(Marks)

1. Evaluate the following limits.

(3) (a)
$$\lim_{x \to \pi} \frac{\sin^2 x}{1 + \cos(3x)}$$

(3) (b)
$$\lim_{x \to \infty} x^2 \ln \left(1 + \frac{4}{x^2} \right)$$

2. Evaluate the following integrals.

(5) (a)
$$\int_{1}^{5} \frac{x+2}{\sqrt{2x-1}} dx$$

(5) (b)
$$\int \frac{1}{x^3 \sqrt{x^2 - 4}} dx$$

(5) (c)
$$\int \frac{\tan^{-1} x}{x^2} dx$$

(5) (d)
$$\int \frac{\sec^4 \sqrt{x} \tan^2 \sqrt{x}}{\sqrt{x}} dx$$

(5) (e)
$$\int_0^{\frac{1}{2}} \frac{x + \arccos x}{\sqrt{1 - x^2}} dx$$

(5) (f)
$$\int \frac{e^x}{\sqrt{3-2e^x-e^{2x}}} dx$$

(5) (g)
$$\int \frac{3x^2 - 2}{x^2 - 2x - 8} \, dx$$

- (3) 3. Find the area enclosed by the curves $y = \sqrt{x-1}$, y = x-1, and x = 5.
 - 4. Let \mathcal{R} be the region bounded by $y=2e^x$ and $y=2\ln x$, between x=1 and x=e.
- (4) (a) Find the volume of the solid obtained by rotating the region \mathcal{R} about the y-axis.
- (3) (b) Set up, but do not attempt to calculate, the integral for the volume of the solid obtained by rotating the region \mathcal{R} about the horizontal line y = -1.
 - 5. Evaluate each of the following improper integrals.

(5) (a)
$$\int_{\frac{1}{2}}^{\infty} \frac{\tan^{-1}(2x)}{4x^2 + 1} \, dx$$

(5) (b)
$$\int_0^6 \frac{1}{(x-2)^3} dx$$

- (4) 6. Solve the differential equation $y' = 1 + x^2 + y^2 + x^2y^2$ with y(0) = 1. Express y as a function of x.
- (3) 7. Find the sum of $\sum_{n=1}^{\infty} \frac{2}{(2n-1)(2n+1)}$
 - 8. Find the limit $\lim_{n\to\infty} a_n$ for each sequence.

(2) (a)
$$a_n = \frac{\sin(n!)}{n+1}$$

(2) (b)
$$a_n = \frac{(-1)^n 3^{n+2}}{2^{2n+1}}$$

(Marks)

- (2) 9. Provide an example of a geometric series whose sum is $\frac{\pi}{12}$
 - 10. Determine whether the following series are convergent or divergent.

(3) (a)
$$\sum_{n=1}^{\infty} \left(1 - \frac{2}{3n^2}\right)^n$$

(3) (b)
$$\sum_{n=1}^{\infty} \frac{2^{n^2}}{n!}$$

(3) (c)
$$\sum_{n=1}^{\infty} \frac{\sqrt{\arctan(n)}}{1+n^2}$$

11. Determine whether each of the following series is absolutely convergent, conditionally convergent, or divergent.

(3) (a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n \sqrt[3]{n^3 + 1}}{1 + n + n^3}$$

(3) (b)
$$\sum_{n=1}^{\infty} \frac{(-2)^n}{(\ln n)^n}$$

(3) (c)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n+3}}$$

- (4) 12. Find the interval of convergence of the power series $\sum_{n=0}^{\infty} \frac{(x+1)^n}{5^n \sqrt[3]{n+1}}$
- (4) 13. Find the Maclaurin series for $f(x) = \ln(x+2)$, and its interval of convergence.

Answers

1.(a)
$$\frac{2}{9}$$
 (b) 4 2.(a) $\frac{28}{3}$ (b) $\frac{1}{16} \left(\sec^{-1} \left(\frac{x}{2} \right) + \frac{2\sqrt{x^2 - 4}}{x^2} \right) + C$

(c)
$$-\frac{\tan^{-1}x}{x} + \ln x - \frac{1}{2}\ln(x^2+1) + C$$
 (d) $2\left(\frac{\tan^5\sqrt{x}}{5} + \frac{\tan^3\sqrt{x}}{3}\right) + C$ (e) $1 - \frac{\sqrt{3}}{2} + \frac{5\pi^2}{72}$

(f)
$$\arcsin\left(\frac{e^x+1}{2}\right)+C$$
 (g) $3x+\frac{23}{3}\ln|x-4|-\frac{5}{3}\ln|x+2|+C$ 3. 3 4.(a) $4\pi[e^e(e-1)-\frac{e^2}{4}-\frac{1}{4}]$

(b)
$$\int_{1}^{e} \left[\pi(1+2e^{x})^{2} - \pi(1+2\ln(x))^{2}\right] dx$$
 5.(a) $\frac{3\pi^{2}}{64}$ (b) ∞ 6. $y = \tan(x+\frac{x^{3}}{3}+\frac{\pi}{4})$ 7. 1

8.(a) 0 (b) 0 9.
$$\sum_{n=1}^{\infty} \frac{\pi}{24} \left(\frac{1}{2}\right)^{n-1}$$
 10.(a) Div. (b) Div. (c) Con. 11.(a) AC (b) AC

(c) CC 12.
$$[-6,4)$$
 13. $\ln 2 + \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{n \, 2^n}$ with IoC $(-2,2]$