
Final Examination 201-NYB-05 December 2016

1. Evaluate the following integrals.

(a)

∫
cos3 x√

sinx
dx

(b)

∫
x arcsin(x2)√

1− x4
dx

(c)

∫
x+ 6

x(x2 + 2x+ 3)
dx

(d)

∫
sin(lnx) dx

(e)

∫
1

x3
√
x2 − 4

dx

(f)

∫ √
3 + x

3− x
dx

2. Evaluate the following limits.

(a) lim
x→0+

ln(sinx)

ln(sin(2x))

(b) lim
x→π/2−

(tanx)2x−π

(c) lim
x→0

(
1

x
− 3

e3x − 1

)

3. Evaluate each improper integral or show that it diverges.

(a)

∫ ∞

0
(−xe−x) dx

(b)

∫ 2

0

1

(x− 1)2/3
dx

4. Give the solution of the differential equation cosx
dy

dx
= sinx

√
y2 + 4 which satisfies y = 0 if x = 0.

5. Find the area of the region bounded by y1 = x3 + x2 + 3x+ 1 and y2 = x3 + x+ 4.

6. Let R be the region bounded by x = 0, f(x) = 1 + x and g(x) = x3 + x. Set up, but do not evaluate, an
integral which represents the volume obtained by revolving R about:

(a) the x-axis;

(b) the line x = 3.

7. Find the arc length function for the curve x = 1
4y

2 − 1
2 ln y, taking

(
1
4 , 1
)

as the starting point.

8. Determine with justification, whether the sequence {an} converges or diverges. If a sequence converges, find
its limit.

(a) an =

(
3n+ 1

3n− 1

)n

(b) an =
n3(2n)!

(2n+ 2)!

9. For the telescoping series

∞∑

n=1

(
1

n
− 1

n+ 2

)
,

(a) give a formula for sn, the sum of the first n terms of the series, and (b) find the sum of the series.
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10. Determine whether each series is convergent or divergent. Justify your answers.

(a)
∞∑

n=0

√
n2 + 3

3n2 + 7

(b)

∞∑

n=1

lnn

n3/2

11. Determine whether each series is absolutely convergent, conditionally convergent or divergent. Justify your
answers by displaying proper solutions.

(a)
∞∑

n=1

(−1)n
n!

1 · 3 · 5 · 7 · · · · · (2n+ 1)

(b)

∞∑

n=1

(−1)nnn

3n+1

(c)
∞∑

n=1

cos(nπ)√
5n+ 3

12. Find the radius and interval of convergence of the power series

∞∑

n=1

(−1)n(x+ 1)n

5n
√
n

.

13. For the function f(x) =
1

2 + x
, find the Taylor series around x = 1. Write the first four terms of the series

explicitly, and express the series using appropriate sigma notation.



Solutions

1. a. If y =
√

sinx then 2ydy = cosxdx and cos2 x = 1 − y4, so
∫

cos3 x√
sinx

dx = 2
∫
(1 − y4)dy = 2

(
y− 1

5y
5
)
+a = 2

5 (5 − sin2 x)
√

sinx+a.

b. If y = arcsin(x2) then dy = 2x(1 − x4)−1/2 dx, so
∫
x arcsin(x2)√

1 − x4
dx = 1

2

∫
ydy = 1

4

(
arcsin(x2)

)2
+ b.

c. The resolution into partial fractions of the integrand is
x+ 6

x(x2 + 2x+ 3)
=

2
x

−
2x+ 3

x2 + 2x+ 3
,

where the coefficient over x is found by inspection (covering and evaluating) and the coefficients
over x2 + 2x+ 3 are obtained by comparing the quadratic and constant terms of the numerator.
The integral of the second partial fraction is
∫ {

2x+ 2
x2 + 2x+ 3

+
1

(x+ 1)2 + 2

}
dx = log(x2 + 2x+ 3) + 1

2
√

2 arctan
( 1

2
√

2(x+ 1)
)
+ c,

and therefore∫
x+ 6

x(x2 + 2x+ 3)
dx = log x2

x2 + 2x+ 3
− 1

2
√

2 arctan
( 1

2
√

2(x+ 1)
)
+ c.

d. Repeated partial integration and absorbtion gives
∫

sin(logx)dx = x sin(logx) − x cos(logx) −
∫

sin(logx)dx

= 1
2x (sin(logx) − cos(logx)) +d.

e. If y =
√
x2 − 4, then y2 = x2 − 4, so ydy = xdx and

d
( y
x2

)
=
dy

x2 −
2ydx
x3 =

dy

x2 −
2(x2 − 4)
x3y

dx =
8dx
x3y

−
dy

y2 + 4
.

Therefore,
∫

dx

x3
√
x2 − 4

=
y

8x2 + 1
8

∫
dy

y2 + 4
=

√
x2 − 4
8x2 + 1

16 arctan
(

1
2

√
x2 − 4

)
+E.

f. Multiplying and dividing by
√

3 + x omits −3 from the domain of the integrand, and gives
∫

3 + x√
9 − x2

dx = 3 arcsin
( 1

3x
)
−

∫
dy = 3 arcsin

( 1
3x
)
−
√

9 − x2 + f,

where in the second term y =
√

9 − x2, so that dy = −(x/y)dx.

2. a. Revising the expression in the limit and using the fact that lim
ϑ→0

sinϑ
ϑ = 1 gives

lim
x→0+

log(sinx)
log(sin 2x) = lim

x→0+
1 + log

( sinx
x

)
/(logx)

1 + log
( sin 2x

2x
)
/(log 2x)

= 1.

b. If y = 1
2π− x and z = 1/y then

lim
x→ 1

2π
−
(tanx)2x−π = lim

y→0+
(coty)−2y = lim

y→0+

(
cosy · y

siny

)−2y
· lim
z→∞

e2(log z)/z = 1

by elemenatary properties of the logarithm (the definition of log z implies that 0 < log z < z if
z > 1, which immediately gives 0 < (log z)a/zb < (2a/b)az−b/2 for z > 1 and a,b > 0).
c. Combining terms and using the Maclaurin expansion of the exponential function gives

lim
x→0

e3x − 1 − 3x
x(e3x − 1)

= lim
x→0

9
2 + 9

2x+ 27
8 x

2 + · · ·
3 + 9

2x+ 9
2x

2 + · · ·
= 3

2 .

(Alternatively, two applications of l’Hôpital’s rule could be used.)

3. a. Partial integration gives
∞∫

0

(−xe−x)dx = lim
t→∞

(x+ 1)e−x
∣∣∣∣∣

∞

0
= lim
t→∞

{
t+ 1
et

− 1
}

= −1,

via basic properties of the exponential function (the inequality shown in Part c of Question 2
immediately gives 0 < ya/ebyc < (2a/b)ae−

1
2by

c for a,b,c,y > 0).
b. Integrating by inspection gives

2∫

0

dx

(x− 1)2/3 = lim
s→1−

3 3√
x− 1

∣∣∣∣∣

s

0
+ lim
t→1+

3 3√
x− 1

∣∣∣∣∣

2

t

= 6.

4. For − 1
2π < x <

1
2π, the equation in question is equivalent to

1√
y2 + 4

dy

dx
= tanx, or log

(
y+

√
y2 + 4

)
= log(secx) +C,

which is equivalent to y+
√
y2 + 4 = A secx (in whichA = eC). The initial condition y = 0

if x = 0 gives A = 2, so y+
√
y2 + 4 = 2 secx. To express y as a function of x, observe that

subtracting y and squaring gives 4 sec2 x− 4y secx = 4, or y = secx− cosx = sinx tanx.

5. If y = x3 + x+ 4 and y = x3 + x2 + 3x+ 1 then y− y = −x2 − 2x+ 3 = (3 + x)(1 − x),
which is positive if −3 < x < 1 and vanishes if x is −3 or 1. So the area of the region enclosed by
the curves is

1∫

−3

(y− y)dx =

1∫

−3

(−x2 − 2x+ 3)dx =
(
− 1

3y
3 − x2 + 3x

) ∣∣∣∣∣

1

−3
= − 28

3 + 8 + 12 = 32
3 .

6. If y = x+ 1 and y = x3 +x then y−y = 1−x3, which is positive if 0 < x < 1 and vanishes
if x = 1. The solid obtained by revolving R about the x axis consists of annuli of inner radius
x3 + x and outer radius x+ 1, for 0 6 x 6 1, so its volume is equal to

π

1∫

0

{
(x+ 1)2 − (x3 + x)2}dx.

The solid obtained by revolving R about the line defined by x = 3 consists of concentric cylindrical
shells of radius 3 − x and radius 1 − x3, for 0 6 x 6 1, so its volume is equal to

2π
1∫

0

(3 − x)(1 − x3)dx.

7. If x = 1
4y

2 − 1
2 logy, then

1 +

(
dx

dy

)2
= 1 +

(
1
2y− 1

2y
−1
)2

= 1
4y

2 + 1
2 + 1

4y
−2 =

(
1
2y+ 1

2y
−1
)2

,

and hence
y∫

1

√
1 +

(
dx

dη

)2
dy = 1

2

y∫

1

(
η+ η−1

)
dη = 1

4 (y
2 − 1) + 1

2 logy,

which is the length of the curve between
( 1

4 , 1
)

and (x,y) if y > 1, and is −1 times the length of
the curve between

( 1
4 , 1
)

and (x,y) if 0 < y < 1.



8. a. Since
lim
t→0

(1 + t)1/t = e, lim
n→∞

2n
3n+ 1 = 2

3

and

an =

(
3n+ 1
3n− 1

)n
=

(
1 +

2
3n− 1

) 3n−1
2 · 2n

3n−1
,

it follows that lim
n→∞

an = e2/3.

b. Since
an =

n3(2n)!
(2n+ 2)! =

n3

(2n+ 2)(2n+ 1) =
n

2(1 + 1/n)(2 + 1/n) ,

it follows that the sequence {an} diverges to∞.

9. If
an =

1
n

−
1

n+ 2 and An =
1
n

+
1

n+ 1 ,

then an =An −An+1 for n > 1, and the sum of the first n terms of the series is

a1 +a2 + · · ·+an =A1 −An+1 = 3
2 −

1
n+ 1 −

1
n+ 2 .

Hence, the sum of the series is lim
n→∞

(a1 +a2 + · · ·+an) = 3
2 .

10. a. If n > 1 then

an =

√
n2 + 3

3n2 + 7
>

√
n2

3n2 + 7n2 =
1

10n ,

so the comparison test implies that
∑
an diverges with the harmonic series.

b. Since d
dx (x

−1/4 logx) = 1
4x

−5/4(4 − logx) is positive if 0 < x < e4 and negative if x > e4,
it follows that

0 < an =
logn
n3/2 =

logn
n1/4 ·

1
n5/4 <

4
e
· 1
n5/4 ,

forn > 1. Therefore, the comparison test implies that
∑
an converges with the p-series

∑
n−5/4.

11. a. Since
∑

2−n is a convergent geometric series, and

an =
n!

1 · 3 · 5 · 7 · · · (2n+ 1) = 1 · 1
3 ·

2
5 ·

3
7 · · ·

n

2n+ 1 <
(1

2

)n
,

for n > 1, the comparison test implies that
∑

(−1)nan is absolutely convergent.
b. If n > 3 then

an =
nn

3n+1 =
1
3 ·
n ·n ·n ·n · · ·n

3 · 3 · 3 · 3 · · · 3 >
n

9 , so lim
n→∞

an =∞.

Hence, the vanishing condition implies that
∑

(−1)nan is divergent.
c. If n > 1 then

an =
1√

5n+ 3
> 1√

5n+ 3n
=

√
2

4 ·
1√
n
> 0,

so the comparison test implies that
∑
an diverges with the p-series

∑
n−1/2. On the other hand,

an =
1√

5n+ 3
>

1√
5n+ 8

= an+1

if n > 1, and liman = 0, so the alternating series test implies that
∑

(−1)nan is convergent.
Therefore, the series

∑
cos(nπ)an =

∑
(−1)nan is conditionally convergent.

12. If x 6= −1 and

αn =
(−1)n(x+ 1)n

5n
√
n

, then lim
∣∣∣∣
αn+1
αn

∣∣∣∣ = lim 1
5
√

1 + 1/n
|x+ 1| = 1

5 |x+ 1|,

so the ratio test implies that
∑
αn is absolutely convergent if |x + 1| < 5, i.e., −6 < x < 4,

and divergent if x < −6 or x > 4. If x = −6 then
∑
αn =

∑
n−1/2 is a divergent p-series

(p = 1
2 6 1), and if x = 4 then

∑
αn =

∑
(−1)nn−1/2, which is convergent by the alternating

series test (n−1/2 > (n+1)−1/2 ifn > 1, and limn−1/2 = 0). Therefore, the raduis of convergence
of
∑
αn is 5, and the interval of convergence of

∑
αn is (−6, 4].

13. From the expansion 1/(1 + t) =
∞∑
k=0

(−1)ktk (a geometric series), it follows that

1
2 + x

=
1
3 ·

1
1 + 1

3 (x− 1)
=

1
3

∞∑

k=0

(−1)k

3k
(x− 1)k

=

∞∑

k=0

(−1)k

3k+1 (x− 1)k

= 1
3 − 1

9 (x− 1) + 1
27 (x− 1)2 − 1

81 (x− 1)3 + · · · ,
which is valid if 1

3 |x− 1| < 1, or equivalently, −2 < x < 4.


