POLYMORPHIC LINEAR LOGIC
AND TorP0Os MODELS

eely*

Abstract

We give a definition of a “linear fibration”, which is a hyperdoctrine model of
polymorphic linear logic, and show how to internalise the fibration, generating topos
models. This gives a constructive set theoretical context for the logic of Petri nets,
as recently developed by N. Marti-Oliet and J. Meseguer. Also, we sketch how this
can be further extended to include the exponential operator ! . In this context, the
topos model we construct can be embedded in the model constructed by A.M. Pitts.

0 Introduction

In [4], it is shown how to enrich the logic of Petri nets with gedanken states and processes,
by embedding it into linear logic. Recently, Marti-Oliet and Meseguer have asked how to
extend this even further to include polymorphism. It turns out that the process is fairly
straightforward, and for maximal impact (so as to include constructive set theory), can be
internalised to give topos models of polymorphic linear logic. Here we give the necessary
definitions, and sketch the outline of the construction.

These notes should be thought of as a sequel to [7], extending the categorical semantics
of linear logic to include polymorphism. As there, we (sketchily) describe the interpreta-
tion of polymorphic A-calculus as the (indexed) Kleisli category induced by the !-cotriple.
However, once in this context, we have another well-known model, viz. the internal full
subcategory of a presheaf topos as constructed by A.M. Pitts [5]. Our construction does not
give fullness, perhaps fortunately, but it will turn out that our model does embed faithfully
into Pitts’ model. (In essence his model consists of certain families, and ours corresponds
to the “constant” families.)

1 Definitions

1.1 Linear fibrations

We begin with a definition:
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Definition 1 A linear fibration (L,S) consists of

1. a category S with finite products, a distinguished object U, and exponentiation U* for
arbitrary A,

2. an indexed cateqgory L over S satisfying

(a) OBi(L(A)) = Homs(A,U) for all objects A of S, and f* = L(f) acts by
composition on objects, for all morphisms f of S,

(b) L(A) is a linear category (i.e. x-autonomous with finite products—see [4, 7] for
details), and f* is a linear functor, for all A, f,

(¢) L is weakly complete: i.e. for every object C' of S there is an (indexed) right
adjoint 1l to the (indexed) functor k¢ .

The point of this definition is that it provides the hyperdoctrine formulation of what
higher-order polymorphic linear logic is, analagous to the hyperdoctrine models defined in
[6]. The usual syntactic presentation can be shown equivalent to this, via an equivalence-
of-categories result; we leave that as an exercise.

It should also be mentioned that we have given the definition for higher-order linear
logic, not merely second-order linear logic. If the reader only wants the second-order case,
all that needs to be done is to drop the requirement in (1) that S have exponents U%;
furthermore, one may as well assume that S has the natural numbers as objects (where n
represents U™), or just take the base category as presented in [5]. In this case, we need only
require in (2¢) that Iy exists, all other such product-functors being given by iteration in
the obvious way.

1.2 Topos models
Next we define a topos model for polymorphic linear logic.

Definition 2 A topos model of polymorphic linear logic is given by an elementary topos
E together with an internal category U of E. Furthermore, U must have (internally in E)
finite products (including the terminal object) and A-indexed products (for any object A of
the sub-cartesian closed category of B generated by Us—this understood internally'), and
must be (internally) a *-autonomous category.

Most of these notions are straightforward, and should not cause any bother. The correct
notion of the involution has proved a trifle subtle (see [4]), and so we’ll sketch some details
here, outlining what it means to say that an internal symmetric closed monoidal category
U has an involution (-)* : U — U. (The notion of the dual internal category U is
standard.)

First, we need morphisms (of E)

() Uy — Uy and  s: Uy x Uy — Uy

so that dyos =“~0" and dyos = ‘—0" 0 (-)F x (-)t oo, where o is the “switch coordinates”

isomorphism, and where ‘—o’: Uy x Uy — Uy is the morphism giving the internal hom
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on objects. Tt is a straightforward exercise to mimic the construction of a contravariant
functor from this data, as given in [4]. The crucial point is that one of the properties of
an (internal) symmetric monoidal closed category is that there be an isomorphism (-)* : U
— Uy and a pullback square as follows:

do,d
U<071>

(-)* (7,07

U — Uy x U
(do,dyy 0770

U0><U0

Next we need a pair of (inverse iso) morphisms d : Uy — Uy and d™' : Uy — U (sic),
(plus the appropriate equations for domains, codomains, and the identity composites), and
the equations

s-s=dY=o'd:Uyx Uy — U,
((-)J‘o d)-(d o (—)J‘) =4%d o (—)J‘ Uy — Uy

(We leave it to the reader to decipher the notation, with the hint that f - ¢ is the internal
composition in U, and f o ¢ is composition in E.)

2 Constructing topos models

At this point we use a simple trick, that is part of the legacy of work done in the 1970’s on
indexed categories; (the details have appeared recently in [1]).

Given a linear fibration (L, S) we can construct an internal *-autonomous category U
in the presheaf topos B =4.; Sets®”. The object of objects is Uy = ObjL(-) = Homg(-,U)
and the object of morphisms is U; = MgoL( ). The rest of the structure is defined fibrewise,
in the obvious manner. For example, the internal composition v : Uy — U; is the natural
transformation that, at an object A of S, sends a composable pair (f,¢) (of morphisms of
L(A)) to their composite (in L(A)). Similarly, (-)* : Uy — Uy is the natural transformation
that, at A, sends an object X to X+ (in L(A)).

In this model, U has A-indexed products for any representable object A (i.e. for any
object of S, via the Yoneda embedding).

Given an internal category, the standard way to “externalise” this, to obtain a fibration,
is just to take the Hom functor Homg(-,U) : E®? — Cat. In our case, however, we
can cut this back to S again, via the Yoneda embedding H : S — E, and so obtain
a fibration L' over S. Then L/(A) = Homg(HA,U) is the category whose objects are
natural transformations HA — HU, or equivalently (by the Yoneda Lemma) morphisms
A — U in S, and whose morphisms are natural transformations HA — MeL(-), or
equivalently, morphisms of L(A). Thus we see that (L, S) is equivalent to (L/, S).

So we finally end up with the

Theorem 1 Suppose (L, S) is a linear fibration. Then Sets>” is a topos model of polymor-
phic linear logic, with internal cateqory U as constructed above. Furthermore the “external-
isation” of this internal model is, when restricted via the Yoneda embedding to the original
base S, equivalent to the original fibration.




Remark There is another well-known method of constructing internal categories
from fibrations, viz. the “presheaves on the Grothendieck construction” method of A.M.
Pitts [5]. It is perhaps worth pointing out that that approach does not seem to work in this
setting—the cartesian closed structure of the fibres of the fibration being essential to the
process. If one tries to replace the cartesian structure by the monoidal structure of linear
logic, one quickly finds that at several points one wants the tensor to be a real product
(e.g. to have projections), or the unit to be a terminal. In fact, in the category G'r(L)
of “elements” of L, one cannot even make (the canonical image of) U into (the object of
objects of ) an internal category. However, once we pass to the cartesian closed structure
generated by the exponentials (section 3), we shall find that our model embeds into Pitts’

model.

3 The exponential operator !

3.1 Girard fibrations

Of course, although the term linear logic ought to refer only to the logic of the additive
and multiplicative connectives, it is usually used to include also the exponential operators !
and 7. In [7] it was pointed out that ! has the structure of a cotriple (a.k.a.comonad), and
in the fibrational context (of quantification), the cotriple must be indexed in the obvious
way. Since the quantification considered in [7] was not polymorphic, but only predicate, it
might be worth sketching some of the details here.

Definition 3 A Glirard fibration (G,S) is a linear fibration for which

1. each fibre G(A) is a Girard category, in the sense of [7], via an indexed cotriple ! |
and

2. each “inverse image functor” f* preserves this structure (“on the nose”).

To elaborate, this means that we have a cotriple 4 : G(A) — G(A) (for each A), so
that !X carries a comonoid structure in G(A), for each object X of G(A):

14 ﬂ!AX M)!AX(@A!AX

which is the image via natural (and indexed) isomorphisms I 4 = 'alg and 14 X @4 14Y =

'4(X x4 Y) of the canonical cartesian comonoid structure; i.e. the following diagram
commutes (omitting subscripts):

I XolX
\ 6o

9.¢ !
s

3 (X x X)




By saying that each f* preserves this structure, we imply that f* commutes with these
morphisms, and in particular with !; i.e. f*(14.X) =14f*(X). (We ignore the question of
“up to coherent iso” in these notes.)

As in [7], from a Girard fibration (G, S) we can construct the Kleisli category (indexed,
of course) (G, S); each fibre Gi(A) = (G(A))r. As in [7], these fibres are cartesian closed,
and so we end up with a hyperdoctrine model of polymorphic A-calculus. (The quantifier
Il remains the same, as in [7].)

3.2 Topos models

To get the notion of topos model of the full Girard logic, one need only add to the notion
of a topos model from section 1.2 the internalisation of the above notions. So we must have
an internal cotriple on U, given by an internal functor ! : U — U and internal natural
transformations ¢ :! — id and § :! —!!, together with internal comonoid structure given
by internal ¢ :! — ‘I’ and &' :! — !®@! plus appropriate isos, commutative diagrams and
the lot.

It is an easy exercise to see that this data allows the internal construction of the (in-
ternal) Kleisli category Uy, and then it is easy to see that Uy is cartesian closed, as in [7],
and 1s an internal topos model of polymorphic A-calculus.

We shall further leave it to the reader to verify that the process of constructing topos
models is coherent with respect to these notions: that starting with a Girard fibration, we
can construct a topos model of full Girard logic, and so (via the Kleisli construction) a
topos model of polymorphic A-calculus, or we can arrive at this topos model by first using
the Kleisli construction on the fibration.

3.3 The connection with Pitts’ model

In this context, we have in front of us two topos models of polymorphic A-caluclus, viz.
the model Uy in the topos E = Sets®>” and the model constructed by A.M. Pitts in (5],
which we shall denote U’ in the topos B/ = Sets®{(S)”  (The latter is an internal full
subcategory, the former is not. For the details of the construction of Pitts’ model, see [5].)
What is the connection between these?

First note that there is a geometric morphism between the toposes induced by the
“projection” functor p : G'r(Gy) — S which sends an object (A4, X : A — U) to A, and
a morphism («, f) to a. (There is another geometric morphism in the reverse direction
induced by the right adjoint 7" to p, which embeds S in G'r(Gy) via terminals.) The functor
p* then carries the internal category Uy to an internal category (which I shall denote here
by U—the context should help avoid confusion) in E’.

It is perhaps not too surprising that each of these internal categories (in E’) has the
same object of objects: Uy = Uj = HTU, the (representable) functor which sends (A, X : A
— U) to Homg(A,U) = ObjGi(A). However, U has “fewer” morphisms than (the full
subcategory) U”: U; sends (A, X : A — U) to MpGi(A), and U] sends (A, X : A — U)
to Homea)((A, X + A — U),(U** =" : U?> — U)). (These may be thought of as
“families” of Gi(A)-morphisms, indexed by X. From this point of view, U;(X) consists of
the “constant” families.) Recall that the morphism ‘=": U? — U (in S) is the composite
‘—0’o (‘I xidy); i.e. internally ‘v = v’ = ‘lu —ov’.



Then, there is a faithful internal functor (preserving the polymorphic A-calculus struc-

ture) K : U — U’, which is identity on objects:

Ky : Uy — U} is the identity natural transformation, and
Ky : Uy — U] is the natural transformation that, at an object (A4, X : A — U), sends

a morphism f: Z — Y (of Gi(A)) to ((Z,Y), f’), where ‘f": X — T — (Z =Y) is the

canonical “name” of f.

To check that K is a functor as claimed will be left as an exercise.
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