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Introduction

In order to understand the computational aspects of the cut elimination process, in
particular with respect to linear logic, Girard [13] makes a distinction between the
denotational semantics of a logic and a quite di�erent idea, which he calls “geometry
of interaction”. Girard observes that the denotational semantics of a logic measures
the outcome of normalization: every proof is equivalent to a cut-free proof. What this
viewpoint fails to capture is the dynamics of cut-elimination. In [14], Girard proposed
a speci�c model of geometry of interaction: proofs are interpreted as operators on a
Hilbert space, and cut-elimination is achieved by the iteration of a single operator. The
dynamics were then captured by an “execution formula” which described the iteration
required to normalize the terms.
In [3], Abramsky and Jagadeesan proposed a reformulation of Girard’s ideas which

was much more categorical in avour. Rather than using Hilbert spaces, the Abramsky–
Jagadeesan version of the “geometry of interaction” construction worked on categories
of domains and produced a model of linear logic. In this new construction the execution
formula relied on the presence of �xed points and was motivated by the semantics of
feedback in dataow networks.
In [20] Joyal et al. introduced the notion of a traced monoidal category. The trace

was designed to model such constructs as braid closure, feedback, and, of course, the
trace operator on �nite-dimensional Hilbert spaces. They proved that every compact
closed category has a canonical trace and that every traced monoidal category embeds
into a compact closed category while making the trace canonical. This last result was
obtained by a construction which functorially assigned to a traced monoidal category a
compact closed category: their construction was essentially the same as the Abramsky–
Jagadeesan “geometry of interaction” construction [1].
Any doubt about the relationship between these two constructions was removed

when Hyland and Hasegawa [15] independently observed that a category with a traced
product is precisely the same thing as a category with �xed points. Thus, the Joyal–
Street–Verity construction was an abstract reformulation of the Abramsky–Jagadeesan
“geometry of interaction” construction.
In retrospect, Girard’s original construction can also be seen as exploiting the pres-

ence of a trace. Thus, it is reasonable to view a “geometry of interaction” semantics as
being one given by an execution formula determined by a trace. (This has recently been
made precise by Hines [17].) Of course, this use of a trace to obtain a dynamical se-
mantics for linear logic can now be seen to have an important side-e�ect: the codomain
of the interpretation will be a compact closed category. This should be contrasted with
the standard denotational semantics for linear logic which is an interpretation into a
∗-autonomous category.
In this way, Girard’s rather concrete desire to understand the dynamic process of

cut-elimination gives way to the development of an abstract understanding of trace
combinators and their relation to �xed points. This understanding has wider rami�-
cations than its original application to linear logic. For example, the fact that there
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are two apparently completely di�erent semantic denotations, domain theoretic and it-
eration theoretic, of imperative programming constructs such as the “while loop” can
now be simply explained: what is needed to interpret these constructs is a trace and
both theories supply settings which are traced. The theory of traces opens the door to
a better understanding of the various forms of feedback which occur in all walks of
mathematical life from matrix traces to recursive equations.
The purpose of this paper is to develop the theory of trace (and �xpoint) combina-

tors in the linearly distributive setting. We take a local view of the trace combinator:
rather than assuming that a trace is available at every object, we consider the e�ect of
particular objects having a trace. This allows us to separate the concerns of compat-
ibility (Section 3), which arise when tracing is possible at multiple objects, from the
mere presence of a trace (Section 2).
A trace is a special feedback combinator: it is a combinator or functional from maps

to maps: thus, given a map U ⊗ A f→U ⊕ B it delivers a map A tr(f)−→B. We start by
regarding U as a constant, so that feedback only need be available at one object. While
feedback is often available at all objects, there are many examples in which this is
not the case. For example, in the category of �nite posets a notion of trace (on the
product) can be provided by using least �xed points. However, not every object in
this category will have a trace, since the least �xed point construction requires a least
element.
It should also be pointed out that a category, or indeed an object, can have more

than one trace structure. Thus, in �nite posets the greatest �xed point operator is also
available as a basis for the construction of a trace. Of course, these two di�erent trace
structures are not compatible (in the sense of Section 3), and indeed we shall show
that two compatible trace structures must coincide. (Similar observations have been
noted in a slightly di�erent setting by Simpson [22].)
There are many di�erent notions of feedback, and one might remark that they need

not all satisfy the axioms demanded of a trace in the sense of [20]. For example, the
main (indeed, only) non-structural trace axiom is “yanking” (Section 2), which says
that feedback on the “switch” map is the identity. Yanking is de�nitely not satis�ed
by the usual notion of feedback in “stream processing”, where one delays the output
until the next time step when one uses it as input: for streams, feedback on the switch
is delay.
It should also be mentioned that a notion of feedback which is speci�c to certain

maps (not just objects) is also possible, see [2]. There the authors introduce the notion
of a trace ideal. The motivating example is in the category of Hilbert spaces: while
many morphisms do not have a trace, within each Hom(H;H) there is a subspace
of morphisms which can be traced. This subspace forms a two-sided ideal which is
closely related to the ideal of Hilbert–Schmidt maps. In Remarks 8 and 16 we discuss
how these ideas can be generalised to this setting.
The denotational semantics of (multiplicative) linear logic is essentially given by

∗-autonomous categories. From this perspective, compact closed categories are slightly
degenerate, since they correspond to models of linear logic in which the two multiplica-
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tive connectives are canonically isomorphic. However, compact closed categories are
the natural doctrine to model the geometry of interaction semantics; in other words, the
distinction between ∗-autonomous and compact closed categories is essentially equiv-
alent to the distinction between denotational semantics and geometry of interaction
semantics for linear logic. As indicated above, in the present paper we propose a con-
struction which attempts to bridge this gap, namely the notion of a trace operator on
a ∗-autonomous category, or more generally on a linearly distributive category. Even
though ∗-autonomous categories make up the basic ingredient of categorical models of
linear logic, it is quite productive to ignore the closed structure entirely and instead
focus on the interaction between the tensor product and its dual cotensor, par. This
was one of the motivations of the latter two authors in introducing linearly distributive
categories. In a sequence of papers [6,7,9,11,12], it has been amply demonstrated that
once one understands the linearly distributive structure, the extension of crucial struc-
tural results to ∗-autonomy is straightforward. These results are achieved by introducing
a graph-theoretic language for specifying morphisms which is inspired by proof nets.
It should be thought of as a logical version of the Joyal–Street geometry of tensor
calculus [19].
Furthermore, the general “geometry of interaction” construction (Section 4) com-

pletes a category by adding “complements” to make the traces canonical. The con-
struction, however, is pointless if all the complements are already present: thus, it is
crucial to start in a setting which can lack complements. Linearly distributive categories,
being the notion of ∗-autonomous categories without complementation, are therefore a
natural starting point from which to consider such a construction.
Signi�cantly, to make sense of a trace combinator in the linearly distributive setting

it is necessary to suppose the MIX rule holds. In a MIX category, the very fact that an
object has a trace immediately forces the object to be in the “core” (Section 1.2) where
the distinction between tensor and par is lost. This reects the fact that a geometry of
interaction semantics necessarily lies in a compact closed category. We also explore
the notion that an object may have several traced structures, and we introduce a notion
of compatibility in this case, which turns out to be equivalent to the dinaturality of
the trace operator, and so to the axiom “sliding” of [20]. For a given tensor structure,
restricting to compatible classes of trace operators guarantees that an object may have
at most one trace structure.
The link between �xpoint combinators and trace combinators can also be expressed in

this setting (Section 5). We show that an object admits a �xpoint combinator precisely
when it admits a trace and it is a cocommutative comonoid. This generalises the
observation by Hyland and Hasegawa [15]
Finally, we repeat a frequent warning about terminology and notation from previ-

ous papers in this series. The reader will have already noticed that we have adopted
the term “linearly distributive category” for what previously we have called “weakly
distributive category”, continuing the practice begun in [11]. More controversial per-
haps is our insistence upon the use of ⊕ for “par”, preferring + for the coproduct
“sum”.
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1. The core of a MIX category

1.1. Preliminaries

1.1.1. Linearly distributive categories
For the full de�nition of a linearly distributive category, we refer the reader to

[7,9,10] (where the term “weakly distributive category” is used). Briey, a linearly
distributive category is a category with two tensors ⊗;⊕ and two strength natural
transformations, making each tensor strong (respectively costrong) with respect to the
other. These strength transformations will be denoted by

�LL : A⊗ (B⊕ C)→ (A⊗ B)⊕ C;
�RR : (B⊕ C)⊗ A→ B⊕ (C ⊗ A):

In this paper, we shall suppose these tensors are symmetric, and so we have two
additional induced strength transformations:

�LR : A⊗ (B⊕ C)→ B⊕ (A⊗ C);
�RL : (B⊕ C)⊗ A→ (B⊗ A)⊕ C:

In this case, �RR is induced from �
L
L and need not be assumed as a primitive. These data

must satisfy standard coherence conditions, discussed in [9]. These tensors must satisfy
the usual conditions for a monoidal category, and in addition there are conditions for the
“distributivities” above; in the symmetric case which is the main concern in the present
paper, these essentially amount to requiring the following commutative diagrams:
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The third diagram above is the most controversial, as it fails to be true in distribu-
tive categories, and is why distributive categories cannot be linearly distributive (unless
they are posetal, see [10]). However, it is a direct consequence of the logical inter-
pretation of linearly distributive categories: it corresponds to a natural (and necessary)
cut-elimination step. For in essence, ignoring associativity,

�LL; �
R
R ⊕ 1 =

B; C → B⊗ C A⊕ B→ A; B
A⊕ B; C → A; B⊗ C C ⊕ D→ C;D

A⊕ B; C ⊕ D→ A; B⊗ C;D
and

�RR; 1⊕ �LL =
B; C → B⊗ C C ⊕ D→ C;D

B; C ⊕ D→ B⊗ C;D A⊕ B→ A; B

A⊕ B; C ⊕ D→ A; B⊗ C;D
and a standard permutation of the cuts would require these to be equivalent.
We shall see some examples below in Example 4.

1.1.2. Polycategorical composition and circuits
In [9] we showed that the linear distributivities are precisely what is necessary

to model the cut rule for polycategories (or equivalently, for sequent calculus with
multiple conclusions and multiple premises). In this paper it will be convenient to
use the polycategorical cut rule, which we shall call “polycategorical composition”; the
reader ought to consult [9] for further details, but the following example ought to make

the notion clear. Suppose we have maps C1 ⊗ A ⊗ C2 g→C3 and D1
f→D2 ⊕ A ⊕ D3

(one may imagine the objects Ci, Dj are �nite “sequences” of objects, i.e. �nite tensors
or pars of such sequences, as appropriate). We can construct f g: C1 ⊗ D1 ⊗ C2 →
D2 ⊕ C3 ⊕ D3 as follows (ignoring several instances of associativity for simplicity):

f g= C1 ⊗ D1 ⊗ C2
1⊗f⊗1−−−→ C1 ⊗ (D2 ⊕ A⊕ D3)⊗ C2
�LR⊗1−→ (D2 ⊕ (C1 ⊗ (A⊕ D3)))⊗ C2
�RR−→ D2 ⊕ ((C1 ⊗ (A⊕ D3))⊗ C2)

1⊕(�LL⊗1)−−−−→ D2 ⊕ (((C1 ⊗ A)⊕ D3)⊗ C2)

1⊕�RL−→ D2 ⊕ ((C1 ⊗ A⊗ C2)⊕ D3)
1⊕g⊕1−−−→ D2 ⊕ C3 ⊕ D3

(where 1 represents identity morphisms). There are other ways of achieving this poly-
categorical composition, but they are equivalent under the coherence conditions imposed
on linearly distributive categories.
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Before leaving this subsection, we ought to remark on a distinction that must be made
between the circuit diagrams we use and the categorical diagrams they are intended to
illuminate. Circuits in fact correspond to morphisms in polycategories, not categories.
One can get a categorical morphism by “tensoring” inputs and “par’ing” outputs, but
unless this is systematically done throughout the circuit, there will be polycategorical
elements remaining in the circuit. There is a direct translation between polycategori-
cal morphisms and categorical ones; in [9] we showed that adding tensor and par to
polycategories was conservative (in the categorical sense of an adjunction with a fully
faithful unit), and that linearly distributive categories are equivalent to polycategories
with tensor and par. But since we often place our discussions in the context of circuits,
rather than using categorical conditions, the reader must keep the distinction clear. Cir-
cuits and categorical diagrams emphasize di�erent aspects of the underlying structure;
it is to be expected that in translating between them, certain features will gain or lose
prominence. But we must be clear about the following: circuits are a precise means of
discussing the categorical (as well as the polycategorical) structure of the categories
we consider. There is a precise “term logic” for them, given in [7], which makes them
more than just an analogy. Using this, the reader who wants to recast our language
into categorical terms may do so. Our point, of course, is that the present presentation
helps make the structure easier to understand. Circuits handle the various instances of
tensorial strength that determine the structure of linearly distributive categories with
particular elegance.
A piece of terminology: we refer to non-logical axioms (or generating morphisms)

as “components”; one of the key results of [7] is that for purposes of determining the
equivalence of circuits (i.e. the equality of maps), rules given in terms of components
may in fact be used with arbitrary (sequentializable) subcircuits 4 playing the same
role as components.

1.1.3. MIX categories

Next, we recall from [11] that a MIX category is a linearly
distributive category with a morphism m :⊥ → >, satisfying
a simple coherence condition. Note that in a MIX category,
there is a morphism (also denoted m) A⊗ B mAB→ A⊕ B for any
A; B, which essentially amounts to either of the equivalent nets
at left. The coherence condition referred to above is just that
these two canonical ways of constructing this map are equal.

In circuits, this condition amounts to being able to “switch”, or rewire, the unit thinning
links that may be attached to the m component, as in the �gure. In fact, in [11] we
show that this condition need only be supposed to hold when the two wires have a
unit type. We can strengthen the de�nition of mix: an isoMIX category is a MIX

4 Unless we state otherwise, we shall use “subcircuits” to refer to sequentializable subgraphs, and “subgraphs”
to refer to those that are not necessarily sequentializable.
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category whose “mix” morphism m :⊥ ∼→> is an isomorphism. (Note this does not
force A ⊗ B mAB→ A ⊕ B to be an isomorphism.) The isoMIX condition is essentially
equivalent to having a biunit, and indeed simply forcing the units to be isomorphic
also forces the mix condition. Thus a linearly distributive category in which > is
isomorphic to ⊥ is an isoMIX category.
In a symmetric linearly distributive category, a morphism f: A → B is said to be

nuclear [12] if there are morphisms � :> → C ⊕ B,  :A⊗C → ⊥ so that (uR⊗)
−1; 1⊗

�; �LL; ⊕ 1; uL⊕ =f (where u are appropriate unit isomorphisms). We say C (and �; )
“witnesses” the nuclearity of f. An object is nuclear if its identity map is nuclear;
nuclear morphisms form a 2-sided ideal. The nucleus of a linearly distributive category
is the full subcategory of its nuclear objects. In the symmetric case, this operation is
idempotent (though not in the non-symmetric case).
We noted in [11] that a linearly distributive category is MIX if and only if its nucleus

is. Related to this is the notion of complement: an object A of a linearly distributive
category is said to be complemented if there is an object B and maps � :> → B ⊕ A,
 :A⊗B→ ⊥ so that (uR⊗)

−1; 1⊗�; �LL; ⊕1; uL⊕=1A and (uL⊗)−1; �⊗1; �RR; 1⊕; uR⊕=1B.
This means that each object A, B is nuclear, and moreover each is a witness of the
other’s nuclearity. For a complemented object A, its complement is unique up to a
unique isomorphism. If idempotents split, then nuclear objects must be complemented,
so these two notions coincide.

1.2. The core

De�nition 1. Suppose X is a MIX category. We say an object U is in the core of X
if the natural transformation U ⊗−

mU−→ U⊕− is an isomorphism.

Lemma 2. The following diagram commutes in a MIX category. So; if U is in the
core of such a category; then the linear distributivity �LL is an isomorphism (essentially
corresponding to associativity).

U ⊗ (A⊕ B) �LL−→ (U ⊗ A)⊕ B
m



y



y m⊕1

U ⊕ (A⊕ B) a−1
⊕−→ (U ⊕ A)⊕ B

Proof. This is most simply shown by examining the proof circuits for the maps in-
volved. Throughout this paper, we represent the “MIX-barbell” by . Note it has thin-
ning links attached at either end; rewiring these is a key step in such proofs. In [7]
we gave a Rewiring Theorem which showed that any rewiring past a subcircuit was
valid; the reader ought to consult that paper for the full details.
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Proposition 3. If X is a MIX category and U; V are in the core of X; then U ⊗ V;
U ⊕V are also in the core. Moreover; U ⊗V; U ⊕V are isomorphic. If X is isoMIX;
then >; ⊥ are also in the core (so that for an isoMIX category; the core forms a
full compact (i.e. ⊗ ∼= ⊕) linearly distributive sub-category of X).

Proof. Most of this is obvious; the only point that needs some elaboration is that
U ⊗ V is in the core if U and V are. This follows from the commutativity of the
following diagram:

(U ⊗ V )⊗ A m−→ (U ⊗ V )⊕ A
a⊗



y

x

 �LL

U ⊗ (V ⊗ A) 1⊗m−→ U ⊗ (V ⊕ A)

The commutativity of the diagram follows from the following circuit equation:

Example 4. There are a number of examples of MIX categories which have non-empty
cores but in which the tensor and par cannot be identi�ed.
(i) In any isoMIX category the core is non-empty since the unit is in the core. How-

ever, this may be all that is in the core. If the category has biproducts acting as
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tensor and par, then it is not hard to show that all (�nite) biproducts of the unit
will also be in the core. This may then be a non-trivial category.
An example of this phenomenon is given by the category RTVec of reex-

ive linear topological vector spaces [5,8,21], i.e. vector spaces equipped with a
linear topology which are isomorphic to their double duals. In this category, all
�nite-dimensional vector spaces are in the core but in�nite-dimensional vector
spaces are not in the core.

(ii) As another example, consider the category of sup-lattices, where the objects are lat-
tices with arbitrary suprema and the functions preserve these; this is a well-known
∗-autonomous category [4]. The tensor is determined as the adjoint to the function
space construction (where the functions are given the pointwise ordering) and the
tensor unit is the two-element boolean algebra 2. This unit is also the dualizing
object. The elements of A ( 2 correspond to ideals which, being closed under
suprema, are principal. These ideals are ordered pointwise as maps to 2 which, in
fact, means that they are ordered by the reverse of inclusion. Thus, the “perp” of
an object is the sup-lattice itself but with the reverse ordering.
As the unit and counit in this category coincide it is in fact an isoMIX category.

What is its core? First observe that sup-lattices have biproducts: thus the core
contains at least all the biproducts of 2 (which are the �nite boolean algebras).
But clearly it contains more.
sup-lattice A is nuclear in case the function space can be expressed as A (

B=(A( 2)⊗B: in [16] these are shown to be the completely distributive lattices.
However, since we are in a ∗-autonomous category this forces A ( 2 to be in
the core for any nuclear A, and thus by Proposition 5 A must be in the core. The
converse is also obviously true: that is core objects are nuclear. This means that
objects in the core — which we shall see are also those objects which can be traced
— in the category of sup-lattices are exactly the completely distributive lattices.

(iii) Any symmetric monoidal category X is an isoMIX category in which every ob-
ject is in the core. The �nite bicompletion of X is an isoMIX linearly distributive
category �(X), see [18]; its core includes X but is not the whole category.

(iv) In a symmetric monoidal category an object V is said to have a tensor inverse when
there is an object V ′ such that V ⊗V ′ is the unit (and certain coherence diagrams
hold, see [9]). Given such an object one can de�ne a “par” as A⊕B=A⊗V ⊗B
which has unit V ′. If there is a map m̂ :> → V then this provides a MIX struc-
ture; notice that in this case, the mix map is the mate m :V ′ → > obtained by
tensoring m̂ with V ′. An object is V -invariant in case m̂ ⊗ 1 :> ⊗ A → V ⊗ A is
an isomorphism. Clearly V -invariant objects are in the core.

Proposition 5. If U is in the core of X and V is a complement of U; then V is in
the core of X.

Proof. Recall that 〈U; V 〉 being a complement pair means that we have the following
components and equalities:
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The inverse to V ⊗ A m−→V ⊕ A is

V ⊕ A u−→ >⊗ (V ⊕ A) �⊗1−→(V ⊕ U )⊗ (V ⊕ A)

m−1⊗1−−−→ (V ⊗ U )⊗ (V ⊕ A) a;�
L
L−→V ⊗ ((U ⊗ V )⊕ A)

1⊗(⊕1)−−−−→ V ⊗ (⊥⊕ A) 1⊗u−−−→V ⊗ A;

where m−1 is the inverse to V ⊗ U → V ⊕ U which exists since U is in the core.
As a proof circuit, this map is the following. Note that to simplify these circuits, we
shall drop the grounded unit nodes which are attached to the � and  nodes, writing,
for example, the � node without any input wires, and dually for :

To see this is the required inverse amounts to some circuit rewrites. First, we precom-
pose with mVA, and show this is equivalent to the identity on V ⊗ A:
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which is the expanded normal form of the identity on V ⊗ A. Note the rewirings
around subcircuits, and the use of the equivalence m−1; m = 1 in the second
rewrite.
Next, we postcompose with mVA, and show this is equivalent to the identity on V⊕A,

just as above:

which is the expanded normal form of the identity on V ⊕ A.
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2. Traced objects

We begin with a de�nition based upon the similarly named notion of Joyal et al.
[20].

De�nition 6. Suppose X is a MIX category, U an object of X. We say U has a trace
if there is a family of functions trABU : X(U ⊗ A;U ⊕ B) → X(A; B) satisfying the
following axioms:

Yanking : trUUU (c⊗;mUU ) = 1U = trUUU (mUU ; c⊕)
Tightening : tr(g f h) = g tr(f) h
Superposing : tr(f ⊗ C) = tr(f)⊗ C

tr(f ⊕ C) = tr(f)⊕ C

We must clarify the notation. Above, c⊗ and c⊕ are the “twist” maps (which exist
since we are assuming ⊗ and ⊕ are symmetric). First note that c;m=m; c : U ⊗U →
U ⊕U ; these are the “twisted” versions of m. Then the meaning of “yanking” is clear:
these are both sent to the identity on U under the trace operator. For “tightening”,
we suppose given morphisms (again we ignore instances of associativity where the
meaning is clear, and will continue to do so when appropriate) f :U ⊗ A ⊗ B →
U ⊕ X ⊕ Y; g :D → B ⊕ C; h :Y ⊗ Z → W ; here A; D, and Z may be thought of as
arbitrary �nite strings of (i.e. tensors of) objects, and X , C, and W may be thought of
as arbitrary �nite strings of (i.e. pars of) objects. The notation “ ” refers to the evident
polycategorical composition discussed in the previous section, so the resultant equation
is between maps A⊗D⊗Z → X ⊕W ⊕C. Finally, for “superposing”, we suppose f as
for tightening, and then we mean that the trace of the map U ⊗A⊗B⊗C f⊗1−→(U ⊕X ⊕
Y )⊗C �′→U ⊕ (X ⊕ (Y ⊗C)) is the map A⊗B⊗C tr(f)⊗1−−−→(X ⊕Y )⊗C �→X ⊕ (Y ⊗C),
and similarly for ⊕. Here the �’s are given by the evident linear distributivities. We
shall present these axioms as circuit rewrites shortly.
The names for these axioms are those of the corresponding axioms in [20]. There

are two axioms in [20] we have omitted: “sliding”, for which we shall soon have a
replacement, and “vanishing”, which will be a de�nition, not an axiom, in our treatment.
Superposing is both more and less general here than in [20]: their version is only given
in terms of the tensor, whereas we must also include a version for the par. Their version
involves another map g, so we have the equation tr(f ⊗ g) = tr(f)⊗ g and similarly
for ⊕, but it is a simple exercise that this general version is a consequence of our
version plus tightening (at least in the present context).
To present these axioms as proof circuits, we need a notation for the trace operator.

We shall use a box notation similar to that used in [11], viz. we shall box the circuit

corresponding to the map U ⊗ A f→U ⊕ B, anchoring the U wires to the box, leaving
only the A, B wires, which will represent the map A→ B. When we wish to consider
di�erent trace operators, (for example, operators for di�erent traced objects), we shall
“decorate” the box with suitable labels. So, with these remarks to guide the reader, we
present the three axioms for a trace operator in terms of proof circuits.
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Yanking:

Tightening:

Superposing:

Remark 7 (What the axioms mean). There is really only one “non-structural” axiom
in the de�nition of a trace operator, viz. yanking. Tightening and superposing are
“scope change” rules, analogous to those we had for the linear implication in [11].
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Tightening is necessary in order to make the trace operator a strong combinator, and
superposing is necessary for the category – polycategory translation that underlies all
operations on linearly distributive categories. We shall consider these two axioms more
closely in order to elucidate this structure.

First, it is standard to identify tightening as the requirement that trA;BU is a natural
transformation in A; B. The tightening axiom we have is a polycategorical generalisation
of this, since we have allowed g; h to be “polymorphisms”. 5 This amounts to adding
a measure of tensorial strength to the situation; to explain this in detail would require
a digression to introduce the notion of a “strong combinator”: from this point of view,
the trace operator acts on endomorphisms of U , and the strength allows the smooth
handling of the parameters A and B. (An account of strong combinators in the cartesian
case can be found in the thesis of Vesely [23] — the generalisation to the present
context is fairly straightforward, but is not necessary for our purposes.)
Next we consider the axiom of superposing. Note that in the circuit rewrites for

superposing, as given above, pulling the lower ⊗ node out of the trace box may be
done with our “polycategorical” version of tightening, as may pulling out the upper ⊕
node, since these are subcircuits. So the essential content of this axiom involves pulling
out the other nodes, which are not subcircuits. These nodes are “switching”, in the
terminology of proof nets, and their usual role is (for ⊗) to make two input wires into
a single tensored input wire, and dually for the par, making two output wires a single
par’ed output wire. In other words, they serve to translate between a polycategorical
circuit, which has multiple in=output wires, and a categorical circuit, which has exactly
one input and one output wire. Since these are not subcircuits (they do not correspond
to morphisms), tightening does not apply to them; superposing then essentially amounts
to allowing these moves, and so can be given in the following equivalent form.
Superposing (ii):

5 We refer to “polymorphisms” to mean morphisms in a polycategory. As we pointed out in [9], any linearly
distributive category may be regarded as a polycategory, and our circuits make such a viewpoint very natural.
Thinking of a morphism as a component box in circuit notation, a morphism has one input and one output
wire, whereas a polymorphism has many inputs and outputs.
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This form of superposing has the feature that if we try to give a categorical version,
then since we use the very nodes that are being moved in and out of the scope of the
trace boxes, these equations end up being identities. So in e�ect, superposing (in our
context) amounts to enabling the polycategorical – categorical translation. (A similar
e�ect was noted in the linear implication scope boxes of [11].)
The point of these remarks is to underline the qualitative di�erence between the

tightening and superposing requirements, and yanking: tightening and superposing are
structural axioms which express no more than the strength of the combinator; yanking,
however, is a distinct requirement — which makes the operator a trace rather than a
general feedback combinator.

Remark 8 (Trace ideals). In [2], the authors introduce the notion of a trace ideal, a
notion which models the fact that in (for example) Hilbert spaces one has many maps
without a trace, in particular identity morphisms generally do not have traces. We can
model this phenomenon in our setting by allowing trU to be a partial operator. The
axioms which account for the bistrength, viz. tightening and superposing, will remain
as before, but we must modify yanking, since there is no reason to suppose c;m is in
the domain of trU in general. In this setting, we would take the following variant of

yanking, for A
f→U ⊕ D; U ⊗ C g→B. If g ⊗ f m c is in the domain of trC⊗A;B⊕DU ,

then

Generalised Yanking : c trU (g⊗ f m c) = f g:

As before, we may suppose A and B represent �nite strings of objects.
In circuit notation, this is the following rewrite:

Note that in the case of a global trace operator, this generalised version of yanking
is a consequence of (ordinary) yanking and tightening. In the partial operator case,
tightening is to be interpreted as requiring that (using the notation of De�nition 6) if
f is in the domain of tr, so is g f h, and moreover tr(g f h)=g tr(f) h. Likewise,
superposing is to be interpreted as requiring that if f is in the domain of tr, so are
f⊗C, f⊕C, and moreover tr(f⊗C) = tr(f)⊗C, tr(f⊕C) = tr(f)⊕C. With this
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revised de�nition, note that tightening guarantees that the domain of trABU (for any A,
B, U ) is a two-sided ideal.

Our �rst key result about traces is that in a MIX category, any complemented core
object has a canonical trace operator. This fact plays the role in our theory that the
canonical trace on a tortile monoidal category plays in the theory of [20].

Proposition 9. Suppose X is a MIX category; U a complemented object in the core
of X. Then U has a trace; called the complement trace; de�ned as follows. For

f :U ⊗ A → U ⊕ B; tr(f) = A u→A ⊗ > 1⊗�−→A ⊗ (V ⊕ U ) �′−→V ⊕ (U ⊗ A) 1⊕f−→V ⊕
(U ⊕B) m

−1

−→V ⊗ (U ⊕B) �′′−→(U ⊗V )⊕B ⊕1−→⊥⊕B u→B. This is given by the circuit
below:

Proof. There are three circuit diagrams to verify. The diagram for yanking is trivial:
just rewire the MIX-barbell so it falls just below the m−1 node, and then the circuit
reduces directly to the identity wire. For tightening and superposing, there is actually
nothing to do: the circuits are the same on either side of the equations.

Proposition 10. If U is a traced object of a MIX category X; then U is in the core
of X.

Proof. The map inverse to m :U ⊗ A→ U ⊕ A is the trace of the linear distributivity
� :U ⊗ (U ⊕A)→ U ⊕ (U ⊗A). The following rewrites show these are indeed inverse.
The �rst shows that m; tr(�)=1U⊗A, the second shows that tr(�);m=1U⊕A. The main
subtlety here is that in the �rst case we can rewire the thinning link at the bottom
around the ⊗ link, and in the second case we must rewire the thinning link at the
top around the ⊕ link. Switching the MIX-barbell to its mirror image is valid by the
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coherence condition for MIX categories:

There is an analogous result for the tensor units. It is clear that in an isoMIX
category, the (common) unit for the tensor and par is trivially traceable; however, the
converse is also true.

Proposition 11. Suppose X is a MIX category. If either > or ⊥ has a trace; then
⊥ ∼= >; so that X is an isoMIX category.

Note that this implies that making all objects traced would eliminate the distinction
between the set-up of this paper, using linearly distributive categories, and that of [20],
since we would then have an isoMIX category in which all objects were in the core,
and linear distributivity essentially just becomes associativity.

Proof. From an “abstract” point of view, this is obvious: if, say, > is traced, then it is
in the core, so the functor >⊗ is isomorphic to the functor >⊕ , and so > is a unit for
the par. However, it may be of interest to see what the isomorphism is explicitly. We
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begin with the observation that if any object has a trace operator, then there is induced

a morphism from > to ⊥, viz. the trace of the morphism U ⊗> u⊗−→U
u−1
⊕−→⊥⊕U . In

general, there is no reason for this to be the inverse for m :⊥ → >, but if U is either
unit, then we can show that it is indeed the inverse. We shall consider the case U =⊥;
the other case is similar. The key step is to note that if we have m on a wire, we
can split the wire above and=or below the m using the unit expansion rewrites, which
creates a MIX-barbell . Likewise we can split the unit wire which is attached to the
trace box, again creating a thinning link. Then the rest of the proof involves rewiring
the unit thinning links as necessary. (This can be somewhat subtle, and the order in
which such rewirings is done can be vital, as we showed in [7]. A rewiring can alter
the empires of other units, thus altering what other rewirings are possible. In this way,
rewirings become possible that were blocked before.)
First we consider the composite m; tr(u; u−1):

which is the identity wire on ⊥, by yanking. Note the step at the second equality,
where we split the ⊥ wire just above the m, creating a MIX-barbell, and the rewiring
at the next step, where we rewired two thinning links, making it possible to join up
the ⊥ wires to give the last circuit.
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Next, we consider the other composite; the steps are similar, although more rewiring
is necessary.

which, after yanking and unit reduction is the identity wire on >.

One might ask whether an object U may have more than one trace operator. If we
add a further condition, “compatibility”, then in fact this is not possible, as we shall
see in the next section.

3. Compatible traces

De�nition 12. Suppose X is a MIX category, and U; V objects of X each with a trace
operator, say trU ; trV . These traces are called compatible if for any f :U ⊗ V ⊗ A→
U ⊕V ⊕B; trV (trU (f)) = trU (trV (f′)), where f′=V ⊗U ⊗A c⊗1−→U ⊗V ⊗A f→U ⊕
V ⊕ B c⊕1−→V ⊕ U ⊕ B. In circuits, this is the following equation:
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We shall say a trace operator is “self-compatible” if it is compatible with itself. This
condition really ought to be considered part of the de�nition of a “good” notion of
trace; we have separated it just to keep clear what notions depend on what conditions.
In [20] there is an axiom “sliding” which corresponds to the dinaturality in the

variable U of the family trU . The equivalent equation in our context is the following
consequence of compatibility.

Proposition 13. Suppose U; V are objects of a MIX category with compatible trace
operators trU ; trV . Suppose f : U ⊗ X → V ⊕ Y and g : V ⊗ A → U ⊕ B; let
f g : U ⊗ X ⊗ A→ U ⊕ B⊕ Y and g f : V ⊗ X ⊗ A→ V ⊕ B⊕ Y be the evident
“polycategorical compositions”. Then trU (f g) = trV (g f).

Proof.
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As a corollary, taking U = V; A = >; B = ⊥, and g = 1, we obtain the result we
promised in the last section.

Corollary 14. Any two compatible traces are equal.

There remains an axiom of [20] that we have not yet considered, viz. “vanishing”,
which allows the trace of a tensor to be given in terms of the traces of the components
of the tensor. (The nullary case of vanishing, viz. trace on the tensor unit is identity,
is either trivially true, when > ∼= ⊥, i.e. in the isoMIX case, or does not even type
properly, so we shall not deal further with that case of the vanishing axiom.) Now, it is
fairly easy to de�ne a trace operator on U ⊗V given traces on U and V : indeed there
are two natural candidates, viz. for f : (U ⊗ V )⊗ A→ (U ⊗ V )⊕ B; trV (trU (f m))
and its “twisted” variant trU (trV (c f m c)). It is easy to see that these operators are
both compatible with any operators which are compatible with trU and trV , but unless
these last two are compatible with each other, there is no reason for them to be equal.
So, although a slightly greater generality is possible, it seems most natural to de�ne
traces on tensors when the individual traces are compatible. This then leads us to the
following de�nition=proposition.

Proposition 15. Suppose U; V are objects of a MIX category with compatible; self-
compatible trace operators trU ; trV . Then there is a canonical trace operator on U ⊗
V (as de�ned above) which is compatible with trU ; trV ; and in general is compatible
with any trace which is compatible with trU ; trV . In particular; it is self-compatible.

Note that Corollary 14 shows that there can be at most one trace operator on U ⊗V
with these properties, since any two such traces must be compatible.

Proof. The trace on U ⊗ V has been de�ned above; as a circuit this is the following
(we leave to the reader the construction of the “twisted” variant).

To show this is indeed a trace is fairly straightforward — the only point that requires
some e�ort is to verify yanking (tightening and superposing are trivial). This we do
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with the rewrites below. The rest of the proposition, the statements about compatibility,
is trivial.

Note that if we take U ⊗V (or the isomorphic U ⊕V ) as the trace object, then (by
Proposition 15) De�nition 12 just amounts to the naturality condition for trU⊗V . So in
essence, dinaturality in U = sliding = compatibility.

Remark 16 (Trace ideals; continued). Continuing the ideas of Remark 8, we can ex-
tend the notion of compatible trace operators to the partial operator case. Here in
De�nition 12, we must interpret the equation trV (trU (f)) = trU (trV (f′)) in the sense
that if one side is de�ned, so is the other, and the equality holds. Then in this case, it
is easy to see that Proposition 13 holds, in a similar sense, that one trace is de�ned if
the other is, and the equality holds. The proof is even somewhat simpler, as generalised
yanking allows several steps to be combined in one. So, if we suppose that the partial
trace operators are pairwise compatible, we have the key properties of a trace ideal,
in the sense of [2], viz. that the domains are ideals, that the traces satisfy sliding, and
that trace maps are closed under ⊗ and ⊕.



50 R.F. Blute et al. / Journal of Pure and Applied Algebra 154 (2000) 27–69

Proposition 17. If U is complemented; then any trace on U is compatible with the
complement trace.

Proof.

Corollary 18. If U is complemented; then any trace on U is equal to the complement
trace.

4. The geometry of interaction construction for MIX categories

In [20] a construction, originally given by Abramsky and Jagadeesan [3], is given
of a tortile monoidal category IntV from a traced monoidal category V, together
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with a full and faithful embedding N : V → IntV. The point about this is that this
construction provides a complement to a traced object. In this section we propose to
give the analogous construction in the present setting; again, our approach is somewhat
more “local”, in that we shall start with a set U of compatibly traced objects in a MIX
category X, and fully and faithfully embed the category X into a MIX category X[U]
so that the image of U lies in the nucleus of X[U].

De�nition 19. Suppose X is a MIX category, U a set of pairwise compatibly traced
objects of X. The category X[U] is de�ned as follows. An object is an ordered tuple
([U1; U2; : : : ; Un]; A), where the (possibly empty) sequence [U1; U2; : : : ; Un] consists of
objects of U, and A is an arbitrary object of X. A morphism

f : ([U1; U2; : : : ; Un]; A)→ ([V1; V2; : : : ; Vm]; B)

of X[U] is a morphism

f : V1 ⊗ V2 ⊗ · · · ⊗ Vm ⊗ A→ U1 ⊕ U2 ⊕ · · · ⊕ Un ⊕ B
of X.
X[U] is a category: the identity morphism for ([U1; U2; : : : ; Un]; A) is given by the

MIX isomorphism (appropriately extended to many types) m : U1 ⊗ · · · ⊗ Un ⊗ A →
U1 ⊕ · · · ⊕ Un ⊕ A. (As a circuit, this is a set of parallel wires each joined to its
neighbour by a MIX-barbell.) Composition is de�ned using the trace operators. Given
f : ([U1; U2; : : : ; Un]; A) → ([V1; V2; : : : ; Vm]; B), viz. f : V1 ⊗ V2 ⊗ · · · ⊗ Vm ⊗ A →
U1 ⊕ U2 ⊕ · · · ⊕ Un ⊕ B, and g : ([V1; V2; : : : ; Vm]; B) → ([W1; W2; : : : ; Wk ]; C), viz.
g : W1 ⊗W2 ⊗ · · · ⊗Wk ⊗ B→ V1 ⊕ V2 ⊕ · · · ⊕ Vm ⊕C, the composite f�;g in X[U] is
trVn(· · · trV1 (c f c g c) · · ·).

Here, by c we mean su�cient uses of symmetry to bring the objects into the correct
position for the trace to be applied. This is perhaps clearer in circuit notation; for
example, assuming m= n= k = 2, the composition is the following circuit.

In general, imagine the left-hand wires (U; V; W ) represent “ribbons” of wires, with
the V ribbon caught in a series of trace boxes. So in e�ect, composition amounts to
“poly-composition” (i.e. “cutting” the intermediate rightmost variables) and then tracing
on the intermediate U-variables to eliminate them.
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Remark 20. The key point to notice about this de�nition is the “contravariance” in
the “�rst” variable [U1; U2; : : : ; Un]. Such a sequence ought to be thought of as the
tensor (or par — these are isomorphic since these objects all lie in the core of X) of
the individual Ui, and the pair ([U1; U2; : : : ; Un]; A) then ought to be thought of as the
tensor (or par — again these are isomorphic) of the complement of [U1; U2; : : : ; Un]
and A. This is why the notion of morphism “ips” the U ’s.
This de�nition is essentially just that given by [20] for IntV; we use sequences of

traced objects Ui instead of single objects, just so that we can simulate using the tensor
unit as such a U (which is an option closed to us, since the units need not be traced)
by using the empty sequence. We could in fact use sequences of length less than 2,
if we supposed that the set U was closed under tensor (and so also closed under par,
since U lies inside the core of X). Although that is not necessary, in view of the next
paragraph, we shall act as if that is in fact what we are doing.
In order to simplify the notation, we shall adopt the following convention. We shall

represent an arbitrary morphism f : V1⊗V2⊗ · · ·⊗Vm⊗A→ U1⊕U2⊕ · · ·⊕Un⊕B
by a map of the form f : V ⊗ A → U ⊕ B, intending by this that V represents an
arbitrary �nite tensor of objects, and similarly U an arbitrary �nite par of objects. This
convention serves to avoid notational clutter, and makes it easier to see what is going
on in the proofs. Generally a rigorous proof may be done by induction based on the
pattern of the “two input – two output” case.

First, we must show that X[U] actually is a category, and indeed, a linearly dis-
tributive category.

Theorem 21. X[U] is a linearly distributive category.

Proof. To verify the categorical axioms for X[U] is straightforward. The unit equations
follow from yanking: for example, for f : V ⊗ A→ U ⊕ B; 1�;f = tr(c m c f c) =
tr(c c f m c) = f tr(m c) = f 1 = f. Associativity is an immediate consequence
of compatibility; more precisely, using vanishing, the composite of three maps may
be reduced to poly-composing the three maps and then doing a trace on the two
intermediate U-variables simultaneously, by tracing on their tensor product. (We shall
leave this as an easy exercise.)
Next we must de�ne the linearly distributive structure. It will be simpler to do this

via a short detour. Given an object U in U, we can de�ne a functor U : X → X[U]
which takes an object A to the object ([U ]; A) (which we denote (U; A), dropping the
sequence bracket in the case of a singleton sequence). For a map f : A → B; U (f)

is de�ned as U ⊗ A m−→U ⊕ A 1⊕f→ U ⊕ B, or equivalently, U ⊗ A 1⊗f−→U ⊗ B m→U ⊕ B.
That we are using the same notation for the object U and the induced functor ought
not cause confusion, context making the intended meaning clear.

Lemma 22. U ( ) as de�ned above is a functor.
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Proof. (of the lemma) Clearly U preserves identity maps, by de�nition. To see that

it also preserves composition, consider A
f→B

g→C. Then U (f)�;U (g) is the circuit on
the left below:

and the circuit on the right is U (f; g), so we are done.

Clearly, this construction and lemma applies to any sequence Ũ of objects of U.
The case when Ũ = [ ] is the empty sequence is of particular importance: it gives us
an (obviously full and faithful) embedding J : X → X[U], which is our version of
the embedding N of [20]. We remark here that in general the functor Ũ is neither full
nor faithful: for example, we shall see later that (U;>) ∼= (U;⊥) (Lemma 23).
Now we return to the matter of the linearly distributive structure on X[U]. The

tensor and par of the objects ([U1; : : : ; Un]; A) and ([Un+1; : : : ; Un+m]; B) are given by

([U1; : : : ; Un]; A)⊗ ([Un+1; : : : ; Un+m]; B) = ([U1; : : : ; Un+m]; A⊗ B);
([U1; : : : ; Un]; A)⊕ ([Un+1; : : : ; Un+m]; B) = ([U1; : : : ; Un+m]; A⊕ B):

Note that by merely appending the lists of U objects in both cases, we are relying
on the fact that these objects are all in the core. The units are given by the images
under J of the corresponding units in X: > = ([ ];>) and ⊥ = ([ ];⊥). The natural
transformations for associativity, unit isomorphisms, and linear distributivities are all
given by the images of the similarly named transformations in X under the appropriate
functors Ũ , where Ũ (the sequence, not the functor) is formed by concatenating the
appropriate U sequences so that the domain and codomain work out right. An example
will illustrate this: �LL : (U; A) ⊗ ((V; B) ⊕ (W;C)) → ((U; A) ⊗ (V; B)) ⊕ (W;C) is
[U; V;W ](�LL). The point here is that since both tensor and par merely concatenate
the U sequences, these natural transformations will have the same U sequences in
domain and codomain, and so we can use this trick to extend them to X[U]. There
is a minor complication with the symmetry maps: one must apply symmetry to the U
component �rst. Consider c⊗ : (U; A) ⊗ (V; B) → (V; B) ⊗ (U; A) for example. Since
(U; A) ∼= (U;>) ⊗ ([ ]; A) (and in view of Lemma 23 below, ∼= (U;⊥) ⊗ ([ ]; A) ∼=
(U;>)⊕ ([ ]; A) ∼= (U;⊥)⊕ ([ ]; A)), we can identify the symmetry c⊗ with the tensor
(or par) of the symmetries c0 : [U; V ] → [V;U ] in the free monoid generated by the
objects of U, and c1 : A ⊗ B → B ⊗ A in X. This means we can “decompose” any
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coherence diagram in X[U] into one in the free monoid generated by U and one in X.
Since these will both commute, the diagram in X[U] will too. Diagrams not involving
the symmetries are even simpler, although the same trick will work: since the linearly
distributive structure is given functorially, the required coherence diagrams are just the
images of similar diagrams in X and so automatically commute. So X[U] is indeed a
linearly distributive category. So we have completed the proof of Theorem 21.

Lemma 23. (U;>) ∼= (U;⊥).

Proof. (of the lemma) The (inverse) maps are given as follows. � : U ⊗> → U →
U ⊕⊥ represents � : (U;>)→ (U;⊥), and � : U ⊗⊥ m→U ⊕⊥ 1⊕m→ U ⊕> represents
� : (U;⊥)→ (U;>). In circuits, these are as follows.

To see these are inverse, we �rst consider ��;�. In circuits:

and the right-hand circuit is the identity. The reverse direction is similar, and will be
left as an exercise.

Proposition 24. For each object U of U; J (U ) is complemented in X[U]. Moreover;
under J; the trace on U becomes the complement trace on J (U ) in X[U].

Proof. The complement of U , or rather ([ ]; U ), is given by (U;>), or equivalently,
by the isomorphic (U;⊥).
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To show that (U;>) or (U;⊥) is the complement of ([ ]; U ), we just have to con-
struct the appropriate � and  and show these satisfy the appropriate coherence condi-
tions (Section 1.1.3). � : ([ ];>) → ([ ]; U ) ⊕ (U;⊥) ∼= (U;U ) is represented by the
unit isomorphism U ⊗> → U .  : (U;>)⊗ ([ ]; U ) ∼= (U;U )→ ([ ];⊥) is represented
by the unit isomorphism U → ⊥⊕U . We have to show the composite 1⊗ ��;�LL �;⊕ 1
is (once the unit isomorphisms are “factored out”) the identity on (U;>). (There is a
similar dual condition giving the identity on ([ ]; U ).) It is possible to eliminate the
units from the calculation by grounding them; once we do that, this composite becomes
the circuit on the left below, and we must reduce that to the identity on U . We use
dotted arcs to represent MIX-barbells in order to save space.

And this concludes the proof of Proposition 24.

Remark 25. It is a simple corollary that any (U; V ) in X[U], where U; V are in U,
is complemented, with complement (V;U ).
The construction of X[U] is the universal solution to making a trace “canonical”

(in the sense that complement traces are canonical). To state this precisely, we need
some de�nitions. In the following, “preservation” is understood as being up to coherent
isomorphisms.

De�nition 26. Tr is the 2-category whose objects are pairs 〈X;U〉, where X is a MIX
category and U is a collection of pairwise compatibly traced objects of X. A morphism
〈X;U〉 → 〈X′;U′〉 is a functor F : X → X′ that preserves the linearly distributive
category structure and for which F(U ) is an object of U′ for each object U of U.
Moreover, F must preserve the trace on each U . A 2-cell is a natural transformation
that preserves the tensor and par, in the sense that �A⊗B=�A⊗�B, and similarly for par.
CTr is the full sub-2-category of Tr whose objects satisfy the property that the ob-

jects of U are all complemented, and whose traces are all complement traces. Again,
the 2-cells are natural transformations preserving tensor and par.

It is straightforward to show that these are indeed 2-categories, and that in the
case of CTr, if a functor preserves linearly distributive category structure, it must also
preserve complements and so complement traces, so that the morphisms of CTr need
only preserve linearly distributive category structure and send objects of U to U′. We
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shall denote the inclusion 2-functor i : CTr → Tr, and the construction of X[U]
induces a 2-functor I : Tr → CTr. Then the following result is a direct analogue of
the corresponding result in [20].

Proposition 27. I is left biadjoint to i; and J induces the unit of this biadjunction.

Proof. (Sketch) By “biadjoint” we mean (as usual) that the usual identities hold up
to coherent isomorphism. In the following we shall suppress mention of the inclusion
i when it is clear from the context.
We shall sketch the equivalence of the appropriate hom categories. Note that for

〈X;U〉 ∈ Tr; I〈X;U〉= 〈X[U]; J (U)〉. Suppose given F : I〈X;U〉 → 〈Y;V〉 in CTr;
de�ne F∗ : 〈X;U〉 → 〈Y;V〉 in Tr by F∗ = J ;F . For the reverse association, suppose
given G : 〈X;U〉 → 〈Y;V〉 in Tr; then de�ne G∗ : I〈X;U〉 → 〈Y;V〉 in CTr by
G∗(([U1; : : : ; Un]; A))=G(U1)⊥⊗· · ·⊗G(Un)⊥⊗G(A), where we denote the complement
of an object V by V⊥. On morphisms G∗ is easily induced by the canonical construction
of a morphism W⊥⊗B→ V⊥⊗C from a morphism V ⊗B→ W ⊗C, for objects V;W
in the core. (This requires the preservation of linearly distributive structure by G.) It
is a straightforward matter to verify that F∗ and G∗ satisfy the required conditions to
be 1-cells in the appropriate 2-category, and that these associations are binatural.
Next we must verify that (F∗)∗ ∼= F and (G∗)∗ ∼= G. To check the former, we note

that since ([U1; : : : ; Un]; A) ∼= (U1;>)⊗ · · ·⊗ (Un;>)⊗ ([ ]; A), it su�ces to verify that
(F∗)∗((U;>)) ∼= F((U;>)) and that (F∗)∗(([ ]; A)) ∼= F(([ ]; A)). Since F preserves
linearly distributive structure, the �rst isomorphism essentially reduces to the fact that
the complement of ([ ]; U ) is (U;>). The second isomorphism is trivial, and essentially
reduces to the fact that the complement of ⊥ is >. This remark also su�ces to show
that (G∗)∗(A) ∼= G(A). This completes the sketch of the proof.

5. Fixpoint combinators

There is a well-understood connection between trace operators and �xpoint operators
in the context of cartesian categories (see Hasegawa [15] for example). In this section
we investigate this connection more locally and in a more general setting, namely by
considering having a �xpoint operator on a given object in a MIX category. There will
be some additional structure we must impose, as we shall see below, and further, there
are some subtle variations on the more familiar context. Note that we refer to “�xpoint
operators”, but our de�nition does not postulate the usual �xpoint equations. Indeed,
without some modest further conditions, these need not be satis�ed, but we shall see
that the present notion does capture the essence of �xpoint operators.

De�nition 28. Suppose X is a MIX category, U an object of X. We say U has a
�xpoint combinator if there is a morphism e : U → ⊥ in X and for each pair of
objects A; B of X a map �xABU : Hom(U ⊗ A;U ⊕ B)→ Hom(A;U ⊕ B) making �x a
strong combinator. These must satisfy the following conditions:
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Yanking : �x(c⊗;mUU ); e ⊗ 1; uL⊕ = 1U
Fixed compatibility : �x(�x(f)) = �x(�x(c⊗ ⊗ 1;f))

The �rst axiom, yanking, is just the yanking axiom for trace operators: under the
association between traces and �xpoint operators, these yanking axioms correspond to
each other. In the �xed compatibility axiom, f is a morphism U ⊗ U ⊗ A→ U ⊕ B,
and we require the iterated �x of this to be equal to the similarly iterated �x of the

morphism U ⊗ U ⊗ A c⊗1−→U ⊗ U ⊗ A f→U ⊕ B. We have suppressed some instances
of associativity here. This �xed compatibility axiom is a variant of compatibility for
traces. The point of this axiom is that the “�xed” output is the same for both instances
of the �xpoint combinator (this ought to be clearer in the circuit diagram below). Later
we shall give a de�nition of (ordinary) compatibility for �xpoint combinators in which
each �xpoint combinator will have a di�erent “�xed” output; this will correspond to
the compatibility condition as given before for trace operators.
Note that by requiring �x to be a strong combinator, we are requiring that it satis�es

the evident versions of tightening and superposing. We shall list the axioms below in
circuit form. We use a box notation similar to that for trace operators for the �xpoint
combinator, but indicate the output for the U that has been “�xed” with a small circle.
(This may be regarded as the “principal port” of the �xpoint box.) Also, we denote e
followed by the terminal node for ⊥ by a terminal e node (i.e. a node without output
wires), as we did for  earlier in the paper.
Yanking:

Fixed compatibility:
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Tightening:

Superposing:

Of course, there is an alternate version of superposing, corresponding to the alternate
version for traces.

De�nition 29. Suppose X is a MIX category, and U , V objects of X each with a
�xpoint combinator, say �xU ; �xV . These are called compatible if for any f : U ⊗
V ⊗ A → U ⊕ V ⊕ B; �xV (�xU (f); c⊕ ⊗ 1); c⊕ ⊗ 1 = �xU (�xV (f′); c⊕ ⊗ 1), where
f′=V ⊗U ⊗A c⊗1→ U ⊗V ⊗A f→U ⊕V ⊕B c⊕1→ V ⊕U ⊕B. (We have suppressed some
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evident uses of associativity here.) In circuits, this is the following equation:

Remark 30. We shall see in Corollary 34 below that from the compatibility condition
given above, it follows that there is another compatibility condition that must hold
between compatible �xpoint combinators �x1; �x2 de�ned on the same object U , viz.
the two-combinator version of �xed compatibility �x1(�x2(f)) = �x2(�x1(c⊗ ⊗ 1;f)),
for a map f : U ⊗ U ⊗ A→ U ⊕ B.

Now we note that given a �xpoint combinator on U , there is an induced cocom-
mutative comonoid (with respect to ⊕) structure on U . The comultiplication is given
by the morphism � de�ned by �x(mUU ; c⊕) : U → U ⊕ U . Note that this is equal to
�x(c⊗;mUU ). (We shall show later that if U has a �xpoint combinator, it also has a
trace, and so is in the core. So if we wanted, we could de�ne this comultiplication,
and so the comonoid structure, with respect to the tensor ⊗.) We shall occasionally
denote this as follows.

Lemma 31. � is cocommutative.

Proof. This is most simply shown by the following circuit rewrites (for the moment,
ignore the small indices — their role will appear below in the proof of Corollary 34).
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The key step in the proof above is in the middle of the second line, where use is made
of �xed compatibility. In addition, some rewiring and some playing around with the
“twist” maps c⊗; c⊕ has been done silently, most importantly, moving c⊕ inside the
boxes and then past the barbell to cancel a twist introduced by the �xed compatibility.
Moving a twist past a barbell uses the identity c ;m=m ; c which we have seen before.

Proposition 32. (U; e; �) is a cocommutative comonoid (with respect to ⊕).



R.F. Blute et al. / Journal of Pure and Applied Algebra 154 (2000) 27–69 61

Proof. We have seen that � is cocommutative; using this it is easy to show e is a unit
for �, since yanking gives one side, and cocommutativity then allows us to derive the
other side. So it only remains to show that � is coassociative:

Lemma 33. Given any self-compatible �xpoint combinator on an object U; we have
the following two equations:
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Proof. The following circuit rewrites show these equations; note that we have again
represented the MIX-barbell with a dotted arc to save space.

There are several corollaries that we can derive from these equations.

Corollary 34. Given two compatible �xpoint combinators �x1 and �x2 on the same
object U; the following variant of �xed compatibility holds: �x1(�x2(f)) = �x2
(�x1(c⊗⊕ 1;f)) for a map f : U ⊗U ⊗A→ U ⊕B. In circuits; this is the following.
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Proof. In the following we use the � notation as de�ned above. As we shall use
Lemma 33 to “pull” this � outside a �xpoint box for �x2, it will be necessary to use
the � for �x2, though it is simple to show that � is independent of such a choice.
(This fact will also follow from the next corollary.)

Corollary 35. Any two compatible �xpoint combinators on U are equal.

Proof. Notice the small indices in the proof that � is cocommutative (Lemma 31).
If these identify two �xpoint combinators, then the step in the second line involving
�xed compatibility is valid if the combinators are compatible, according to Corollary
34. Then we see that the two combinators must be equal. Note that this result will
also follow from the corresponding result for compatible trace operators, once we have
established the correspondence between �xpoint combinators and trace operators.

Theorem 36. Suppose X is a MIX category; and U an object of X. The following
are equivalent.
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(i) U has a self-compatible trace operator and a cocommutative comonoid structure
(with respect to ⊕).

(ii) U has a self-compatible �xpoint combinator.

Proof. Given a �xpoint combinator �x on U , we de�ne a trace operator trf by trf(f)=
�x(f) e. Using circuits, this is

Clearly, yanking for this trace operator is given by yanking for the �xpoint combi-
nator, and tightening, superposing, and self-compatibility are similarly induced by the
same properties of the �xpoint combinator. U has a cocommutative comonoid structure
(Proposition 32).
For the reverse direction, if we have a self-compatible trace operator tr on U with

the stated properties, then we can de�ne a �xpoint combinator by �xt(f) = tr(f �).
In circuits:

Again, yanking, tightening, and superposing are easy consequences of the corresponding
equations for the trace operator. Self-compatibility likewise is straightforward, but to
show �xed compatibility we need to use self-compatibility of the trace operator plus
cocommutativity and coassociativity of � to get the wires arranged in the correct
manner. This is a simple exercise similar to the many such calculations we have
already seen.
Finally, we want to show that these constructions are inverse. One direction is triv-

ial: starting from a trace operator, the trace operator induced by the induced �xpoint
combinator is clearly the original trace operator, since e is a unit for �: trft(f) =
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�xt(f) e = tr(f �) e = tr(f) � e = tr(f). For the reverse direction, we need an
application of Lemma 33 to move the � (which is attached to the principal port of the
�xpoint box) outside the �xpoint box so that it may be cancelled: �xtf = trf(f �) =
�x(f �) e = �x(f) � e = �x(f).

Before leaving this section, we point out some properties that are characteristic of
�xpoint combinators (and leave some others as exercises for the reader).
To begin with, we need some notation. If we want to consider � as de�ned on

the ⊗ structure, we must put an instance of m−1 following �, so as to change the
implicit ⊕ into an ⊗, just as we did with the � when we de�ned the complement trace
(Proposition 9). To save space, we shall denote this use of m−1 by an oval-shaped
box — this is not the usual sort of component box, since its input wires are par’ed
and its output wires are tensored. So this means that the oval on the left below is an
abbreviation for the graph on the right.

Lemma 37 (The diagonal property). Suppose �x is a self-compatible �xpoint combi-
nator on U; f : U ⊗ U ⊗ A → U ⊕ B. Then �x(� f) = �x(�x(f)). In circuits:

We could make this statement somewhat more elegant by de�ning a new � operator
that contained both the “old” � and the m−1 oval. As we have no further need of this
“new” � we see no real need for this de�nition, however.
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Proof. In the circuits below, we again represent the MIX-barbell by a dotted wire.

We end this section with a derivation of the �xpoint property, which we ought to
expect a �xpoint combinator to satisfy. It turns out, however, that for this we need a
further property of �, namely that it be “natural” in the following sense. (Recall that
since we are presenting this “locally”, for a �xed U , � is not a natural transformation;
the property we now want would be a consequence of � being a natural transformation.)
For simplicity, we begin with the “categorical” (one input, one output) case.

De�nition 38. Suppose U has a �xpoint combinator; let � be the induced comultiplica-
tion map. � is said to be natural if for any f : U → U , �;f⊕f=f;� : U → U⊕U .

Proposition 39. Suppose U has a �xpoint combinator �x for which the induced co-
multiplication � is natural. Then for any f : U → U; �x(f);f = �x(f) : > → U .
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Proof. It is simple to construct a circuit proof of this — it may be considered a special
case of the next proposition in any event. The following equations ought to provide
the necessary hint. �x(f);f=�x(f;�); e⊕f=�x(�;f⊕f) e=�x(f;�) e=�x(f).

For the general (“polycategorical”) case, we need to generalise the notion of “natu-
rality” for �. First, we shall try to simplify the notation. As we did in our discussion of
X[U], and without loss of generality, we shall avoid notational clutter by using the “two
input – two output” case as generic. So we shall consider a map f : U ⊗ A→ U ⊕ B
as an arbitrary component (or polymorphism). We shall state the next de�nition in this
“two input – two output” style, but with obvious modi�cations, this may be restated
in full generality, which is our intended meaning.

De�nition 40. Suppose U has a �xpoint combinator; let � be the induced comulti-
plication map. Suppose f is an arbitrary morphism as above; we shall denote it as
f : U ⊗ A → U ⊕ B. Suppose A (i.e. each input other than the initial U ) has a
“⊗-duplication” map N : A→ A⊗ A, and B (i.e. each output other than the initial U )
has a “⊗-duplication” map � : B → B ⊗ B. � is said to be polynatural for f if the
following diagram commutes:

where �′ is the evident linear distributivity (plus some symmetry and associativity). In
circuits this is the following. We represent N as a link — this functions like a tensor
link (and in particular has the same switches as a tensor link).
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Proposition 41. Suppose U has a �xpoint combinator; � the induced comultiplication;
and f : U⊗A→ U⊕B is a morphism for which � is polynatural. (This includes some
structural assumptions on A and B; as in De�nition 40:) Then N �x(f) f=�x(f) � :
A→ U ⊗ B⊕ B. In circuits; this is the following:

Proof.

Remark 42. There is a question of what is the most appropriate level of generality for
the �xpoint property. We have stated it in a minimalist form: the conditions necessary
are assumed, and no more. However, the most suitable context for this result would
seem to be something a bit stronger; perhaps a cartesian linearly distributive category.
If we suppose also that the product is both tensor and par, then we are essentially in
the context of [15].

Remark 43. There is another property of �xpoint operators that one often encounters,
namely the Beki�c property. It is well-known that in the usual cartesian context, this
property is true of any �xpoint operator that is induced by a trace operator (see [15]
for instance). In the present context, it may be shown that any �xpoint combinator
satis�es this property. (It was in fact by establishing the Beki�c property for traces that
we were led to the correspondence of Theorem 36.) However, as we have no need
of this result here, and it involves some lengthy circuit calculations, we are happy to
leave it as a pleasant exercise for the reader.
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