- 1. What is the equation of the tangent line to the graph of $y = x^2 \arcsin(x)$ at the point where x = 1/2? (3)
- (30)2. Evaluate the integrals.

(a)
$$\int x^5 \sqrt{x^3 - 1} \, dx$$

(b)
$$\int \tan^3(t) \sec^3(t) dt$$

(b)
$$\int \tan^3(t) \sec^3(t) dt$$
 (c) $\int_0^{1/3} \arctan(3x) dx$

(d)
$$\int \frac{x^3 + x - 2}{x^3 + x} dx$$

(e)
$$\int \frac{x+5}{x^2+6x+13} dx$$
 (f) $\int \frac{\sqrt{4-x^2}}{x^2} dx$

(f)
$$\int \frac{\sqrt{4-x^2}}{x^2} dx$$

(10)3. Evaluate the improper integrals.

(a)
$$\int_{2}^{\infty} \frac{\operatorname{arcsec} x}{x\sqrt{x^2 - 1}} \, dx$$

(b)
$$\int_{-\infty}^{e^2} \frac{\ln x \, dx}{\sqrt{x \ln x - x}}$$

(9)4. Evaluate the limits.

(a)
$$\lim_{x \to 0} (1 + \sin 2x)^{\cot x}$$

(b)
$$\lim_{x \to \pi/2} \frac{\ln(\sin x)}{(\pi - 2x)^2}$$

(c)
$$\lim_{x \to 0^+} \csc(x) \arctan(x)$$

- 5. Find the area between $y = 2x^2$ and $y = x^2(x-1)$. (4)
- 6. Let \mathcal{R} be the region in quadrant I (so $x \geq 0$) between the x-axis and $y = \sqrt{4x^2 x^4}$. (7)
 - (a) Set up the integrals required to compute the volume of the solid obtained by rotating \mathcal{R} about (i) the y-axis, and (ii) the line y = -3.
 - (b) Compute the volume of the solid obtained by rotating \mathcal{R} about the x-axis.

- 7. Solve the differential equation: $e^{-x}yy'=x$; y(0)=-1. Express y as a function of x. (4)
- (3)8. Does the sequence $\{n - \ln n\}$ converge? If so, find its limit as $n \to \infty$. Justify your answer.
- 9. Determine whether each of the following series converges or diverges. Justify your answers. (9)

(a)
$$\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \right)$$

(b)
$$\sum_{n=1}^{\infty} \left(\frac{2}{\sqrt{n}} - \frac{1}{n^2} \right)$$

(c)
$$\sum_{n=0}^{\infty} \frac{n^2 \, 3^n}{(2n)!}$$

10. Label each series as absolutely convergent, conditionally convergent, or divergent. Justify your answers. (7)

(a)
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n \ln(\sqrt[3]{n})}$$

(b)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\sin(1/n)}{\sqrt{n}}$$

(3)11. Mark each statement as TRUE (if it is necessarily true) or FALSE (otherwise). Justify your answers.

Supposing $\lim_{n\to\infty} a_n = 1$:

(a) then
$$\sum_{n=1}^{\infty} (1-a_n)^n$$
 converges.

(b) then
$$\sum_{n=1}^{\infty} a_n$$
 converges.

- (c) then $\sum_{n=1}^{\infty} \frac{a_n}{n}$ converges.
- 12. Find the radius and interval of convergence of the power series $\sum_{n=0}^{\infty} \frac{2^{n+1} (x-1)^n}{(n+1)!}$. (4)
- 13. Find the Taylor series of $f(x) = x \ln x$ centered at x = 1. For what values of x does the Taylor series (5)converge?
- 14. Let p(x) be a polynomial of degree ≤ 3 so that p(0) = p(3) = 3. (2)

Suppose that the antiderivative $\int \frac{p(x)}{x^2(x-3)^2} dx$ has no terms involving the ln (logarithm) function.

- (a) Determine the partial fraction decomposition of $\frac{p(x)}{r^2(r-3)^2}$
- (b) Calculate $\int \frac{p(x)}{r^2(x-3)^2} dx$.

Answers

1.
$$y = \left(\frac{\pi}{6} + \frac{1}{2\sqrt{3}}\right) \left(x - \frac{1}{2}\right) + \frac{\pi}{24}$$

2. The integrals:

(a)
$$\frac{2}{3} \left(\frac{1}{5} (x^3 - 1)^{5/2} + \frac{1}{3} (x^3 - 1)^{3/2} \right) + C$$

(b)
$$\frac{1}{5}\sec^5 t - \frac{1}{3}\sec^3 t + C$$

(c)
$$\frac{\pi}{12} - \frac{1}{6} \ln 2$$

(d)
$$x - 2 \ln |x| + \ln(x^2 + 1) + C$$

(e)
$$\frac{1}{2}\ln(x^2+6x+13) + \arctan(\frac{x+3}{2}) + C$$

(f)
$$-\frac{\sqrt{4-x^2}}{x} - \arcsin(x/2) + C$$

3. The improper integrals:

(a)
$$\frac{5}{72}\pi^2$$

4. The limits:

(a)
$$e^2$$

(b)
$$-\frac{1}{8}$$

5. 27/4

6. The volumes:

(a) (i)
$$2\pi \int_0^2 x \sqrt{4x^2 - x^4} dx$$
 (ii) $\pi \int_0^2 ((3 + \sqrt{4x^2 - x^4})^2 - 3^2) dx$

(b)
$$\frac{64}{15}\pi$$

7.
$$y = -\sqrt{2 e^x(x-1) + 3}$$

8. Diverges
$$(n(1 - \frac{\ln n}{n}) \to \infty)$$

9. The series:

(b) Diverges (LCT with
$$\sum \frac{1}{\sqrt{n}}$$
) (c) Converges (RT)

10. Alternating series:

(a) CC (
$$\log pS$$
 so not AC; AST)

(b) AC (LCT with
$$\sum \frac{1}{n\sqrt{n}}$$
)

11. T/F questions:

(a) T
$$(\sqrt[n]{T})$$

(b)
$$F(nTT)$$

(c) F (LCT with $\sum \frac{1}{n}$)

12. Power series: Radius ∞ , IofC $(-\infty, \infty)$

13. Taylor series:
$$(x-1) + \sum_{n=2}^{\infty} \frac{(-1)^n (x-1)^n}{n(n-1)}$$
 IofC: $[0,2]$

14. Partial fractions:

(a)
$$\frac{p(x)}{x^2(x-3)^2} = \frac{1}{3}\frac{1}{x^2} + \frac{1}{3}\frac{1}{(x-3)^2}$$
 (b) $-\frac{1}{3}\left(\frac{1}{x} + \frac{1}{x-3}\right) + C$

(b)
$$-\frac{1}{3}\left(\frac{1}{x} + \frac{1}{x-3}\right) + C$$