s, (z 1), < |y — By because of the mis-ordering of the variables. This was missed
originally since & was not a variable common to both sequents. The shadow declaration restores z to
consideration, and makes the attempt at cutting V& < |y| By invalid.

Other uses of quantifier rules with shadow declarations behave similarly.

Case B =V¢By: Replace

Aa(x:)aBla®_>A F,(l‘:)—>Bl
AVER,(23),0 — A T —Veh,
AT (2:),0— A

with
Aa(x:)aBla®_>A F,(l‘:)—>Bl
AT (2:),0— A

Case B=3¢By: Replace

A,($Z),Bl,®—>A F—>Bl
A JB;,0 — A4 I — 3B
AT, 06— A

with
A,($Z),Bl,®—>A F—>Bl
AT,06—A

This ends the first part of the induction (Gentzen’s induction on “degree”.)

14

Next, we reduce the number of sequents above the left (or right) side of the cut which contain the cut
formula (Gentzen’s induction on “rank”). First we do the left side, (in our set-up, the left and right are not
symmetric). We suppose B is not in I'; (otherwise the cut can easily be eliminated via thinning.) We label
the cases by the rule used to create the left side of the cut.

Case (thinning): Replace

A'B,©®— A
AB,O— A I'—B (where A" C A)
AT.0—A
with
A''B,O— A I —B
AT, 06— A
AT, 06— A

(If thinning is used in ©, proceed similarly.)
Case (D L): Replace

Ay, Dy, A3,B,0 — A Ay — Dy
Ala(DlDDZ)aAZ;A&Ba@_)A '—B
Al;(Dl D) DZ);AZ;A?))F)@ — A

with
A, Dy, A3,B,0 — A I —B
Ay, Dy, A3, 10 — A Ay — Dy
Al;(Dl D) DZ);AZ;A?))F)@ — A

(and similarly if the (D L) operates in ©.)
Case (D R): Replace

A,B,@,A1—>A2
A B,©6 — 4, O 4, I —B
AT, 06— A D A,

wit
A, B,O, A — Ay r— B
A,F,@,Al —>A2
AT, 00— Ay D A,

Cases (A L), (A R), (V L), (V R), (V| L), (V| R), (¥ L), (¥ R), (3 L), (3 R) are similar.

Finally, we must show how to reduce the number of formulee above the right side of the cut which contain
the cut formula:

Case (thinning) is handled as above for the left side.

Case (D L): Replace

ry,Gs,I's— B r, — G,
ABO—A I'n,Gy DGy, I'y,T's— B
AT, (G1 D Gy), T, 13,0 — A

with
ABO—A Ty GsTs— B
A5F15G25F3;®_>A F2_>G1
AT, (G1 D G), T, 13,0 — A

Cases (A L), (V L), (V| L), (V L), (3 L) are similar.
Cases (D R), (A R), (V R), (]| R), (V R), (3 R) are in essence part of the content of the first part of the
induction process, and do not apply in this context. And so this completes (the sketch of) the proof.

15

References

[1] S. Buss, Bounded Arithmetic, Doctoral dissertation, Princeton University, 1985.

[2] S. Buss, “The polynomial time hierarchy and intuitionistic bounded arithmetic”, pp. 77 — 103 in Struc-
ture in Complexity Theory, 1986, (Springer Lecture Notes in Computer Science 223, A.L. Selman, ed.)

[3] S. Cook and A. Urquhart, “Functional interpretations of feasibly constructive arithmetic”, Technical
Report 210/88, Department of Computer Science, University of Toronto, 1988.

[4] J.N. Crossley and J.B. Remmel, “Proofs, programs and run-times”, Preprint, Monash University, 1989.

[6] G. Gentzen, “Investigations into logical deductions”, in M.E. Szabo (ed.), The Collected Papers of
Gerhard Gentzen, North-Holland, 1969.

[6] J.-Y. Girard, Proof Theory and Logical Complexity, Bibliopolis, 1987.

[7] J.-Y. Girard, “Linear logic”, J. Theoretical Computer Science 50 (1987), 1 — 102.

[8] J. Lambek, “Deductive systems and categories I”, J. Math. Systems Theory 2 (1968), 278 — 318.
[9] J. Lambek, “Deductive systems and categories 117, Springer LNM 86 (1969), 76 — 122.

[10] J. Lambek, “Multicategories revisited”, pp. 217 — 239 in Categories in Computer Science and Logic, J.W.
Gray and A. Scedrov, eds. (Contemporary Mathematics 92 (1989) American Mathematical Society).

[11] A. Nerode, J.B. Remmel, and A. Scedrov, “Polynomially graded logic”, pp. 375 — 385 in Proceedings of
the Fourth Symposium on Logic in Computer Science, Asilomar 1989 (IEEE Publications).

[12] R.A.G. Seely, “Hyperdoctrines, natural deduction, and the Beck condition”, Zeitsch. f. math. Logik und
Grundlagen d. Math. 29 (1983), 505 — 542.

[13] R.A.G. Seely, “Graded multicategories of polynomial-time realizers”, pp. 182 — 197 in Proceedings of
the Conference on Category Theory and Computer Science, Manchester, UK, September 1989 (Springer
Lecture Notes in Computer Science 389, D.H. Pitt et al eds.)

DEPARTMENTS OF MATHEMATICS DEPARTMENT OF MATHEMATICS DEPARTMENT OF MATHEMATICS

AND COMPUTER SCIENCE McGILL UNIVERSITY JOHN ABBOTT COLLEGE
MonasH UNIVERSITY 805 SHERBROOKE ST. W. C.P. 2000

CLAYTON MONTREAL STE. ANNE DE BELLEVUE
VICTORIA 3168 QUEBEC H3A 2K6 QuEBEC H9X 3L9
AUSTRALTA CANADA CANADA

16

