(Marks)

- (3) 1. Use the graph of the function f(x) to determine the following. Where appropriate, use ∞ , $-\infty$, or "does not exist."
 - $\begin{array}{c} \text{(a)} f(2) = \\ \text{(b)} \lim_{x \to -3} f(x) = \\ \text{(c)} \lim_{x \to -1} f(x) = \\ \text{(d)} \lim_{x \to 2^{-}} f(x) = \\ \text{(e)} \lim_{x \to 2} f(x) = \\ \text{(f)} \lim_{x \to -\infty} f(x) = \\ \end{array}$

(10) 2. Evaluate the following. Where appropriate, use ∞ , $-\infty$, or "does not exist."

- (a) $\lim_{x \to 3} \frac{2x^2 5x 3}{x^2 8x + 15}$ (b) $\lim_{\theta \to 0} \frac{\theta^2 - \theta}{\tan(4\theta)}$ (c) $\lim_{x \to \infty} \sqrt{x^2 + 5x} - \sqrt{x^2 + 2x}$ (d) $\lim_{x \to -2} f(x) \text{ if the function satisfies } \frac{x^2 - 4}{x + 2} \le f(x) \le x^2 + 5x + 2 \text{ for } x \ne -2$ (e) $\lim_{x \to 4^-} \frac{|x - 4|}{(x - 4)^2}$ (3) 3. For $\lim_{x \to 5} \frac{x^2 - 3x + k}{x^2 - 4x - 5}$
 - (a) Find the value of k to make the limit exist and be finite.
 - (b) What is the value of the limit in that case?
- (5) 4. Find all x-values at which f(x) is discontinuous, and determine the type of each discontinuity at each value. Justify your answers.

$$f(x) = \begin{cases} \sqrt{1-x} & \text{if } x < -3\\ \frac{x-3}{x} & \text{if } -3 < x \le 4\\ \frac{x^2-16}{x^2-5x+4} & \text{if } x > 4 \end{cases}$$

(3) 5. Let $f(x) = \frac{4}{x-1}$

- (a) Find all numbers c that satisfy the conclusion of the Mean Value Theorem for this function f on the interval [2, 5].
- (b) Show that there is no value of c that satisfies the conclusion of the Mean Value Theorem for this function f on the interval [0, 2]. Why does this not contradict the Mean Value Theorem?
- (4) 6. Given the function $f(x) = \frac{x}{x+1}$, find f'(x) using the **limit definition** of the derivative.

(Marks)

(15) 7. Find $\frac{dy}{dx}$ for each of the following:

(a)
$$y = 8x^7 + \sqrt[7]{x^8} - \log_8(x+7) + \frac{\sin(x^7)}{7} - 4^{3\pi} + e^{1/x}$$

(b) $y = \frac{(2x+1)^5}{x^2 - 3}$
(c) $y = (x^3 - 1)^{\sec(x)}$
(d) $y = \tan^3(x)\csc(10x - 1)$
(e) $y = \ln\left[\frac{(4x-1)(x^2+1)^{3/2}}{\sqrt{x} e^{4x}}\right]$

- (3) 8. Find the 68^{th} derivative of $f(x) = 2^{2x} + \cos(x) x^{67}$
- (4) 9. For which values of x is the tangent line to $y = (x-5)^4(2x-1)^5$ horizontal?
- (4) 10. The equation $x^2 xy + y^2 = 3$ represents a "rotated ellipse," as shown below. Find the points at which the ellipse crosses the x-axis and show that the tangent lines at these points are parallel to each other.
- (5) 11. A spotlight on the ground shines on a wall 12 m away. If a man 2 m tall walks from the spotlight toward the wall at a speed of 1.6 m/s, how fast is the height of his shadow on the wall changing when he is 4 m from the wall?

(10) 12. Given
$$f(x) = x\sqrt[3]{x+4}$$
 and $f'(x) = \frac{4(x+3)}{3(x+4)^{2/3}}$ and $f''(x) = \frac{4(x+6)}{9(x+4)^{5/3}}$, find all:

- (a) x and y intercepts.
- (b) Vertical and horizontal asymptotes.
- (c) Intervals on which f(x) is increasing or decreasing.
- (d) Local (relative) extrema.
- (e) Intervals of upward and downward concavity.
- (f) Inflection point(s).
- (g) On the next page sketch the graph of f(x). Label all intercepts, asymptotes, extrema, and points of inflection.
- (4) 13. Find the absolute extrema of $f(x) = (2x 1)\sqrt[3]{x}$ on [-1, 1].
- (5) 14. An oil company has a refinery at point A on the bank of a straight river 1 kilometer wide. It is going to run a pipe from point A to point P somewhere on the opposite side of the river, and then straight along the river to a tank T situated 3 kilometers downstream from A. It costs 15 thousand dollars per kilometer to run the pipe under the water and 9 thousand dollars per kilometer to run the pipe along the bank. What should be the distance from P to T in order to minimize the total cost of the pipe?

(Marks)

(9) 15. Evaluate the following integrals. (a) $\int \left(\frac{e^x}{4} + \frac{4^x}{e} + \frac{e}{4}\right) dx$ (b) $\int (2 + \sin x) \sec^2 x \, dx$ (c) $\int_{-\pi/2}^{\pi/2} (a \sin x + b \cos x) \, dx$

(3) 16. Find
$$f(x)$$
 given $f'(x) = \frac{2x^2 - 3x + 4}{x}$, $f(1) = 0$, and $x > 0$.

(4) 17. Sketch and shade the region bounded between the curve $y = \cos x$ and the x-axis from x = 0 to $x = \frac{3\pi}{2}$. Find the area of that region.

(2) 18. Express $\lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{2i}{n}\right) e^{\frac{2i}{n}} \left(\frac{2}{n}\right)$ as a definite integral (do not evaluate it).

(4) 19. Suppose f(t) is a continuous function such that $\int_1^9 f(t) dt = 4$. Let $F(x) = \int_1^{x^2} f(t) dt$. Find: (a) F(1) (b)F(3) (c) F'(x)

Answers