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This volume is dedicated to Joachim Lambek by the editors and the
other authors, to honour the contributions he has made to the field
of mathematical linguistics. Without his work the volume would have
been impossible.



Introduction: the Lambek Program
C. Casabpio, P.J. ScorT, R.A.G. SEELY

A categorical grammar of a language may be viewed as consisting of
the syntactic calculus freely generated from a finite set {S, NV,...} of
basic types together with a dictionary which assigns to each word of
the language a finite set of types composed from the basic types and 1
by the three binary operations. ... The question now arises, given types
A and B, when is A — B a theorem, that is, when is there a proof
f: A— B? (Lambek 1988, 304)

Applying logic to grammar is a fundamental issue in philosophy,
propounded by such eminent philosophers as Leibniz, Bolzano, Frege
and Husserl. Categorial grammars and type logical grammars occupy a
central place in this line of investigation, although they have received
less attention than well-known linguistic theories such as transforma-
tional grammar or lexical-functional grammar. But during the latter
part of the twentieth century they have attracted the interest of a se-
lect, indeed growing, group of scholars so that now, at the beginning of
the twenty-first century, type logical grammars are promising models
of reasoning and computation.

Categorial grammars are interesting for the analysis of natural lan-
guage, both for their elegance and simplicity and for the straightfor-
ward relation they establish between a lexically based syntax (essen-
tially consisting of the morpho-phonological properties of the lexical
items along with their combinatorial properties) and a compositional
semantics. Classical categorial grammars, known as Ajdukiewicz/Bar-
Hillel (AB) grammars, are weakly equivalent to context-free phrase
structure grammars (CF-PSG). In the latter, the information encoded
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by the PS-rules is directly expressed in terms of the relations holding
between basic and functorial category symbols listed in the catego-
rial lexicon. These models are inadequate for analyzing many relevant
linguistic facts, such as long distance dependencies, generalized con-
junction or elliptical constructions. These are the same inadequacies
shared by all immediate constituent systems.

Traditional categorial grammars have been extended along two main
lines: (i) allowing a finer definition of the category symbols as complex
signs consisting, e.g., of sets of features and of level indices; (ii) allowing
a richer and more flexible set of categorial rules. In the standard model
these latter are limited to the rule of functional application of a functor
category to its argument(s) and the possible specification of the direc-
tion of combination (AB grammar). Starting from Ades and Steedman
(1982), the properties of many types of combinatory rules have been
studied, allowing the treatment of a wide range of unbounded depen-
dencies and constituent conjunction constructions, as shown in Oehrle
et al. (1988) and Moortgat (1988).

However, a more flexible approach to categorial grammar was al-
ready available in Bar-Hillel’s time, defining the set of categorial rules
(including functional application and composition, type raising, and
Geach’s rule) within an elegant algebraic theory. This is the calculus of
syntactic types developed by Joachim Lambek (Lambek 1958, 1961).
This calculus, widely known as the Lambek calculus, has been studied
from many points of view: logical, linguistic, mathematical, computa-
tional. It has been investigated as a particular kind of resource-sensitive
substructural logic and, as such, forms a distinguished fragment of in-
tuitionistic non-commutative linear logic (or bilinear logic, as defined
by Lambek himself).

Non-commutative linear logic is an attractive field in its own right,
both from the theoretical viewpoint and for its linguistic applications.
The properties of classical non-commutative linear logic have been stud-
ied in a number of papers (e.g. Abrusci 1991, 1995, 1996), while intu-
itionistic non-commutative linear logic, restricted to the multiplicative
fragment, was first introduced in Lambek’s syntactic calculus (SC). In
fact, the basic connectives of SC, the tensor product “e” , the left divi-
sion “\” , and the right division “/” , respectively correspond to the mul-
tiplicative conjunction and the two implications of non-commutative
intuitionistic linear logic (NILL). The two implications: “—” (linear
post-implication) and “o—” (linear retro-implication), are the result of
the exclusion of Gentzen’s structural rule of exchange. This restriction
is needed in the analysis of processes in which, as in ordinary linguis-
tic communication, the order of the premises and of the conclusions is
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relevant. In particular, SC corresponds to the multiplicative fragment
of NILL.

It is worth noting that Lambek (1999, 2000, 2001) recently developed
a new system, called compact bilinear logic, generated by an ordered
monoid (a pregroup in the sense of Grishin 1983) in which each element
has both a left and a right adjoint, whose properties are similar to the
two negations of classical non-commutative linear logic. The reader
may refer to Casadio and Lambek (2002) for a detailed comparison of
the syntactic calculus with classical non-commutative linear logic (or
classical bilinear logic) and compact bilinear logic.

0.1 The Syntactic Calculus

Introduced at the beginning of the 1960’s!, Lambek’s syntactic calculus
was crucial for the development of the algebraic side of Ajdukiewicz and
Bar-Hillel (AB)-grammars. The calculus gives an effective procedure,
or algorithm, to distinguish sentences from nonsentences in both formal
as well as natural languages. Lambek’s system is particularly suited to
the formal analysis of natural languages and may be applied to several
fields: (i) linguistics, in which it provides a rigorous formulation of the
grammar of a given language, based on purely logical-mathematical
properties. In particular, it allows an effective definition of the notion
of well-formed formulas (grammatical sentences); (ii) computation, in
which it provides a theory for parsing and diagrammatic strategies;
(iil) automatic translation, in which it offers an effective analytical pro-
cedure such that, starting with the source language as input, will yield
as output grammatical strings of the target language.

The syntactic calculus is a formal deductive systemn L consisting of
a set of types, or categories?, closed under the three binary operations

ILambek presented his calculus in two well-known papers: The mathematics of
sentence structure (Lambek 1958), and On the calculus of syntactic types (Lambek
1961). As pointed out in Lambek (2002), the arithmetic notation, connecting the
tensor product with a right and a left division, resulted from discussions with the
mathematician G. Findlay, during his post-doctoral stay at McGill University. The
calculus, with the inclusion of the two basic types n and s, was also influenced
by Church’s theory of types (Church 1940), as an alternative to the “heavy” type
hierarchy of Principia Mathematica. A further incentive in applying category theory
to linguistic analysis came from the discovery of Bar-Hillel’s paper in Language (Bar-
Hillel 1953), who independently developed similar ideas, and used the two divisions,
although not the product. See Lambek (1988), (2002).

2]t appeared that the word categorical should only refer to the categories in-
troduced by Einlenberg and Mac Lane in their pioneering article (Eilenberg and
Mac Lane, 1945), while categorial refers to the categories in the sense of types. Sam
Eilenberg assures me that their choice of the words category and functor was not
influenced by the occurrence of these words in the Polish school of logic. To avoid
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Ae B, C/B, A\C (to be read as: A times B, C over B, A under C),
together with certain axioms and rules of inference to be described
below.

The syntactic calculus generates certain relations (called sequents)
between linguistic expressions. Formally, a sequent is written X — Y,
where X and Y are types. Intuitively, those sequents derivable within
the calculus represent a kind of syntactic transformation which, starting
from a linguistic expression of type X produces an expression of type
Y. Alternatively, we may view X — Y as saying “type Y is derivable
from type X”, where we now think of the types themselves as kinds of
formulas of a logical system.

Initially we consider the following axiom schema and rules of infer-
ence for generating sequents; later we shall see several alternate pre-
sentations.

Axioms

A=A
(AeB)e(C — Ae(Be()
Ae(Be()—> (AeDB)e(C

Rules of Inference

AeB — Cifand only if A - C/B,
Ae B — Cif and only if B — A\C,
if A—» Band B — C then A = C.

There are a number of sequents easily derived from these axioms via
these inference rules, including the following.
1. (A/B)eB — A
Ae(A\B) - B
B - (A/B)\A
B - A/(B\A)
(A\B)/C « A\(B/C)
(A/B)/C < A/(C e B)
(4/B) e (B/C) — (4/C)
A/B — (4/C)/(B/C)
Models of the syntactic calculus may be constructed from any set M
equipped with a multiplication operator (denoted by +), by interpreting

the types as sets of elements of M and interpreting the operators of L
as follows.

e

any possibility of confusion, I shall here use type in place of category in the latter
sense.” Lambek (1988, 297-298).
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AeB={zyecM|zec ANy € B}
C/B={x €M |Vy € B,z-y € C}
AC={yeM |Vze Al zyecC}

By appropriately interpreting sequents, such models are both sound
and complete for the system L. Thus we can discuss the Lambek calcu-
lus either in terms of derivations within the deductive system L (what
logicians would call its “proof theory”) or in terms of its models, i.e.
multiplicative systems (M, -) satisfying the axioms and rules.

Notice that the second and third axioms above form the associative
law, which plays a crucial role with respect to the generative capac-
ity of the syntactic calculus. In fact, there is some room for variation
here: we could suppose that the multiplicative system (M, -) need not
necessarily be associative. If the associative law holds, M is a semi-
group allowing unbracketed strings, characterizing a strong notion of
constituency?®; if associativity is dropped, then only bracketed strings
are allowed corresponding to standard grammatical constituents, but
the types then increase in number and complexity*. M is a monoid if
it is a semigroup with a unit element 1; letting I = {1} we also get
a unit in the induced syntactic model of L, since both / ¢ A — A and
A — A e[ are derivable. For the present discussion, we shall consider
the associative syntactic calculus, taking advantage of the full set of
theorems (1)—(8) above.

Theorems (1)—(2) correspond to the cancellation rules (functional
application) of AB grammar. However, further operations can be per-
formed within the syntactic calculus, such as (7) which allows one to
combine two adjacent functorial categories. The content of this rule,
known as functional composition, from the analogy with the mathe-
matical operation, is that a function from A to B combines with a
function from B to C, to give a function from A to C'; the rule is given
for the right implication A/B, but also holds in the other direction:
A\B. The theorems (3) and (4) introduce the (left and right) rules to
expand monadic types known as type raising or type lifting rules, and
the expansion rule in (8) corresponds to the rule for expanding impli-
cational types A/B advocated by Geach (the same holds for the other
implication A\B). The rule (6) is derivable on the basis of (5), which
states that, according to associativity, parentheses may be omitted.
Associativity is required also for the rules (7) and (8).

As pointed out by Lambek®, when applying this notation to a natural

3This is the associative syntactic calculus introduced in Lambek (1958).
4The non-associative syntactic calculus is introduced in Lambek (1961).
5See e.g. Lambek (1988), (1989), (1993).

October 4, 2004
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language, such as English or Italian, we are thinking of the multiplica-
tive system, semigroup or monoid, freely generated by the words of
the language under concatenation (expressed by the tensor product).
Which of these three kinds of algebraic systems is relevant depends
on whether one is interested in bracketed strings (i.e. trees), or un-
bracketed strings, or whether one wants to take the empty string into
consideration.

We may think of the syntactic calculus (as a free multiplicative sys-
tem, or semigroup or monoid, generated by the words of a language)
as a universal system of rules in which a language-specific dictionary
is embedded. Sets of strings of words will be called (syntactic) types.
We will write S for the type of declarative sentences, and N for the
type of names such as Mary, John. Starting from these basic types and
the rules of the syntactic calculus, we can derive the types of the other
sentential constituents.

For instance, taking the set B of basic categories given in (a), we
can deduce the complex types for the English expressions in (b)—(d),
so that the expressions obey the theorems derived above.

a. B=[N,NP,S]

b. if Mary - NP and Mary works — S,
then works — NP\S ;

c. if apple = N and an apple - NP,
then an - NP/N ;

d. if Mary ate an apple - S and Mary — NP,
then ate an apple - NP\S ;
if an apple - NP, then ate — (NP\S)/NP .

The syntactic calculus will assign the type S (sentence) to a given
string of words if and only if the dictionary assigns a type B; to each
word and the sequent B, e ---eB, — S is a theorem of the syntactic
calculus; that is, the combination of the assigned types multiply to the
single type S , on the basis of the axioms and inference rules of the
system.

0.2 Linguistic limitations: unbounded dependencies

Lambek grammar allows a relatively powerful system of rules, but sev-
eral questions are still open in particular with reference to the treat-
ment of long distance dependencies and constituent conjunction. These
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phenomena may involve an inversion or permutation of the functor-
argument order, a fact that does not follow directly from the syntactic
calculus and has to be postulated as an additional axiom or rule. Per-
mutations of the kind®:

X/YY —»Y X/Y Permutation I: /
X X\Y - X\Y X Permutation II:\

are in fact excluded by the axioms and inference rules of the syntac-
tic calculus, which only allows the derivation of the (left and right)-
oriented constituent structures: X/Y Y and X X\Y; to obtain the
required inversion it is necessary to explicitly add a new inference rule
of permutation”. As an example involving a simple sentence, consider
Figure 1 where the locative PP occurs between the subject and the
predicate:

a. Maria sul tavolo mette una tovaglia nuova.
Mary, on the table, is putting a new table cloth.

b. (sul tavolo) mette (una tovaglia nuova)

(VP/PP)/NP NP
pp VP/PP /
VP '

FIGURE 1 Syntactic calculus: Permutation

(In this and subsequent figures, we have represented the evident deriva-
tion by a corresponding natural deduction style proof tree. We shall
leave to the reader the simple exercise of translating this to the se-
quent style presentation of the syntactic calculus given earlier.) At the
stage of the derivation in which the argument PP must combine with
the corresponding predicate we are faced with two options, both im-
plying an extension going beyond the expressive power of the syntac-
tic calculus: either we need a rule that if PP ¢ VP/PP — VP, then
PP — VP/(VP/PP), or we need an axiom PP e VP/PP — VP
(under permutation).

6We frequently drop evident occurrences of the “times” e, treating a string of
types as their ‘product”.

7See van Benthem (1988), (1991), Moortgat (1988), (1997); the syntactic calculus
is in fact non-commutative.

October 4, 2004
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In the first case, a complex type is derived from the basic type PP
which, inverting the functor-argument order, allows the combination
with the predicate. Such a strategy is costly since the number of (left
or right)-expanded types associated to the initial categories can indef-
initely increase. Moreover, we lose the important relation holding be-
tween a functional head, such as a ditransitive verb V.= (VP/PP)/NP
and its subcategorized arguments (PP and NP). The second solution
consists in admitting some kind of permutation rule within the L gram-
mar. Since this solution increases the generative power of the grammar,
such rules need to be restricted to specific structural positions.

A typical environment in which we are faced with the difficulty men-
tioned above is represented by the structural configurations known as
unbounded dependencies®. Consider the examples below and the deriva-
tions presented in Figure 2 and Figure 3:

a. Gianni ha detto che Maria ha perso il treno.
Gianni said that Mary had missed the train.

b.  Che cosa hai detto che Maria ha perso?
What did you say that Mary had missed?

Gianni ha detto che Maria ha perso il treno

(NP\S)/NP NP
NP NP\S
S/S S \
(NP\S)/S S /
NP NP\S /
S \

FIGURE 2 Syntactic calculus: Unbounded dependency I

The direct object of the embedded clause in the declarative sentence
(a) occurs in initial sentence position within the corresponding Wh-
question (b). Generative grammar analyzes this contrast as an effect
of the transformation of Wh-movement?. From the point of view of

8See Gazdar and Pullum (1982), Gazdar et al. (1985), and Morrill (1994).
9See e.g. Chomsky (1965), (1973).

/
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Che cosa Gianni ha detto che Maria ha perso?

(NP\S)/NP
NP NP\(S/NP)
5/5 S/NP
(NP\S)/S S/NP
(NP\S)/NP
NP NP\(S/NP)
NP S/NP

Brackets

Compose

Compose
Brackets

\

Permute

FIGURE 3 Syntactic calculus: Unbounded dependency II

categorial grammar, the direct combination and easy computation dis-
played in Figure 2, obtained by applying the rule of functional applica-
tion in the two directions, is missed in the derivation of the unbounded
dependency. As shown in Figure 3, four different types of rules are
needed: Brackets, following from Associativity, Composition, to gen-
erate the complex verbal constituent with a missing /N P-argument,
(left)- Application, to combine with the embedded and the main sub-
ject NP, and Permutation, to ‘close’ the dependency and combine the
leftmost VP argument, a Wh-pronoun in this case, with the complex
predicate of type S/NP.

The set of rules of the associative syntactic calculus L are summa-
rized in Table 1, where the last two lines include the permutation rules
that can be added to extend the generative capacity of the system!?.

0.3 Decision procedure

The decision problem for the syntactic calculus consists in determining
the set of strings that are theorems. By this we mean to find an effective
algorithm for deciding whether a sentence, corresponding to a string of
types, is deducible from the axioms and inference rules of the syntactic
calculus.

As remarked by Lambek!!, in the systems of Ajdukiewicz and Bar-
Hillel the corresponding question was easily answered, since there were

10However the addition of these to the axiomatic base has the critical effect of
making the calculus L collapse into its permutation closed variant LP; see Moortgat
(1988, 90-91).

11See Lambek (1988, 304), (2002).

October 4, 2004
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(0 XYY —>X RIGHT APPLICATION: /
(I1) XX\Y -»Y LEFT APPLICATION: \
(I11) X - (Y/X)\Y EXPANSION I: \

(IV) X -Y/(X\Y) EXPANSION I: /

(V) X\Y = (Z\X)\(Z\Y) EXpaNSION II

1\
(VI) X)Y - (X/Z)/(Y/Z)  EXpansioN II: /
2/
1\

(VII) X)YY/Z—->X/Z COMPOSITION

(VIII)  X\Y Y\Z - X\Z COMPOSITION

*(IX) X/YY-Y XY PERMUTATION I: /
*X) X X\Y-X\Y X PERMUTATION IT: \

TABLE 1 Rules of the syntactic calculus

only the contraction rules (A/B) e B — A and Ae (A\B) — B, and of
course the implicit associativity. The syntactic calculus, on the other
hand, contains not only contraction rules, but also expansion rules, such
as the type lifting rules and the division rules discussed above (III-VI
in Table 1).

The decision problem was solved by Lambek by applying to the
freely generated syntactic calculus an adaptation of the decision proce-
dure discovered by Gentzen for intuitionistic propositional calculus®?.
It is not surprising that a similar procedure should work, since the
syntactic calculus is essentially Heyting’s intuitionistic propositional
calculus from which the three structural rules of Gentzen: weakening,
contraction, and exchange (see Table 2 ) have been excluded.

The formulation of axioms and inference rules of the syntactic cal-
culus within Gentzen’s two-sided sequent calculus is given in Table 3,
where capital Greek letters stand for finite sequences A, ..., 4,3, In

12Gentzen (1934), Kleene (1952, XV).
13«All one has to do is to replace arrows f: A — B with multi-arrows
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CONTRACTION WEAKENING EXCHANGE

rAJAJ/A - B A - B I'A,B,A = C
risa58 9 taa58™ T5aa 50 ®

TABLE 2 Gentzen’s Structural Rules

a cut-free Gentzen-style system, it is clear whether a sequent I' — S
is derivable or not. But in general, formal proofs make use of the cut
rule, which considerably complicates proof search. However, following
Gentzen, one can prove that cuts can be eliminated '*. “The proof of
the cut elimination theorem for the syntactic calculus is easier and, in a
sense, purer than the corresponding proof for the intuitionistic proposi-
tional calculus, because of the complete absence of Gentzen’s so-called
structural rules” (Lambek 1988, 306).

As an illustration, in Table 4 we show the proofs of the Associative
rule (in one direction), and of the introduction of Right Application,
presented in Lambek (1958), and the proofs of the Identity rule, with
cut and without cut, given in Lambek (1988). In the proofs, the se-
quences I' and A are assumed to be empty, and the tensor product is
denoted, as we did earlier, by simple juxtaposition.

0.4 Generative capacity of Lambek grammars

The hierarchy of grammars defined by Chomsky suggests an interesting
question: what is the status of the Lambek calculus within this hierar-
chy? Chomsky himself conjectured the weak equivalence of product-free

fi A1, A, .. A, — B. Leaving out the letter f we obtain what Gentzen calls
a sequent.” Lambek (1988, 304-305).

The equivalence of the full sequent calculus formulation of the syntactic cal-
culus with the earlier presentation above arises by identifying a general sequent
A1, Aa, ..., Ap — B with the sequent A; e Aye...0 A, — B.

14The proof of the cut elimination theorem can be done by induction on the
occurrences of connectives within the principal formula of the cut rule. For systems
without the symbol I, this was done in Lambek (1958). The inclusion of I was shown
to cause no difficulty in Lambek (1969), where the proof was lifted to the categorical
level, interpreting the sequents as multilinear operations. The proof is reconsidered
in “Logic without Structural Rules. (Another Look at Cut Elimination)”, Lambek
(1993), and becomes more transparent by using terms, inductively defined, in place
of operations.

October 4, 2004
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AXIOM & CUT

r-A4 AAA B

A5 A (Axiom) AT AN B oD
e RULES
ILA,B,I' »C
/ (L, o) -4 A-B (R, o)
I'NAeB I'' - (C I''A—>AeB
/ RULES
r-B AAA,-C IB— A
) ) ) L )
A, A/B,T,A = C (L. /) T > A/B (. /)
\ RULES
-4 ABA —>C ATl—-B
7 7 L )
AT,A\B,A - C (L:\) I - A\B (£.\)
I RULES
I'A— A )
LA — A =1

TABLE 3 Syntactic calculus: Gentzen Presentation

Lambek grammars and context-free grammars'®. Before this, an im-
portant result was obtained by Gaifman, who proved the weak equiva-
lence of Bar-Hillel categorial grammar (AB grammar) with context free
grammars (CFG)!6. Following Chomsky’s suggestion, Cohen'” gave a
proof of the equivalence of product-free Lambek grammars and CFG’s,
but, as shown by Zielonka and Buszkowski, his reasoning was in fact
incorrect. A new proof of the weak equivalence of the left-division
and product-free Lambek grammar with CFG’s was then given by

15Chomsky (1963); the term Lambek grammar is used here for syntactic calculus.
16Bar-Hillel, Gaifman and Shamir (1960).
17Cohen (1967).
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PROOF OF ASSOCIATIVITY PROOF OF RIGHT APPLICATION

BB C—=C A—>A BB
A=A B,C — BC A, B— AB B—>B AB—>C
A,B,C — A(BC) A—)(AB)/C/ (AB)/C,B—)C/
AB, C - A(BC) AL BoC cur
(AB)C — A(BC) A—C/B

PROOF OF IDENTITY WITH CUT CUT-FREE PROOF OF IDENTITY

A— A A— A

AT—-A LT A5 A A T— A

Al— A A—)IACUT -1 AI—- A
Al —-TA Al —-TA

TABLE 4 Proofs in Intuitionistic Sequent Calculus

Buszkowski'®.

On the basis of these results we know that context-free grammars are
weakly equivalent to Lambek grammars, but the converse, correspond-
ing to Chomsky’s conjecture, is not trivial. A definitive answer was
given by Pentus!'?, who proved that the languages generated by Lambek
grammars are exactly the context-free languages. We summarize the re-
sults concerning the generative power of the Lambek grammar in Table
5, where L(G) is the language of the grammar G.

As shown by Buszkowski (1993), the Gaifman theorem, establishing
the equivalence of AB grammars (ABG) and CFG’s, is the conjunction
of two statements: (i) each ABG is equivalent to some CFG; (ii) each
CFG is equivalent to some ABG, whose initial type assignment uses at
most types of the form p, p/q, (p/q)/r (where p, g, r are atomic types).
The direction involved in each of these statements has been extended
also to the Lambek grammars in several steps concluded by the Pentus
theorem. The last line of the table introduces the important result
of Kanazawa (1992), (1994), concerning the extensions of the Lambek
calculus with additional connectives, in particular additive connectives.

18See Zielonka (1981), Buszkowski (1985), (1986); see also Buszkowski (1997).
19Pentus (1993), (1997). Pentus’ proof is discussed in detail in Retoré (2000).
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Two grammars G and H are weakly equivalent iff L(G) = L(H).

GAIFMAN THEOREM (1960) : The languages recognized by basic CGs (ABG)
are the context-free languages; ABG’s are weakly equivalent to CFG’s .

CHOMSKY CONJECTURE (1963) : The languages recognized by Lambek CG
are the context-free languages; Lambek CGs are (weakly) equivalent to CFG’s .

BuszKOwsKI PROOF (1985), (1988) : Unidirectional Lambek CGs are (weakly)
equivalent to context-free grammars .

KANDULSKI PROOF (1988) : Equivalence of non-associative Lambek CGs and
context-free grammars .

PENTUS PROOF (1993), (1997) : Lambek CGs generate only context-free lan-
guages, thus, Lambek CGs are (weakly) equivalent to context free grammars
and also to basic CGs.

BuszKOwWSKI PROOF (1993) : for any product-free Lambek CG there is an
equivalent basic CG (ABG).

KANAZAWA (1992) : CGs based on the Lambek calculus with additive
conjunction surpass the recognizing power of context-free grammars .

TABLE 5 Lambek Grammars: Generative Capacity

0.5 Lambek calculus and non-commutative linear logic

There is an interesting prefiguration of linear logic in the literature,
namely Lambek’s syntactic calculus, introduced in 1958 to cope with
certain questions of linguistics ... This system is based on a non-
commutative ® which in turn induces two linear implications. There
would be no problems to enrich the system with additives & and &,
but the expressive power remains extremely limited. The missing items
are exponentials and negation ... (Girard 1995, 6) ¢

Lambek’s syntactic calculus corresponds to the multiplicative frag-
ment of non-commutative intuitionistic linear logic (NILL). In fact
the basic connectives of the syntactic calculus, the tensor product

20The problem of adding exponentials to Lambek CG’s is discussed in this volume
by P. de Groote
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“e”, the left division “\” and the right division “/”, correspond re-
spectively to the multiplicative conjunction ® and the two implica-
tions of (NILL), “—” (linear post-implication) and “o—" (linear retro-
implication) which result from the exclusion of the structural rule of
exchange.
Here are some examples of the logical types of the syntactic calcu-
lus and of their translations into non-commutative intuitionistic linear
logic, starting from the basic types N P (noun phrase) and S (sentence):

Intransitive verb: 1V NP\S NP —- S

Transitive verb: TV (NP\S)/NP (NP —-S)o— NP
Ditransitive verb: DTV  ((NP\S)/PP)/NP ((NP—oS)o-PP)o-NP
Determiner phrase®': @ S/(NP\S) So— (NP —S)
Determiner phrase: Q2 (S/NP)\S (So- NP)—0S)
Intransitive adverb: IVA  (NP\S)\(NP\S) (NP —-S)— (NP — 5)
Preposition: P PP/NP PPo- NP

In the framework of intuitionistic non-commutative linear logic, the
fact that a string of words of a language is a sentence of that language
may be represented by writing a sequent with conclusion®? S; e.g. the
string of English words (the, children, eat, apples) corresponds to the
sequent:

The children: NP, eat: TV, apples: NP — S

that formalizes the empirical observation that a transitive verb gives
a sentence, when it is preceded and followed by a noun phrase. The
corresponding type for the transitive verb is derivable by the logical
rules of introduction of the two implications:

eat: (NP — S)o— NP

From this simple example it is easy to see that non-commutative lin-
ear logic is basically resource sensitive: the number of the linguistic
resources and the order in which they are produced or consumed is
always taken into account. In fact, non-commutative linear logic pays
attention to the direction of the linguistic processes and does not try
to avoid the obstacles met in communication (e.g. changing the word
order by means of suitable transformations), but finds new ways of
communication by changing the points of view from which the linguis-
tic environments are considered.

21Q; denotes determiner phrases in subject position and @2, determiner phrases
in object position.

228equents of intuitionistic non-commutative linear logic allow just one formula
in the conclusions.
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0.6 The papers in this volume

This volume offers a series of contributions to the perspectives on lin-
guistics arising from the Lambek program?3. Its intended audience
is specialists: researchers, graduate students who already know about
type-logical approaches to grammar, computer scientists and logicians
who know about type theory and are interested in high-quality natural
language applications. Although we hope this introductory essay will
help the reader place this material in context, it will be clear that the
subsequent papers will require expertise beyond what we have covered
here. Beginners new to this framework will want to consult the pa-
pers in the various bibliographies, and will probably find the material
challenging, but worth further investigation.

At the core of the volume is the continuing mathematical research on
the syntactic calculus and its extensions, and with the corresponding
fragments of linear logic. This is pursued here in several papers which
appear in Section 2, “Grammar”. M. Pentus considers conditions char-
acterizing atomicity (whether a type is equivalent to an atomic type) in
the Lambek calculus (allowing empty premises) as well as in constant-
free noncommutative multiplicative linear logic. W. Buszkowski stud-
ies the (associative and non-associative) Lambek calculi enriched with
“non-logical axioms”, and gives a (new) proof that the former are un-
decidable, whereas the latter are decidable in polynomial time, and
generate context-free languages.

As was mentioned in the quotation above by J-Y Girard, in linear
logic one may re-introduce the structural rules in a controlled manner
via the “exponential” modalities ! (“of course!”) and ? (“why not?”).
P. de Groote considers the corresponding extension of the product-free
associative Lambek calculus, and shows any recursively enumerable lan-
guage can be described by a categorial grammar based on this system
(which in particular shows the system to be undecidable). Next, the
paper by M. Fadda and G. Morrill develops a calculus combining fea-
tures of the two variants Lambek originally presented in 1958 and 1961,
one based on expressions as strings (i.e. as flat trees), the other based
on expressions as binary-bracketed strings (i.e. as binary trees). Their
new calculus configures expressions as bracketed strings in general (i.e.
as general trees); they give a completeness theorem for this system in
terms of pre-ordered bracketed monoids, and a correctness theorem in
terms of a notion of “bracketed” proof nets (similar to those of linear

23In order to give readers the historical background, as well as a survey of impor-
tant research in the field, at the end of this section we have provided an extended
list of references, not all of which are referred to in the introduction.
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logic).

Recently Lambek has introduced the notion of pregroup as a vehi-
cle for understanding the grammars of natural languages; Buszkowski
has shown that languages based on free pregroups are context-free. We
end this section with three papers dealing with these pregroups. First,
a paper by Lambek introduces the notion with examples of its use in
categorial grammar. A short paper by M. Barr studies a family of ex-
amples of these pregroups (this paper is entirely mathematical). And
finally, Moortgat and Oehrle consider combining the simple computa-
tional properties of pregroup grammars with the linguistic expressive-
ness of type logical grammar, which usually is rather more complex
computationally.

This mathematical core section is framed by two sections. The first
section, “Language”, consists of two papers which offer an exploration
of the fundamental subjects involved in the formal analysis of language.
J. van Benthem considers the “fit” between the logical and mathemat-
ical machinery and the natural languages it attempts to analyse. His
conclusion that “the love match brokered by Lambek between catego-
rial grammar and natural language still has some romance to it, even
though there are lots of interesting twists, misunderstandings and sub-
plots to go before the happy ending” is a theme of this entire volume.

E. Keenan studies some entailment patterns in English and their
semantic generalizations, giving a formal framework for their analy-
sis. This paper illustrates the spirit of the program: while it does not
draw directly on Lambek’s work, it is inspired by his mix of linguistic
observation and mathematical formulation.

The third section, “Language and Grammar”, concludes the volume
with some papers which we think reflect a synthesis of the concepts be-
hind the program. A. Lecomte’s paper represents a transition between
Section 2 and Section 3 . He draws a connection between categorial
grammar and minimalist grammar, in which syntax and semantics in-
teract via two proof systems (one for each), so that syntactic operations
are converted into semantical ones, and semantics acts as a correctness
check for syntactic derivations.

B.S. Gillon offers a more traditionally presented paper on subject
predicate order in classical Sanskrit. D. Bargelli gives a computational
approach to the noun in Burushaski, using techniques developed by
Lambek and his coauthors for other languages, from French to Arabic.
M. Kandulski presents a survey of tree languages generated by catego-
rial grammars, providing a context for many of the key technical results
discussed in this introduction.

Finally G. Morrill illustrates the potential for geometry of language
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and linguistic circuitry characterizing the syntactic structures of Lam-
bek categorial grammar as proof nets of linear logic. With that paper,
we end the volume, but clearly work within and around the Lambek
program continues to enrich our understanding of language and gram-
mar.

References

(1]

(2]

[7]

[8]

Abrusci, V. M. 1991. Phase semantics and sequent calculus for pure
Noncommutative Classical Linear Propositional Logic. The Journal of
Symbolic Logic, 56:1403-1451.

Abrusci, V. M. 1995. Noncommutative proof nets. In Advances in Linear
Logic, eds. J. Y. Girard et al., 271-296. Cambridge: Cambridge Univer-
sity Press.

Abrusci, V. M. 1996. Lambek Calculus, Cyclic Multiplicative-Additive
Linear Logic, Noncommutative Multiplicative-Additive Linear Logic:
language and sequent calculus. In Proofs and Linguistic Categories. Ap-
plications of Logic to the Analysis and Implementation of Natural Lan-
guage, eds. V. M. Abrusci and C. Casadio, 21-48. Bologna: CLUEB.
Ades, A. E. & M. J. Steedman. 1982. On the Order of Words, Linguistics
and Philosophy, 4: 517-558.

Ajdukiewicz, K. 1935. Die syntaktische Konnexitat, Studia Philosophica,
1: 1-27. Eng. trans., Syntactic connexion. In Polish Logic, ed. S. McCall.
Oxford: Clarendon Press, 1967.

Bar-Hillel, Y. 1953. A quasi-arithmetical notation for syntactic descrip-
tion. Language, 29: 47-58. In Language and Information Selected Essays
on their Theory and Application, ed. Y. Bar-Hillel, 61-74. Palo Alto:
Addison-Wesley.

Bar-Hillel, Y., C. Gaifman & E. Shamir 1960. On categorial and phrase
structure grammars, The Bulletin of the Research Council of Israel, 1-
16. In Language and Information: Selected Essays on their Theory and
Application, ed. Y. Bar-Hillel, 99-115, 1964. Palo Alto: Addison-Wesley.
Van Benthem, J. 1983. The semantics of variety in categorial gram-
mar. Report 83-29, Simon Fraser University, Burnaby (B.C.), Canada.
In Categorial Grammar, eds. W. Buszkowski, W. Marciszewski & J. van
Benthem, 1988. Amsterdam: Benjamin.

Van Benthem, J. 1988. The Lambek Calculus. In Categorial Grammars
and Natural Language Structures, eds. R. T. Oehrle et al., 35-68. Dor-
drecht: Reidel.

Van Benthem, J. 1991. Language in Action. Categories, Lambdas, and
Dynamic Logic., Amsterdam: North Holland.

Buszkowski, W. 1985. The equivalence of unidirectional Lambek catego-

rial grammars and context free grammars, Zeitschr. f. math. Logik und
Grund. d. Math., 31: 308-384.



[12]

[13]

[14]

[15]

[16]

[17]

[21]

[22]

23]
[24]
[25]
[26]
[27]

28]

[29]

INTRODUCTION / xxix

Buszkowski, W. 1986. Completeness results for Lambek Syntactic Cal-
culus, Zeitschr. f. math. Logik und Grund. d. Math., 32: 13-28.
Buszkowski, W. 1988. Generative power of categorial grammars. In Cat-
egorial Grammars and Natural Language Structures, eds. R. T. Oehrle
et al.. Dordrecht: Reidel.

Buszkowski, W. 1993. On the equivalence of Lambek categorial grammar
and basic categorial grammars, ILLC prepublication Series, vol. LP-93-
07, ILLC, Amsterdam.

Buszkowski, W. 1997. Mathematical linguistics and proof theory. In
Handbook of Logic and Language, eds. J. van Benthem & A. ter Meulen,
683-736. Amsterdam: Elsevier.

Casadio, C. & J. Lambek. 2001. An algebraic analysis of clitic pronouns
in Italian. In Logical Aspects of Computational Linguistics, eds. P. de
Groote, G. Morrill and C. Retoré, 110-124. Berlin: Springer-Verlag.
Casadio, C. & J. Lambek. 2002. A tale of four grammars, Studia Logica,
71(2):315-329. Special Issue edited by W. Buszkowski.

Chomsky, N. 1957. Syntactic Structures. The Hague: Mouton.
Chomsky, N. 1959. On certain formal properties of grammars, Informa-
tion and Control, 2: 137-167.

Chomsky, N. 1963. Formal properties of grammars. In Luce R. D., R.
R. Bush and E. Galanter (eds.)(1963), Handbook of Mathematical Psy-
chology, J. Wiley and Sons, New York.

Chomsky, N. 1965. Aspects of the Theory of Syntaz. Cambridge (Mass.):
The MIT Press.

Chomsky, N. 1973. Conditions on transformations. In A Festchrift for
Morris Halle, eds. Anderson S. & P. Kiparsky. New York: Holt, Rinehart
and Winston.

Church, A. 1940. A formulation of the simple theory of types, The Jour-
nal of Symbolic Logic, 5:56-69.

Cohen, J. M. 1967. The equivalence of two concepts of categorial gram-
mar, Information and Control, 10: 475-484.

Eilenberg, S. & S. Mac Lane. 1945. General theory of natural equiva-
lences, Trans. Amer. Math. Soc., 58: 231-294.

Gazdar G. & G. K. Pullum. 1982. Generalized Phrase Structure Gram-
mar: A Theoretical Synopsis. Bloomington: I.U.L.C. .

Gazdar, G., E. Klein, J. Pullum, & I. Sag. 1985. Generalized Phrase
Structure Grammar. Oxford: Blackwell.

Gentzen, G. 1934. Untersuchungen iiber das logische Schliessen, Math-
ematische Zeitschrift, 39, Eng. transl. in M. E. Szabo (ed.)(1969), The
Collected Papers of Gerhard Gentzen, 68-131, North Holland, Amster-
dam.

Girard, J.-Y. 1995. Linear logic: its syntax and semantics. In Advances in
Linear Logic, eds. J. -Y. Girard et al., 271-296. Cambridge: Cambridge
University Press.

October 4, 2004



October 4, 2004

xxx / C. Casapio, P.J. ScoTT, R.A.G. SEELY

[30]

[31]

[32]

[42]

[43]
[44]

Grishin, V. N. 1983. On a generalization of the Ajdukiewicz-Lambek
system. In Studies in Nonclassical Logics and Formal Systems, 315-343.
Moscow: Nauka. Eng. trans. by D. Cubric, edited by author. In New
Perspectives in Logic and Formal Linguistics, eds. Abrusci V. M. & C.
Casadio, 2002. Roma: Bulzoni Editore.

Kanazawa, M. 1992. The Lambek calculus enriched with additional con-
nectives, Journal of Logic, Language and Information, 1: 141-171.

Kanazawa, M. 1994. Learnable Classes of Categorial Grammars. Ph.D.
Dissertation, Stanford. Stanford, California: CSLI Publications/FoLLI,
1998.

Kandulski, M. 1988. The equivalence of nonassociative Lambek Cate-
gorial Grammars and Context Free Grammars, Zeit. Math. Logik und
Grund. Math., 34:41-52.

Kleene, S. C. 1952. Introduction to Metamathematics. New York: Van
Nostrand & Amsterdam: North Holland.

Lambek, J. 1958. The mathematics of sentence structure, American
Mathematical Monthly, 65: 154-170.

Lambek, J. 1961. On the calculus of syntactic types. In Structure of
Language and its Mathematical Aspects, ed. R. Jacobson. AMS, Provi-
dence.

Lambek, J. 1969. Deductive systems and categories II. Springer LNM
87, 76-122.

Lambek, J. 1988. Categorial and categorical grammars. In Categorial
grammars and Natural Language Structures, eds. R. T. Oehrle et al.,
297-317. Dordrecht: Reidel.

Lambek, J. 1989. On a connection between algebra, logic and linguistics,
Diagrammes, 22: 59-75.

Lambek, J. 1993. Logic without structural rules. (Another look at cut
elimination). In Substructural Logics, eds. K. DoSen & P. Schroeder-
Heister, 179-206. Oxford: Oxford University Press.

Lambek, J. 1999. Type grammars revisited. In Logical Aspects of Com-
putational Linguistics, eds. A. Lecomte, F. Lamarche & G. Perrier, 1-27.
Springer LNAT 1582.

Lambek, J. 2000. Pregroups: a new algebraic approach to sentence struc-
ture. In Recent Topics in Mathematical and Computational Linguistics,
eds. C. Martin-Vide & G. Paun. Bucharest: Editura Academici Roméane.

Lambek, J. 2001. Type grammars as pregroups, Grammars 4: 21-39.

Lambek, J. 2002. Réminescences Catégorielles. In Les grammaires
catgorielles. Histoire et perspectives contemporaines, ed. B. Godart-
Wendling, Langages, 146. Paris: Larousse.

Moortgat, M. 1988. Categorial Investigations. Logical and Linguistic As-
pects of the Lambek Calculus, Dordrecht: Foris.



INTRODUCTION / xxxi

[46] Moortgat, M. 1997. Categorial Type Logics. In Handbook of Logic and
Language, eds. J. van Benthem & A. ter Meulen, 93-177. Amsterdam:
Elsevier Science Publishers.

[47] Morrill, G. 1994. Type Logical Grammar. Dordrecht: Kluwer.

[48] Oehrle, R. T., E. Bach & D. Wheeler, eds. 1988. Categorial Grammars
and Natural Language Structures. Dordrecht: Reidel.

[49] Pentus, M. 1993. Lambek grammars are context free. In Proceedings
Eighth LICS Conference, 429-433, Montreal.

[50] Pentus, M. 1997. Product-free Lambek calculus and context-free gram-
mars, Journal of Symbolic Logic, 62: 648—660.

[61] Retoré, C. 2000. The Logic of Categorial Grammar, Lecture Notes at
ESSLLI 2000, Birmingham.

[62] Zielonka, W. 1981. Axiomatizability of Ajdukiewicz-Lambek calculus by
means of cancellation schemes, Zeitschr. f. math. Logik und Grund. d.
Math., 27: 215-224.

Acknowledgments

The present collection would have not been possible without the schol-
arship of Joachim Lambek; he has been the inspiration for the volume
and all the results it contains. We thank him for all that as well as
for many specific pieces of advice and help he has provided during the
preparation of this book. All who have worked with him will attest
to the fact that he is a valued collegue and cherished friend; we are
pleased and honoured to dedicate this book to him as a celebration of
his contributions to mathematical linguistics.

We also wish to thank all the anonymous referees who in the course
of two years have offered their help in reading and commenting on
the papers collected in this volume. We believe all these works offer
stimulating insight into the research field of type logical grammars and
Lambek’s theoretical contributions.

October 4, 2004



