- 1. (35 points) Evaluate the following integrals.
  - (a)  $\int_{\sqrt{2}}^{2} \frac{3}{x\sqrt{x^2 1}} dx$
  - (b)  $\int \frac{xe^x}{\sqrt{xe^x e^x}} \, dx$
  - (c)  $\int \frac{\ln x}{x^3} dx$
  - (d)  $\int \sec x \tan^5 x \, dx$
  - (e)  $\int \frac{x^2}{\sqrt{16-x^2}} dx$
  - $(f) \int \frac{x-6}{x^3(x-2)} \, dx$
  - (g)  $\int_0^{\pi/2} \frac{\cos^3 x}{1 + \sin^2 x} dx$
- 2. (6 points) Evaluate the following limits.
  - (a)  $\lim_{x \to \infty} x \left(\arctan(3x) \pi/2\right)$
  - (b)  $\lim_{x \to 0^+} (\sec x + \tan x)^{1/x}$
- **3.** (8 points) Evaluate each improper integral or show it diverges.
  - (a)  $\int_0^1 \frac{e^{\sqrt{x}}}{\sqrt{x}} \, dx$
  - (b)  $\int_{3}^{\infty} \frac{1}{\sqrt[5]{x-2}} dx$
- **4.** (5 points) The figure below shows the graphs of the functions  $y = 2x \cos x$  and y = x. Find the area of the shaded region  $\mathcal{R}$ .



- **5.** (4 points) Let  $\mathcal{R}$  be the region bounded by  $x = 2\sqrt{y}$ , x = y + 2, y = 0, and y = 4 (see figure). Set up, but **do not evaluate**, the integral for the volume of the solid obtained by rotating  $\mathcal{R}$  around:
  - (a) the x-axis
  - (b) the vertical line x = -1



- **6.** (5 points) Find the length of the curve  $y = \frac{x^3}{12} + \frac{1}{x}$ ,  $1 \le x \le 2$ .
- 7. (5 points) Express y as a function of x if  $\frac{dy}{dx} = \frac{x}{x^2y + y}$  and y = -4 if x = 0.
- **8.** (3 points) Let  $f(x) = \sin(\frac{1}{2}x)$ . Let  $\{a_1, a_2, a_3, \dots\}$  be the sequence defined by  $a_n = f^{(n)}(0)$ , where  $f^{(n)}$  is the  $n^{\text{th}}$  derivative of f.
  - (a) Find the first five terms of  $\{a_n\}$ .
  - (b) Does the sequence converge or diverge? If it converges, find the limit. Justify your answer.
- **9.** (3 points) Let  $\sum_{n=1}^{\infty} a_n$  be the series whose  $n^{\text{th}}$  partial sum is  $s_n = \frac{5n}{2n+1}$ .
  - (a) Evaluate  $\sum_{n=1}^{\infty} a_n$ .
  - (b) Find  $a_3$ .
- **10.** (9 points) Determine whether the series converges or diverges. Justify your answer.
  - (a)  $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{3n}$
  - (b)  $\sum_{n=1}^{\infty} \frac{5^n + 7^n}{2^n + 9^n}$
  - (c)  $\sum_{n=1}^{\infty} \frac{\cos^2 n}{n\sqrt{n+1}}$
- 11. Determine whether the series is absolutely convergent, conditionally convergent, or divergent. Justify your answer.
  - (a) (3 points)  $\sum_{n=1}^{\infty} (-1)^n \frac{3^n}{(2n)!}$
  - (b) (4 points)  $\sum_{n=1}^{\infty} (-1)^n \sin\left(\frac{1}{n}\right)$
- **12.** (4 points) Find the radius and interval of convergence of the power series  $\sum_{n=0}^{\infty} \frac{(2x-3)^n}{3^n \sqrt{2n+3}}.$
- **13.** (4 points) Find the Maclaurin series of  $f(x) = \frac{1}{\sqrt{2x+1}}$ .
- 14. (2 points) (a) Given that  $\sum a_n$  is a convergent series of positive terms, prove that  $\sum (a_n)^2$  is also convergent.
  - (b) Give an example of a series  $\sum a_n$  such that  $\sum a_n$  is convergent but  $\sum (a_n)^2$  is divergent.

## Answers

**1.** (a)  $3 \operatorname{arcsec} x \Big]_{\sqrt{2}}^2 = \frac{1}{4}\pi$  (b)  $2\sqrt{xe^x - e^x} + C$ 

(c) 
$$-\frac{2\ln x + 1}{4x^2} + C$$

(d) 
$$\frac{1}{5}\sec^5 x - \frac{2}{3}\sec^3 x + \sec x + C$$

(e) 
$$8\arcsin(\frac{1}{4}x) - \frac{1}{2}x\sqrt{16-x^2} + C$$

(f) 
$$\frac{1}{2}\ln|x| - \frac{1}{x} - \frac{3}{2x^2} - \frac{1}{2}\ln|x - 2| + C$$

(g) Letting  $u = \sin x$ , the integral equals

$$2 \arctan u - u \Big]_0^1 = \frac{1}{2}\pi - 1$$

**2.** (a) 
$$-\frac{1}{3}$$
 (b)  $e$ 

**3.** (a) Converges to 
$$2(e-1)$$

(b) Diverges (to  $\infty$ )

4. 
$$\int_0^{\pi/3} (2x\cos x - x) \, dx = \frac{1}{3}\pi\sqrt{3} - 1 - \frac{1}{18}\pi^2$$

5. (a) 
$$\int_0^4 2\pi y (y+2-2\sqrt{y}) \, dy$$

(b) 
$$\int_0^4 \pi \left[ (y+3)^2 - (2\sqrt{y}+1)^2 \right] dy$$

6. 
$$\frac{13}{12}$$

7. 
$$y = -\sqrt{\ln(x^2+1)+16}$$

**8.** (a) 
$$\{a_n\} = \{\frac{1}{2}, 0, -\frac{1}{8}, 0, \frac{1}{32}, \dots\}$$

(b) Since  $a_n = 0$  if n is even and  $a_n = (-1)^{(n-1)/2} (\frac{1}{2})^n$  if n is odd, we clearly have

$$0 \leqslant |a_n| \leqslant (\frac{1}{2})^n$$
 for all  $n$ 

Now apply the Squeeze Theorem:

$$\lim_{n \to \infty} \left(\frac{1}{2}\right)^n = 0 \implies \lim_{n \to \infty} |a_n| = 0$$

and conclude that  $\lim_{n\to\infty} a_n = 0$  as well.

**9.** (a) 
$$\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} s_n = \frac{5}{2}$$

(b) 
$$a_3 = s_3 - s_2 = \frac{1}{7}$$

10. Let  $a_n$  be the *n*th term of the series in question.

(a) Diverges by the test for divergence:

$$a_n = \left[ \left( 1 + \frac{1}{n} \right)^n \right]^3 \longrightarrow e^3 \neq 0 \quad \text{as } n \to \infty$$

(Or simply note that since  $a_n > 1$  for all n, we clearly have  $\lim_{n \to \infty} a_n \neq 0$ .)

(b) Converges by the direct comparison test:

$$a_n = \frac{5^n}{2^n + 9^n} + \frac{7^n}{2^n + 9^n} < \frac{5^n}{9^n} + \frac{7^n}{9^n} = (\frac{5}{9})^n + (\frac{7}{9})^n = b_n$$

and  $\sum b_n$  converges because it is the sum of two convergent geometric series  $(\left|\frac{5}{9}\right| < 1, \left|\frac{7}{9}\right| < 1)$ .

Alternatively, we can use the limit comparison test. Let  $b_n = (\frac{7}{9})^n$ . Then  $\sum b_n$  converges and

$$\frac{a_n}{b_n} = \frac{\left(\frac{5}{7}\right)^n + 1}{\left(\frac{2}{9}\right)^n + 1} \longrightarrow 1 \neq 0, \, \infty \quad \text{as } n \to \infty$$

(c) Converges by the direct comparison test. Since  $-1 \le \cos n \le 1$ ,  $\cos^2 n \le 1$ . Therefore

$$a_n \leqslant \frac{1}{n\sqrt{n+1}} < \frac{1}{n\sqrt{n}} = \frac{1}{n^{3/2}} = b_n$$

and  $\sum b_n$  is a convergent *p*-series  $(p = \frac{3}{2} > 1)$ .

11. Let  $a_n$  be the *n*th term of the series in question.

(a) Converges absolutely by the ratio test:

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{3}{(2n+2)(2n+1)} \longrightarrow 0 < 1$$

(b) Converges conditionally.  $\sum |a_n| = \sum \sin(1/n)$  diverges by limit comparison with  $\sum 1/n$ :

$$\lim_{n \to \infty} \frac{\sin(1/n)}{1/n} = \lim_{x \to 0} \frac{\sin x}{x} = 1 \neq 0, \, \infty$$

On the other hand,  $\sin(1/n) \to 0$  as  $n \to \infty$  and is decreasing, so  $\sum a_n$  converges by the alternating series test.

**12.**  $R = \frac{3}{2}$ , [0,3)

**13.** 
$$1 + \sum_{n=1}^{\infty} \frac{(-1)^n \cdot 1 \cdot 3 \cdot 5 \cdots (2n-1)}{n!} x^n$$

**14.** (a) Since  $\sum a_n$  is convergent,  $a_n \to 0$  as  $n \to \infty$ , and so  $a_n \le 1$  for all sufficiently large n. Multiplying both sides of this inequality by  $a_n > 0$  shows that

$$(a_n)^2 \leqslant a_n$$
 for all sufficiently large  $n$ ,

so  $\sum (a_n)^2$  converges by direct comparison with  $\sum a_n$ .

(b)  $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$  converges (alternating series test) but

$$\sum_{n=1}^{\infty} \left[ \frac{(-1)^n}{\sqrt{n}} \right]^2 = \sum_{n=1}^{\infty} \frac{1}{n}$$

diverges.