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Abstract

There are many situations in logic, theoretical computer science, and cate-
gory theory where two binary operations—one thought of as a (tensor) "prod-
uct" , the other a "sum"—play a key role, such as in distributive categories and
in *-autonomous categories. (One can regard these as essentially the AND/OR
of traditional logic and the TIMES/PAR of (multiplicative) linear logic, respec-
tively.) In the latter example, however, the distributivity one often finds is
conspicuously absent: in this paper we study a "linearisation" of distributiv-
ity that is present in this context. We show that this weak distributivity is
precisely what is needed to model Gentzen's cut rule (in the absence of other
structural rules), and show how it can be strengthened in two natural ways,
one to generate full distributivity, and the other to generate *-autonomous
categories.

0. Introduction

There are many situations in logic, theoretical computer science, and category the-
ory where two binary operations, "tensor products" (though one may be a "sum"),
play a key role. The multiplicative fragment of linear logic is a particularly interest-
ing example as it is a Gentzen style sequent calculus in which the structural rules
of contraction, thinning, and (sometimes) exchange are dropped. The fact that
these rules are omitted considerably simplifies the derivation of the cut elimination
theorem. Furthermore, the proof theory of this fragment is interesting and known
[Se89] to correspond to ^-autonomous categories as introduced by Ban in [Ba79].

In the study of categories with two tensor products one usually assumes a distribu-
tivity condition, particularly in the case when one of these is either the product
or sum. The multiplicative fragment of linear logic (viz. ^-autonomous categories)
is a significant exception to this situation; here the two tensors "times" (®) and
"par" (^, in this paper denoted ®—note that this conflicts with Girard's notation)
do not distribute one over the other.
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However, *-autonomous categories are known to satisfy a weak notion of distribu-
tivity. This weak distributivity is given by maps of the form:

A <g> (B 0 C) —• (A  ® B) © C

A®(B®C) —• B © (A  <g> C)

(and two other versions should the tensors lack symmetry.)

These maps, interpreted as entailments, are also valid in what might be considered
the minimal logic of two such tensors, namely the classical Gentzen sequent calcu-
lus with the left and right introduction rules for conjunction and disjunction and
with cut as the only structure rule. This Gentzen style proof theory has a categor-
ical presentation already in the literature, viz. the polycategories of Lambek and
Szabo [Sz75]. It should therefore be possible to link *-autonomous categories and
polycategories. However, this begs a wider question of precisely what properties
a category must satisfy to be linked in this manner to the logical superstructure
provided by a polycategory.

It turns out that these weak distributivity maps, when present coherently, are pre-
cisely the necessary structure required to construct a polycategory superstructure,
and whence a Gentzen style calculus, over a category with two tensors. The weak
distributivity maps allow the expression of the Gentzen cut rule in terms of ordinary
(categorical) composition.

We call categories with two tensors linked by coherent weak distribution weakly
distributive categories. They can be built up to be the proof theory of the full
multiplicative fragment of classical linear logic1 by coherently adding maps

T —f A © A L

A <g> AL —> i.

(and symmetric duals as necessary), or to the proof theory of the A, V fragment of
intuitionistic propositional logic by coherently adding contraction, thinning, and
exchange. The former corresponds to *-autonomous categories and the latter to
distributive categories. In fact, weakly distributive categories lie at the base of a
rich logical hierarchy, unifying several hitherto separate developments in the logics
of theoretical computer science.

One point must be made about the connection with linear logic. A novel feature
of our presentation is that we have considered the two tensor structure separately
from the structure given by linear negation (—) L. We show how to obtain the logic
of *-autonomous categories from that of weakly distributive categories, giving, in
effect, another presentation of *-autonomous categories. It sometimes happens

1The system FILL (full intuitionistic linear logic) of dePaiva [dP89] amounts to having just the
second of these (families of) maps. Fiom the autonomous category viewpoint, these are the more
natural maps, as they correspond to evaluations. The symmetry of the ^-autonomous viewpoint
then suggests the first (family of) maps.
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that it is easier to verify *-autonomy this way; for example, verifying that a lattice
with appropriate structure is ^-autonomous becomes almost trivial if one checks
the weak distributivity first (see [Ba91].)

In this short version of our paper, we shall not have space to say as much as
we would like about models of this structure. However, one should note that *-
autonomous categories, distributive categories, braided monoidal categories, among
others, are all weakly distributive. In addition, the opposite of a weakly distributive
category is weakly distributive (with the tensors changing roles), so, for example,
co-distributive categories are weakly distributive. One has frequently been struck
by the strangeness of the distributivity in such co-distributive categories as the
category of commutative rings, or the category of distributive lattices, and so on—
they may now be seen as weakly distributive in the standard manner.

We have also been very brief about coherence questions here; further, we plan to
show how to associate a term calculus to these categories. (This term calculus is
based on a calculus developed in [Co89] for symmetric monoidal categories.) We
plan to elaborate on all these matters elsewhere. (Added in proof: Coherence has
been treated in the recent work of Blute and Seely [BS91], as well as a partial answer
to the question of the conservativity of the extension to *-autonomous categories.
In that paper, coherence is completely settled, but conservativity is only shown for
the fragment without units.)

Acknowledgements: The authors benefited from many helpful discussions with
(to mention only a few) Mike Barr, Yves Lafont, and Ross Street. We also must
acknowledge the hospitality (and tolerance) of each other's family, who put up with
our long deliberations during our visits to each other's homes. The diagrams in
this paper were produced with the help of the diagram macros of F. Borceux.

1. Polycategories

We shall begin with a review of Szabo's notion of a poly category:

Definition 1.1 A polycategory C consists of a set Ob(C) of objects and a set
Mip(G) of morphisms, (also called arrows, polymorphisms, . . . ) just like a category,
except that the source and target of a morphism are finite sequences of objects

source: M<p(C) —•+ 06(C)*

target:M<p(C)—>Ob(Cy
where X* = the free monoid generated by X.

There are identity morphisms %A'-A —• A between singleton sequences only and a
notion of composition given by the cut rule:
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where the length of T\ is i and the length of A2 is j . When the subscripts are clear
from the context they shall be dropped.

We have the following equations:
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where again at least one of $1, Ai is empty, and at least one of $2, A2 is
empty.

Remark 1.2 (Planar Poly categories)

There is a certain amount of permutation built into the cut rule and this results in
the restrictions we have had to place on some of the equations. Lambek [La90] has
given several weaker variants in which the restrictions are built directly into the cut
rule so that this permutation is avoided: a similar system was presented by G.L.
Mascari at the Durham Symposium. In the weakest system, BL1, cut is restricted
to instances where either I \ = F2 = <t> or A2 = A3 = <f>; this corresponds to
having no weak distributivities, in the sense of the next section. A stronger system,
BL2, in addition also allows cuts where either Fi = A3 = <f> or F2 = A2 = <t>,
corresponding in our setting to having only the "non permuting" distributivities
8^ and 6%. We shall call the notion of polycategory based on BL2, allowing only
cuts where either Fi or A2 = <j>, and either F2 or A3 = <f>, a "planar polycategory"
(though it is not necessarily a polycategory!), as it corresponds to planar non
commutative linear logic. (Note that in a planar polycategory, the restrictions on
the equations are unnecessary.)

By allowing unrestricted cut in our setup, we are in effect introducing two "per-
muting" weak distributivities, tfjj and 6^, as defined in the next section. So, in a
sense, we are not dealing with a strictly non commutative logic. For example, if
the weak distribution rules are inverted, the permuting ones will give a braiding
structure in general. Thus we are generalizing braided monoidal categories (rather
than symmetric or general non symmetric monoidal categories). We shall return
to this point elsewhere. •

Next, we define a polycategory with two tensors: this amounts to having two binary
operations ®,© on objects, extended to morphisms according to the following
inference rules:

L)
r3

provided (in (® R)) at least one ofT2, A2 is empty and at least one of F3, A3 is
empty. In (® L), i — length of Fi; in (<g) R), i = length of F2, j = length of A2,
(so ij = 0).



50 COCKETT & SEELY: WEAKLY DISTRIBUTIVE CATEGORIES

provided (in (0 L)) at least one of Fi, Ai is empty and at least one of F2, A2 is
empty. In (0 L), i = length of Fi, and,;' = length of Ai, (so ij = 0); in (0 R), i =
length of F2.

(Note that we have indexed the labels as we did with cut; when clear from the
context, we shall drop these subscripts.)

There are many further equivalences of derivations as in Definition 1.1. These can
be considerably simplified if we give the following equivalent formulation of the
tensor rules:

Definition 1.3 A two-tensor-polycategory is a polycategory with two binary oper-
ations ®,0 on objects, with morphisms

mAB:A,B —

wAB:A®B —> A,B
and the rules of inference (® L) and (0 R) above. These rules are to represent
bijections stable under cutf so the following equations must hold:

• g o /® = (g o /)® for g : Ai,C, A2 —> A3 and f : Fi —> F2,C,F3, and
where T\ contains the sequence A,B.

• /® og = (fog)® for g : Ax —-> A2,C,A3 and f : Fi ,C,r2 —> F3, and
where one o/Fi,F2 contains the sequence A,B.

. f = /®. om for f :Fi ,A,£,F 2 — F
3

= %

•gof® = {gof)® for g : Ai,C, A2 —> A3 and f : Tx —> F2,C,r3, and
where one o/F2 ,F3 contains the sequence A,B.

• f® og = (fog)® for g : Ai —> A2,C,A3 oncf / : Fi,C,F2 —> F3, and
where F 3 contains the sequence A, 2?.

We shall leave it as an exercise to show that this is equivalent to the other presen-
tation. However, we must stress that cut elimination does not hold for the second
presentation of two-tensor-poly categories; the amount of cut built into the rules (<g>
R) and (0 L) is necessary to prove cut elimination.

It is straightforward to define the category of polycategories (just keep in mind
that we interpret sequents F —• A as maps ® F —> 0 A , and functors should
preserve the tensors.) So a functor F:C —• D is a map Ob(C) —• Ob(T>)
and a map M<p(C) —• Mip(D) so that this and the induced map Ob(C)* —•
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Ob(D)* commute with source and with target. A functor between two-tensor-
poly categories must preserve the two tensors.

A natural transformation a:F —• G assigns a D morphism ctA-F(A) —> G(A)
to each singleton sequence A from C, satisfying the usual naturality condition.

We shall denote the 2-category of poly categories by Poly Cat, and the 2-category
of two-tensor-poly categories by PolyCat^^. We then note that the latter is a
conservative extension of the former:

Proposition 1.4 There is a 2-adjunction F-\U

whose unit C —• UF(C) is full for each polycategory C.

Proof. Given a polycategory C, F(C) is the free two-tensor-poly category gener-
ated by C. That is, close the set Ob(C) under the tensors 0 , 0 to obtain the
objects of F(C), and take the sequents of C as non logical axioms, closing under
the inference rules to obtain the morphisms of F(C) (actually, you must factor
out by the appropriate equivalences first). For a two-tensor-poly category, U just
forgets the two tensor structure.

For a two-tensor-poly category D, the counit FU(D) —• D collapses the new
tensor structure onto the old. For a polycategory C, the unit C —> UF(C) is
the usual inclusion into the free structure. To see that this map is full, we use the
cut elimination theorem for two-tensor-poly categories. -F(C) has only the sequents
of C as its non logical axioms, so by cut elimination any derivation in F(C) is
equivalent to one with cuts restricted to sequents from C. If T —• A is a tensor-
free sequent of -F(C), (for example, is in the image of the unit,) then any derivation
of F —• A is equivalent to a derivation in C, since with the cuts restricted to the
tensor-free part of -F(C), none of the left or right introduction rules could be used
in the derivation (they introduce tensors that could never be eliminated). •

Remark: We believe more: viz. that the unit is faithful as well, but as of this
writing some details remain to be checked. (For if two derivations of a tensor-free
sequent are equivalent in F(C), then this equivalence must be true in C as well.)

We have not considered the question of units T,± for the tensors ®,0—these
can be added if wanted, together with the obvious rules and equations (as done
in [Se89]). Since the point of these units is that they represent "empty" places
in the sequents, they are rather redundant in the polycategory context; however,
they are useful when we consider weak distributive categories, and we shall feel
free to consider PolyCat^ enriched with these units when this makes matters
technically simpler. For an alternate treatment in terms of proof nets, including
the units, see [BS91]. Using nets rather than sequents, that paper also manages to
solve the coherence problem for weakly distributive categories with units.
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2. Weakly distributive categories

2.1. Definition

A weakly distributive category C is a category with two tensors and four weak
distribution natural transformations. The two tensors will be denoted by ® and ©
and we shall call ® the tensor and © the cotensor. Each tensor comes equipped
with a unit object, an associativity natural isomorphism, and a left and right unit
natural isomorphism:

»5
L &

(A®B)®C —> A ® (B ® C)
A® T —• A
T ® A—> A

(A © 5) © C —> A®(B®C)
A©_L —• A
± © A — • A

The four weak distribution transformations shall be denoted by:

6% : A ® (B © C) —»• (A 0 B) © C
^ : i ® ( 5 © C ) —• B © (A ® C)

This data must satisfy certain coherence conditions which we shall discuss shortly.
Before doing so we remark that there are three independent symmetries which arise
from this data:

[op7] reverse the arrows and swap both the ® and © and T and JL.

[(g)'] reverse the tensor ® (so A ®' B = B ® A).

[©'] reverse the cotensor ©.

The notion of a weakly distributive category is preserved by all these symmetries
and we shall use this fact to give an economical statement of the required commut-
ing conditions, which are generated by the following diagrams.

Tensors: The two tensor products must each satisfy the usual conditions of a
tensor product. (This gives four equations.)
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Unit and distribution:

U® © «B

(Under the symmetries, this gives eight more equations.)

Associativity and distribution:

(A <g> B) ® (C ©

A® ((B®C)©J

((A <8>£)<8> C)©

(Under the symmetries, this gives eight more equations.)

Coassociativity and distribution:

A <8) ( (£©<?)©, (C © D))

(Under the symmetries, this gives four more equations.)

Distribution and distribution:

(A © B) ® (C ©

((A © B) (8)1?) ©

tfg © %D

(A © (B <8> C)) ©

A © (1T<8> (C © D))

U © ^

A © ((B (8) C) © D)
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(Under the symmetries, this gives four more equations, for a total of twenty
eight.)

2.2. Weakly distributive categories and polycategories

Now we can make the connection between weakly distributive categories and two-
tensor-polycategories; essentially these are the same thing. (With Proposition 1.4
this justifies our claiming that weakly distributive categories constitute the essential
content of polycategories.) We shall denote the category of weakly distributive
categories and functors preserving the tensor and cotensor by WkDistCat. (We
suppose here that we are using the version of two-tensor-polycategories with units,
to correspond to the units in the weakly distributive categories.)

Theorem 2.1 There is an equivalence of 2-categories

PolyCat^ 5=t WkDistCat

Proof. Given a weakly distributive category W, P(W) is the poly category with
the same set of objects as W, and with morphisms given by: F —• A is a morphism
if and only if ® T —• 0 A is a morphism of W. To check that the cut rule, and
the left and right introduction rules, are valid, we use the weak distributivities;
for example, we shall illustrate the following instance of cut. Given maps (in W)

Ci®A®C2 —• C3 and D\ —* D2®A®D3, we can construct C\<g>D\®C2 ———•
D2 © C3 0 D3 as follows (ignoring some instances of associativity for simplicity):

<g> C2 > Cx ® (D2 © A © D3) ® C2

(D2 © (Cx ® (A © D3))) ® C2

D2 © ((Cx ® (A © D3)) ® C2)

D2 © (((Ci (8) A) © D3) ® C2)

D2 © ((Ci 0 A ® C2) © 2?3)

D2 © C3 © J93

(Other ways of introducing the distributivities to move the C"s next to A are
equivalent, by the coherence conditions on the interaction of distributivity with
itself and with associativity.)

We must then check that all the equivalences of two-tensor-polycategories follow
from the coherence diagrams of weakly distributive categories. This is a frightful
but routine exercise. (But note that the extra structure due to the two tensors is
easy since (® L) and (© R) are identities. So we really only need check the five
equivalences of Definition 1.1.)
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Next, given a two-tensor-polycategory P, the weakly distributive category W(P)
is just the category part of P, viz. those morphisms whose source and target
are singletons. The distributivities are essentially given by the (cut) rule and the
axioms (<8> R) and (© L). For instance, 6% is given as (note the "exchange"):

A,C—

And the coherence conditions follow from the equivalences for polycategories.

It is clear from the constructions above that WP(W) is isomorphic toW; indeed
they are the same category. And essentially for the same reason, P is isomorphic
to PW(P). (Essentially, this just depends on the bijection

<g>r—
which means that the category part of a two-tensor-polycategory carries all the
information of the poly category.) •

3. Distributive categories

How are weakly distributive categories related to distributive categories? It turns
out that they are very close indeed—if the tensors  are the cartesian product and
coproduct (nicely), then the two notions coincide. So in a natural sense, weak
distributivity is the natural notion for general tensors.

A weakly distributive category is symmetric (resp. (^-symmetric, ^-symmetric)
in case the tensors are symmetric (resp. the tensor is symmetric with S®, the
cotensor with s®) and

A ® (B © C)

commuting in all squares (resp. those squares which exist).

A weakly distributive category is cartesian (resp. (^--cartesian or 0-cartesian) if
the category is symmetric (resp. (^-symmetric, ®-symmetric) with the tensor a
product (with T the final object) and the cotensor a coproduct (with _L the initial
object).

A source of motivation for the study of weak distributivity is the fact that distribu-
tive categories are (cartesian) examples. This means that the category of Sets (or
any topos) is a cartesian weakly distributive category.

Robert
Text Box
This section has serious errors, corrected in the journal version - available on www.math.mcgill.ca/rags
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We now verify that distributive categories are a source of examples. An elemen-
tary distributive category [Co90] has finite products and coproducts such that
the comparison map from the coproduct

( i x b o \ i x h ) : A x B + A x C — > A x ( B + C )

is an isomorphism. We shall denote the inverse of (i x bo\i x &i) by 6.

Proposition 3.1 Elementary distributive categories are cartesian weakly distribu-
tive categories.

Proof. Let

-v J v R -I- A v C *. A v P -U C1

~* ./± S\ U T^ T\. S\ \J ' Jx. S\. JLJ T^ \S

then, as + and X are symmetric the other weak distributions can be obtained from
this. Due to the symmetry of product and coproduct it suffices to prove that the
four basic diagrams hold together with their op' duals. This gives eight diagrams
to check. However, the use of symmetry reduces this to six, viz. that the two
canonical ways of expressing each of the following arrows are equal:

T x(A + B) —• A + B
(JL + A)x B —> Ax B

(AxB)x(C + D) —> A x (B x C) + D
(AxB)x(C + D) — > AxC + BxD
Ax((C + D) + E) —> AxC + (D + E)
(A + B)x(C + D) —* A + (BxC) + D

For the first of these consider:

Tx(A + B) — ^ _ A + B

6

As 6 = (i x bo\i x b\) 1 to obtain commutativity it suffices to show:
60 (tx60 | tx6i> pj pi fe0

TxA —> TxA+TxB > Tx(A+B) —+ A+B = TxA —+ A —> A+B
61 (tx60|tx6i> p! p! 61

TxB —f TxA+TxB > Tx(A+B) —> A+B = TxB —> B —>
which are clear.

For the op' dual of this we have:

Robert
Text Box
This proposition is false: an elementary distributive category is cartesian weakly distributive if and only if it is a preorder.This correction appears in the published journal version of the paper, and on the webpage   www.math.mcgill.ca/rags



COCKETT & SEELY: WEAKLY DISTRIBUTIVE CATEGORIES 57

(_L + A) x B £—* ± x B + A x B Po + i* _L + A x B

AxB AxB

which commutes as 61 x i.S.po + i = b\.po + ii = 61.

The remaining equations are checked using full distribution applied in two differ-
ent ways. One can check that the diagram commutes for the components of the
coproducts, using the inverses of these distributions, and finally project to obtain
the weak distributions. •

It is of some interest to wonder what conditions must be added to a cartesian weakly
distributive category to force it to be (elementary) distributive. Demanding that
it is cartesian is not sufficient: this can be seen in two ways.

First, an abelian category is a cartesian weakly distributive category as it is a sym-
metric tensor category on the biproduct. This follows as any braided monoidal
category is a weakly distributive category by letting the non permuting weak dis-
tributions be the associativity of the tensor and the permuting weak distributions
be given by the braiding. Thus, certainly any symmetric monoidal category is a
weakly distributive category. Finally, an abelian category is not distributive.

Second, the dual of a distributive category (a codistributive category) is clearly
cartesian weakly distributive as the latter is a self-dual notion. However, a codis-
tributive category is not distributive. Indeed, a codistributive category which is
simultaneously a distributive category must be a preorder (as the final object is
costrict).

In order to obtain a distributive category there must, therefore, be some relation-
ship required between the distribution, projection, and embedding maps. Our first
attempt to pin this down is as follows:

Lemma 3.2 A cartesian weakly distributive category is distributive if and only if
the following diagrams

(AxB)

Pi
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commute.

Proof. It is easy to check that a distributive category satisfies the two diagrams.
For the converse, we must construct the inverse 6 of (i x bo\iI x bi).

Axt
We set 6 = A x (B + C) > (AxA)x(B + C) —> A x (A x (B + C)) >

Ax(B-\-AxC) —• AxB+AxC. Toshowthat this is the inverse of (ix60|ix6i) we
precompose with ixbo (by symmetry the same thing will happen on precomposing
with i x bi) and show the result is 6Q*

AxB

A X i

ax

Ax (AxB)

Pi

AxB

Ax(B + C)

Ax i

(A x A) x B ixbo , (A x A) x (B + C)

ax

Ax(Ax(B + C))

Ax(AxB

AxB+AxC

where the triangle and parallelogram are the two conditions added.

An initial object is strict in case every map to it is an isomorphism. Notice that,
as an abelian category has a zero, it cannot have a strict initial object without
being trivial. The initial object of an elementary distributive category, however, is
necessarily strict (see [Co90]). This is a difference we now exploit:
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Theorem 3.3 A cartesian weakly distributive category is an elementary distribu-
tive category if and only if it has a strict initial object.

Proof. It suffices to show that the two diagrams above commute in the presence
of a strict initial object. To see this consider the two naturality diagrams

AxB (AxB)
•{AXL)iw^-)B+iAXC)

The first immediately yields the first condition of the lemma. The second due to
strictness has the bottom left object isomorphic to B and the horizontal map is then
the coproduct embedding. It suffices to prove that the vertical map is essentially
a projection. For this consider

Ax(B

B + Ax _L —

l x i . Tx(J5

B + T X J_

The lower horizontal map is an isomorphism due to the strictness of the initial
object. However, the map across the square is clearly equivalent to a projection. •

4. Adding negation

Definition 4.1 We define a weakly distributive category with negation to be a
weakly distributive category with an object function (_)1, together with the following
parameterized families of maps ("contradiction" and Hertium non datur"):

T —> A1 © A 1

which satisfy the following coherence condition
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i & ^ A (8) (A ©A1)

*© 7*

A -«—=— A©±

symmetric forms. Note that the op' c?wa/ should be modified to switch
A and A1.

Notice that we have not required that (_)•*• be a contravariant functor, but merely
that it is denned on objects. Of course, (_)-L is a contravariant functor but this is
a consequence of the axioms as we shall see. First we note:

L e m m a 4.2 In a weakly distributive category with negation we have the following
adjunctions

A<8>—I A 1 © - A 1 ® — l A © -

corresponding to the following bisections

5 —> A1- © C 5—>A®C

A®B—>C A®BL—>C
C®B

Proof. We shall treat just the adjunction - <&B-\ - ©I?1 as an illustration. Given
a map A ® B —• C, we derive the corresponding map as A —• A ® T —•
A (8) (B © 5 1 ) —• (A ® 5 ) © 5 1 —»- C © JB1". Conversely, given A —• C © J?1 ,
we have A ® 5 —• (C © 5 1 ) ® ^ —• C © (B1 ® 5 ) —> C © ± —• C.

In particular, the unit TJA: A —• (A ® B) © 5 1 is given by

r\A\ A -^—> A ® T - ^ - > A (g) ( 5 © 5 1 ) -^ (A ® 5 ) © tf1

and the counit 6^: (A© B1-) (8) J? —• A is given (as the symmetries might suggest)

b y

eA: (A © BL) (8) ^ —^ A © ( 5 1 (8) 5 ) - ^ U A © 1 —^ A

We leave checking the triangle identities as an exercise (or see the fuller version of
this paper). D
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We may now use the adjunctions to define the effect of (—)± on maps:

A—->B
T

T
BL

®A
— • j

0 T

— • £
9 0 AL

—y A1-

it is then a matter of verifying that this is functorial, by explicitly giving the
"formula" for BL —• A1 in terms of A —• B, and verifying that the appropriate
diagrams commute (again this is in the fuller version of this paper).

Furthermore, notice that (-)-1- is full and faithful as there is a bijection
Hom(A,B) ~ Hom{BL, A1).

Theorem 4.3 The notions of symmetric weakly distributive categories with nega-
tion and * -autonomous categories coincide.

Proof. One direction is more or less automatic now in view of Barr's character-
ization of ^-autonomous categories in [Ba79]. That is to say, symmetric weakly
distributive categories with negation are *-autonomous. Of course, to make the
translation to Barr's framework, we must make the following (standard) definition:
A-oB = AL®B.

The involutive nature of (—)x follows from the lemma straightforwardly: viz. the
iso A — ALL is induced by the adjunctions:

T
T

T $

A
® A-

•*• 5

L11 — ^ 5

Then we can conclude that i - o 5 = ( i 0 B1)1 also.

In either case, it is now easy to verify the essential bijection:

A —> (B -o C1)

i0C-^P

C —, (J5 -o A1-)

Note the use of symmetry here. Of course, if the tensors are not symmetric, then
we would have two internal horn's, the other being B o- A = B 0 A1, and the
bijection above would end with C —• (AL o- B).
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Next the other half of the proof: here we give just a brief sketch. It is a straight-
forward verification to check that *-autonomous categories are weakly distributive,
though the diagrams can be pretty horrid. We shall just indicate how the weak
distribution 6% is obtained, leaving the rest to the faith of the reader.

Denning A©B = AL -o B, we need 6%:A®(BL -o C) —• (A®B)L -o C. While
it is possible to give a formula for this morphism, it is perhaps more instructive to
give its derivation:

First note that under the functor (—)1, the internal horn bijection becomes

CL —•> (A ® B)L

From this it is easy to derive maps A ® (A ® B)L —• BL —> (BL -o C) -o C.
Then we can use the bijection

to derive the map A (g> (B1- -o C) —> (A ® 5)-1 -oCas needed. D

Remark 4.4 (Planar non commutativity)

The above suggests that (non symmetric) weakly distributive categories with nega-
tion provide a natural notion of non symmetric *-autonomous categories, and hence
of non commutative linear logic (rather, the multiplicative fragment thereof).

However, there is another such notion, building on the planar polycategories of
Remark 1.2. In this variant, two different negations are used, LA and AL. In his
presentation at this Symposium, G.L. Mascari described such a system, with the
inference rules

rh A , £ A,rh A
T7ZFT~A~ rh AX,A

T\-B,A T,AhA
^rhA ThA/i

A full account of this syntax appears in [Ab90].

We can modify our presentation to account for this variant. We replace 7^ with
7^: LA <g> A —• 1 and T% with T%: T —• A © 1A. (And modify the coherence
conditions as well, dropping those that no longer make sense.) Then we can derive
the adjunctions

©-B A ® — l i 1 ® -
—I B © - -®A-\- L
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corresponding to these rules, and the (natural) isomorphisms (1A)-L ~ A, -L(A-L) ~
A. In this context, we would have that A - o 5 - ( A ® LB)L,B o- A = B © LA ~

Our original presentation arose in an attempt to describe commutative linear logic:
it displays some of the features of the planar non commutative form as well as
the commutative form. At this time we feel it is very premature to pronounce
definitively on the "best" degree of non commutativity in linear logic, and so we
offer only these comments: First, our main observation is that the core of the
multiplicative fragment of linear logic may be found in the two tensors, connected
by weak distributivity. (We do not believe that the central role played by the
weak distributivities—permutative or not—has been sufficiently observed before 2.)
Second, to include negation and internal horn, one need only add negation in the
most simple minded manner (the internal horn structure follows naturally). Third,
the various versions of this fragment may be classified by the degree of the weak
distributivity assumed and the nature of the negation added. •

5. Some posetal examples

To conclude, we shall briefly consider some simple examples of weakly distributive
categories which are preorders. The beauty of the posetal weakly distributive
categories is that one need not check the coherence conditions as all diagrams
commute. It suffices to have the weak distributions present. Notice first that,
when such a category is cartesian, the initial object is necessarily strict giving:

Lemma 5.1 All cartesian weakly distributive categories which are preorders are
equivalent to distributive lattices.

Thus, the interesting posetal examples occur when one or both tensors are non
cartesian. There are plenty of examples of these. Here are two sources:

• (Droste) Let L be a lattice ordered monoid (that is a set having a commuta-
tive, associative, and idempotent operation xAy, and an associative operation
x-y with unit 1 such that z-(xAy) = (z-x)A(z-y) and (xAy)-z = (x-z)A(y-z))
in which every element is less than 1 (so this is the unit of A too) then L is
a posetal weakly distributive category. This because:

x • (y A z) = (x • y) A (x • z) < (x • y) A (1 • z) = (x • y) A z
and similarly for the other weak distributions.
An example of such an L is the negative numbers. In general one may take
the negative portion of any lattice ordered group (free groups can be lattice
ordered so that the multiplication need not be commutative).

2An exception is recent ongoing work of V. dePaiva and J.M.E. Hyland, unpublished but
partially presented at Category Theory 1991, Montreal (June 1991), which has among other things
pointed out some of the aspects of the distributivities we have in mind here.
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• A shift monoid is a commutative monoid (M,0, -f) with a designated invert-
ible element a. This allows one to define a second "shifted" multiplication
x -y = x + y — a with unit a for which we have the following identity:

x • (y + z) = (x - y) + z

which clearly is a weak distribution. In this manner a shift monoid becomes
a discrete weakly distributive category. Furthermore, it is not hard to show
that every discrete weakly distributive category must be a shift monoid.
This example is also of interest as it suggests that when one inverts the weak
distributions (which produces braidings on the tensors), the tensors, which
need not be equivalent, are related by a 0 invertible object. This is, in fact,
what happens in general.

It is also of interest to specialize our presentation of *-autonomous categories to
the case of preorders. Again, only the existence of the maps themselves must be
ensured, which gives:

Proposition 5.2 A preorder is a * -autonomous category if and only if it has two
symmetric tensors <g) and 0 and an object map (-)L such that

(i)

(ii) x ® xL < I ,

(iii) T <x®xL.

Suppose that M is a shift monoid equipped with a map ( - ) 1 such that x + xL — a
("tertium non datur") then we have

x -xL —x-\-xL-a = a — a = 0

which is "contradiction". So M is a discrete ^-autonomous category. Note that
moreover M is a group, with —x — xL — a; in fact shift groups (shift monoids
with M a group) are the same as discrete *-autonomous categories in this way:
T = a, xL = a — x, and conversely, a discrete ^-autonomous category is a group
(with respect to 0, with inverse given by— x = z-L(g)_L), and so a shift group (with
T as designated invertible element). (A curiosity about this example: the initial
shift group (also the initial shift monoid) is Z, the integers, under addition with
T = 1. This structure also arises when checking the validity of proof nets.)

We can construct similar examples with ordered shift monoids, (for example, Z
as above with the standard order), to get examples of *-autonomous posets. Note
that a •-autonomous ordered shift monoid must be a group, since x • xL < 0 and
a < x + x*~ imply that x -f x^~ = a, and so we are in the context above. Note also
that by a suitable choice of a we can arrange for the poset to satisfy the mix rule,
x ® y < x 0 y, or its opposite x ® y > x 0 y, or to be compact x <g> y = x 0 y.
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