(1) Refer to the following sketch (with unit lengths marked along the coordinate axes) to answer the questions below.

(a) Evaluate the following. Use $\infty,-\infty$ or "does not exist" as appropriate.
(i) $\lim _{x \rightarrow-2^{-}} f(x)$
(ii) $\lim _{x \rightarrow-1} f(x)$
(iii) $\lim _{x \rightarrow-\infty} f(x)$
(iv) $f(2)$
(v) $\lim _{x \rightarrow 1} f(x)$
(vi) $\lim _{x \rightarrow 2} f(x)$
(vii) $\lim _{x \rightarrow 4} f(x)$
(viii) $\lim _{x \rightarrow \infty} f(x)$
(b) List the values of $x$ at which $f$ is discontinuous.
(c) List the values of $x$ at which $f$ is continuous but not differentiable.
(2) Evaluate the following limits. Use $\infty,-\infty$ or "does not exist" as appropriate.
(a) $\lim _{x \rightarrow-2} \frac{x^{3}-4 x}{3 x^{2}+7 x+2}$
(b) $\lim _{x \rightarrow \infty} \frac{2 x^{3}-2 x^{2}+4 x-1}{8-5 x+3 x^{2}-3 x^{3}}$
(c) $\lim _{\vartheta \rightarrow 0} \frac{\sqrt{2 \vartheta+3}-\sqrt{3}}{\sin \vartheta}$
(d) $\lim _{x \rightarrow 3} \frac{\frac{3}{7}-\frac{x}{3 x-2}}{x-3}$
(3) (a) State the definition of the derivative of a function $f$.
(b) Use the definition to find the derivative of $f(x)=x /(x-$ 2).
(c) Check your answer to Part b using the laws of differentiation.
(4) Find all values of $c$ such that

$$
f(x)=\left\{\begin{array}{cl}
\frac{3 c}{x^{2}-10} & \text { if } x<-4, \text { and } \\
\sqrt{c-2 x} & \text { if }-4 \leq x \leq-2
\end{array}\right.
$$

is continuous at -4 .
(5) Find an equation of each line which is tangent to the graph of $y=x^{2}+3 x+4$ and passes through the point $(2,5)$.
(6) Sketch the graph of $f(x)=x^{2 / 3}(x-3)$, given that $f^{\prime}(x)=\frac{5 x-6}{3 x^{1 / 3}}$ and $f^{\prime \prime}(x)=\frac{10 x+6}{9 x^{4 / 3}}$. Make sure your solution includes all intercepts, asymptotes, intervals of monotonicity and concavity, extrema, and points of inflection.
(7) Find all absolute extrema of:
(a) $f(x)=x^{1 / 3} e^{3 x}$ on $[-1,1]$;
(b) $g(x)=\frac{2 \cos x}{\sin x-2}$ on $\left[-\frac{1}{2} \pi, \frac{1}{2} \pi\right]$.
(8) Find all critical numbers of the function $y=(4 x+3)^{3}(3 x+3)^{4}$.
(9) Find the dimensions of the rectangle of largest area which has two vertices on the $x$-axis and two vertices above the $x$-axis, bounded by the curve $y=16-2 x^{2}$.
(10) For each of the following, find $\frac{d y}{d x}$.
(a) $y=x^{7}\left(x^{3}-2 x \sin 3 x\right)^{2 / 3}$
(b) $y=5 x^{\pi}-5 / x+\sqrt[5]{x^{2}}-\log _{5} x+5 \cdot 2^{x}$
(c) $y=\ln \sqrt[3]{\tan 2 x^{4}}$
(d) $y=\sec (\cos (\tan \pi x))$
(e) $x y^{2}+y \ln x=x$
(11) Use logarithmic differentiation to find $\frac{d y}{d x}$.
(a) $y=\frac{\sec ^{2}(5 x-2)}{x^{12} e^{-x}}$
(b) $y=(\cos x)^{5 x^{2}+1}$
(12) Find an equation of the normal line to the curve $x^{3} y-2 y^{3}-$ $x+3 y=-11$ at the point $(-1,2)$.
(13) Let $f(x)=e^{2 x}$. Find a simplified formula for $f^{(n)}(x)$.
(14) A ladder 12 metres long is leaning against a wall. The top does not reach high enough so the bottom of the ladder gets pushed towards the wall at a rate of $10 \mathrm{~cm} / \mathrm{s}$. What is the rate of change of the acute angle between the ladder and the floor when the ladder reaches 8 metres up the wall?
(15) Find $f(x)$ given that $f^{\prime \prime}(x)=4-6 x-4 x^{3}, f(1)=2$ and $f^{\prime}(-1)=1$
(16) For the integral $\int_{1}^{4} \frac{1}{x} d x$, approximate its value with a Riemann sum with $n=6$ rectangles using midpoints as sample points.
(17) Evaluate the following integrals.
(a) $\int_{1}^{2}(3 x+1)^{2} d x$
(b) $\int\left(2^{x}+\sin x+\pi\right) d x$
(c) $\int_{\frac{1}{9} \pi^{2}}^{\frac{1}{9} \pi^{2}} \sqrt{\cos \sqrt{ } x} d x$
(d) $\int \frac{x^{3}+x^{2}+x+1}{x} d x$
(e) $\int_{0}^{\frac{1}{3} \pi} \frac{\sin x}{\cos ^{2} x} d x$
(18) Find the derivative of the function $f(x)=\int_{x^{2}}^{0} \sqrt{1+t^{2}}$.
(19) Sketch the graph of

$$
f(x)= \begin{cases}2 x-2 & \text { if } x \leq 3, \text { and } \\ 4 & \text { if } x>3\end{cases}
$$

and evaluate $\int_{0}^{6} f(x) d x$ by interpreting it in terms of area.

## Answers and/or Solutions:

(1) (a) By inspecting the given sketch:
(i) $\lim _{x \rightarrow-2^{-}} f(x)=\infty$;
(ii) $\lim _{x \rightarrow-1} f(x)=2$;
(iii) $\lim _{x \rightarrow-\infty} f(x)=0$;
(iv) $f(2)=1$;
(v) $\lim _{x \rightarrow 1} f(x)=\infty$;
(vi) $\lim _{x \rightarrow 2} f(x)$ does not exist, because $\lim _{x \rightarrow 2^{-}} f(x)=3$ and $\lim _{x \rightarrow 2^{+}} f(x)=-2$;
(vii) $\lim _{x \rightarrow 4} f(x)=-5$;
(viii) $\lim _{x \rightarrow \infty} f(x)=-1$.
(b) $f$ has infinite discontinuities at -2 and 1 , a removable discontinuity at -1 , and a jump discontinuity at 2 .
(c) $f$ is continuous but not differentiable at 4 , since $\lim _{t \rightarrow 4^{-}} \frac{f(t)-f(4)}{t-4}=-\frac{3}{2}$ and $\lim _{t \rightarrow 4^{+}} \frac{f(t)-f(4)}{t-4}>0$.
(2) (a) Factoring the numerator and denominator and simplifying, gives
$\lim _{x \rightarrow-2} \frac{x^{3}-4 x}{3 x^{2}+7 x+2}=\lim _{x \rightarrow-2} \frac{x(x-2)(x+2)}{(3 x+1)(x+2)}=\lim _{x \rightarrow-2} \frac{x(x-2)}{3 x+1}=-\frac{8}{5}$.
(b) Extracting the dominant powers of $x$ from the numerator and denominator gives
$\lim _{x \rightarrow \infty} \frac{2 x^{3}-2 x^{2}+4 x-1}{8-5 x+3 x^{2}-3 x^{3}}=\lim _{x \rightarrow \infty} \frac{2-2 / x+4 / x^{2}-1 / x^{3}}{8 / x^{3}-5 / x^{2}+3 / x-3}=-\frac{2}{3}$.
(c) Rationalizing the numerator, and using the basic limit $\lim _{\vartheta \rightarrow 0} \frac{\sin \vartheta}{\vartheta}=1$, gives
$\lim _{\vartheta \rightarrow 0} \frac{\sqrt{2 \vartheta+3}-\sqrt{ } 3}{\sin \vartheta}=\left(\lim _{\vartheta \rightarrow 0} \frac{\sin \vartheta}{\vartheta}\right)^{-1} \cdot \lim _{\vartheta \rightarrow 0} \frac{2}{\sqrt{2 \vartheta+3}+\sqrt{ } 3}=\frac{1}{3} \sqrt{ } 3$.
(d) Simplifying the complex rational expression in the limit gives
$\lim _{x \rightarrow 3} \frac{\frac{3}{7}-\frac{x}{3 x-2}}{x-3}=\lim _{x \rightarrow 3} \frac{2(x-3)}{7(3 x-2)(x-3)}=\lim _{x \rightarrow 3} \frac{2}{7(3 x-2)}=\frac{2}{49}$.
(3) (a) The derivative $f^{\prime}$ of a function $f$ is defined by

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

or, equivalently,

$$
f^{\prime}(x)=\lim _{t \rightarrow x} \frac{f(t)-f(x)}{t-x}
$$

and the domain of $f^{\prime}$ is the set of all real numbers $x$ such that this limit exists.
(b)

$$
f^{\prime}(x)=\lim _{t \rightarrow x} \frac{\frac{t}{t-2}-\frac{x}{x-2}}{t-x}
$$

Simplifying this expression, and applying the independence and direct substitution properties of limits then gives
$f^{\prime}(x)==\lim _{t \rightarrow x} \frac{t(x-2)-x(t-2)}{(t-2)(x-2)(t-x)}=\lim _{t \rightarrow x} \frac{-2(t-x)}{(t-2)(x-2)(t-x)}$
$=\lim _{t \rightarrow x} \frac{-2}{(t-2)(x-2)}$

$$
=-\frac{2}{(x-2)^{2}}
$$

and the domain of $f^{\prime}$ is equal to the domain of $f$ (namely $\mathbb{R} \backslash\{2\})$.
(4) Observe that (since we must have $c \geq-4$ for $f$ to be defined on $[-4,-2]$ )
$\lim _{x \rightarrow-4^{-}} f(x)=\frac{1}{2} c \quad$ and $\quad f(-4)=\lim _{x \rightarrow-4^{+}} f(x)=\sqrt{c+8}$.

So $f$ is continuous at -4 if, and only if, $c=2 \sqrt{c+8}$. This equation implies that $c^{2}=4(c+8)$, or $0=c^{2}-4 c-32=(c-8)(c+4)$, i.e., $c=8$ or $c=-4$. However, only 8 is a solution of the original equation ( $c=-4$ turns the original equation into the contradiction $-4=4$ ). Therefore, $f$ is continuous at -4 if, and only if, $c=8$.
(5) The equation of the line tangent to the graph of $y=x^{2}+3 x+4$ at the point where $x=\xi$ has slope $2 \xi+3$, equation $y=$ $\xi^{2}+3 \xi+4+(2 \xi+3)(x-\xi)$, and passes through the point $(2,5)$ if, and only if $5=\xi^{2}+3 \xi+4+(2 \xi+3)(2-\xi)$, or $0=\xi^{2}-4 \xi-5=(\xi-5)(\xi+1)$, i.e., $\xi=5$ or $\xi=-1$, where the slope of tangent is, respectively $2(5)+3=13$ and $2(-1)+3=1$. Therefore, the line $y=5+13(x-2)=13 x-21$, which is tangent to the parabola at $(5,44)$, and the line $y=5+(x-2)=x+3$, which is tangent to the parabola at $(-1,2)$, each pass through $(2,5)$, as does no other line tangent to the parabola.
(6) The domain of $f(x)=x^{2 / 3}(x-3)$ is $\mathbb{R}$, on which $f$ is continuous, so its graph has no vertical asymptotes. Since $f(x)=x^{5 / 3}(1-3 / x)$ for $x \neq 0, f(x) \rightarrow \pm \infty$ as $x \rightarrow \pm \infty$, and the graph of $f$ has no horizontal or oblique asymptotes, or global extrema. $f(x)=0$ if $x=0$ or $x=3$, so the origin and $(3,0)$ are the intercepts of the graph of $f$. Since $f(x)=x^{2 / 3}(x-3)=x^{5 / 3}-3 x^{2 / 3}$, one has
$f^{\prime}(x)=\frac{5}{3} x^{2 / 3}-2 x^{-1 / 3}=\frac{1}{3} x^{-1 / 3}(5 x-6) \quad$ for $\quad x \neq 0$,
so the critical numbers of $f$ are 0 and $\frac{6}{5}, f^{\prime}(x)>0$ if $x<0$ or $x>\frac{6}{5}$ and $f^{\prime}(x)<0$ if $0<x<\frac{6}{5}$. Therefore, $f$ is increasing on $(-\infty, 0)$ and on $\left(\frac{6}{5}, \infty\right)$, and decreasing on $\left(0, \frac{6}{5}\right)$, with a local maximum at the origin and a local minimum at $\left(\frac{6}{5},-\frac{9}{25} \sqrt[3]{180}\right)$. Next,
$f^{\prime \prime}(x)=\frac{10}{9} x^{-1 / 3}+\frac{2}{3} x^{-4 / 3}=\frac{2}{9} x^{-4 / 3}(5 x+3) \quad$ for $\quad x \neq 0$,
so $f^{\prime \prime}(x)<0$ if $x<-\frac{3}{5}$ and $f^{\prime \prime}(x)>0$ if $-\frac{3}{5}<x<0$ or $x>0$. Therefore, $f$ is concave down on $\left(-\infty,-\frac{5}{3}\right)$, and concave up on $\left(-\frac{5}{3}, 0\right)$ and on $(0, \infty)$, with a point of inflection at $\left(-\frac{3}{5},-\frac{18}{25} \sqrt[3]{45}\right)$. Since
$\lim _{t \rightarrow 0^{ \pm}} \frac{f(t)-f(0)}{t-0}=\lim _{t \rightarrow 0^{ \pm}} \frac{t^{2 / 3}(t-3)}{t}=\lim _{t \rightarrow 0^{ \pm}} t^{-1 / 3}(t-3)=\mp \infty$,
it follows that the graph of $f$ has a vertical cusp at the origin. Below is a sketch of the graph of $f$, with the points of interest emphasized.

(7) (a) If $f(x)=x^{1 / 3} e^{3 x}$, then
$f^{\prime}(x)=\frac{1}{3} x^{-2 / 3} e^{3 x}+x^{1 / 3} e^{3 x} 3=\frac{1}{3} x^{-2 / 3} e^{3 x}(1+9 x) \quad$ for $\quad x \neq 0$.
Therefore, the critical numbers of $f$ in $[-1,1]$ are $-\frac{1}{9}$ and 0 . Evaluating $f$ at these critical numbers and at
the endpoints of $[-1,1]$ gives $f(-1)=-e^{-3}, f\left(-\frac{1}{9}\right)=$ $-\sqrt[3]{(9 e)^{-1}}, f(0)=0$, and $f(1)=e^{3}$. Clearly $e^{3}$ is the largest value of $f$ on $[-1,1]$. Next, since 9 is (much) less than $e^{8}$ it follows that $e^{-9}<(9 e)^{-1}$ and therefore $-\sqrt[3]{(9 e)^{-1}}<-e^{-3}$, so that $-\sqrt[3]{(9 e)^{-1}}$ is the smallest value of $f$ on $[-1,1]$.
(b) Since
$g^{\prime}(x)=\frac{d}{d x}\left\{\frac{2 \cos x}{\sin x-2}\right\}=2 \cdot \frac{(-\sin x)(\sin x-2)-(\cos x)(\cos x)}{(\sin x-2)^{2}}$
$=\frac{2(2 \sin x-1)}{(\sin x-2)^{2}}$,
the only critical number of $g$ on $\left[-\frac{1}{2} \pi, \frac{1}{2} \pi\right]$ occurs where $\sin x=\frac{1}{2}$, i.e., at $\frac{1}{6} \pi$. Since $g\left( \pm \frac{1}{2} \pi\right)=0$ and $g\left(\frac{1}{6} \pi\right)=$ $-\frac{2}{3} \sqrt{ } 3$, it follows that the absolute maximum and minimum values of $g$ on $\left[-\frac{1}{2} \pi, \frac{1}{2} \pi\right]$ are, respectively, 0 and $-\frac{2}{3} \sqrt{ } 3$.
(8) Given $y=(4 x+3)^{3}(3 x+3)^{4}=81(4 x+3)^{3}(x+1)^{4}$, one has

$$
\begin{aligned}
\frac{d y}{d x} & =81\left\{12(4 x+3)^{2}(x+1)^{4}+4(4 x+3)^{3}(x+1)^{3}\right\} \\
& =324(4 x+3)^{2}(x+1)^{3}(7 x+6),
\end{aligned}
$$

so that the critical numbers of $y$ are $-1,-\frac{6}{7}$ and $-\frac{4}{3}$.
(9) If $x$ denotes the $x$-coordinate of the top right corner of a rectangle as described, then that rectangle has width $2 x$ and height $y=16-2 x^{2}=2\left(8-x^{2}\right)$, so its area is given by $A=4 x\left(8-x^{2}\right)=4\left(8 x-x^{3}\right)$, for $0 \leq x \leq 2 \sqrt{ } 2$. Since $A$ is never negative and is zero at the endpoints of its domain (a closed interval throughout which $A$ is continuous), and since

$$
\frac{d A}{d x}=4\left(8-3 x^{2}\right),
$$

it follows that the largest value of $A$ occurs at the lone critical number, $\frac{2}{3} \sqrt{ } 6$, in $[0,2 \sqrt{ } 2]$. Therefore, the rectangle as described with the largest possible area has height $y=2\left(8-\frac{8}{3}\right)=$ $\frac{32}{3}$ and width $2 x=\frac{4}{3} \sqrt{ } 6$.
(10) (a) Given $y=x^{7}\left(x^{3}-2 x \sin 3 x\right)^{2 / 3}=x^{23 / 3}\left(x^{2}-2 \sin 3 x\right)^{2 / 3}$, one has
$\frac{d y}{d x}=\frac{23}{3} x^{20 / 3}\left(x^{2}-2 \sin 3 x\right)+\frac{2 x^{23 / 3}(2 x-6 \cos 3 x)}{3\left(x^{2}-2 \sin 3 x\right)^{1 / 3}}$

$$
=\frac{x^{20 / 3}\left(27 x^{2}-12 x \cos 3 x-46 \sin 3 x\right)}{3\left(x^{2}-2 \sin 3 x\right)^{1 / 3}}
$$

(b) $\frac{d y}{d x}=5 \pi x^{\pi-1}+5 / x^{2}+\frac{2}{5} \sqrt[5]{x^{-3}}-1 /(x \log 5)++5(\log 2) 2^{x}$.
(c) Given $y=\ln \sqrt[3]{\tan 2 x^{4}}=\frac{1}{3} \ln \left(\tan 2 x^{4}\right)$, one has
$\frac{d y}{d x}=\frac{8 x^{3} \sec ^{2} 2 x^{4}}{3 \tan 2 x^{4}}=\frac{8 x^{3}}{3 \sin 2 x^{4} \cos 2 x^{4}}=\frac{16}{3} x^{3} \csc 4 x^{4}$.
(d) $\frac{d y}{d x}=-\pi \sec (\cos (\tan \pi x)) \tan (\cos (\tan \pi x)) \sin (\tan \pi x) \sec ^{2} \pi x$.
(e) Differentiating $x y^{2}+y \ln x=x$ implicitly with respect to $x$ gives
$y^{2}+2 x y \frac{d y}{d x}+\frac{d y}{d x} \ln x+\frac{y}{x}=1, \quad$ or $\quad x(2 x y+\ln x) \frac{d y}{d x}=x\left(1-y^{2}\right)-y ;$
therefore,

$$
\frac{d y}{d x}=\frac{x\left(1-y^{2}\right)-y}{x(2 x y+\ln x)}
$$

(11) (a) Since $\ln |y|=2 \ln |\sec (5 x-2)|-12 \ln |x|+x$, it follows that

$$
\begin{aligned}
\frac{d y}{d x} & =y \frac{d}{d x}\{2 \ln |\sec (5 x-2)|-12 \ln |x|+x\} \\
& =y\{10 \tan (5 x-2)-12 / x+1\} \\
& =x^{-13} e^{x} \sec ^{2}(5 x-2)(10 x \tan (5 x-2)+x-12) .
\end{aligned}
$$

(b) Since $\ln y=\left(5 x^{2}+1\right) \ln (\cos x)$, it follows that

$$
\begin{aligned}
\frac{d y}{d x} & =y \frac{d}{d x}\left\{\left(5 x^{2}+1\right) \ln (\cos x)\right\} \\
& =(\cos x)^{5 x^{2}+1}\left(10 x \ln (\cos x)-\left(5 x^{2}+1\right) \tan x\right) .
\end{aligned}
$$

(12) Differentiating the given equation implicitly with respect to $y$ gives

$$
\left(3 x^{2} y-1\right) \frac{d x}{d y}+x^{3}-6 y^{2}+3=0
$$

and so slope of the line normal to the given curve at $(-1,2)$ is equal to

$$
-\left.\frac{d x}{d y}\right|_{(x, y)=(-1,2)}=\frac{(-1)^{3}-6(2)^{2}+3}{3(-1)^{2}(2)-1}=-\frac{22}{5}
$$

Therefore, an equation of the normal line in question is $22 x+$ $5 y=-12$.
(13) Computing the first few derivatives of $f(x)=e^{2 x}$ reveals a pattern.

$$
\begin{aligned}
& f^{\prime}(x)=e^{2 x} \cdot 2 \\
& f^{\prime \prime}(x)=e^{2 x} \cdot 2 \cdot 2 \\
& \text { etc. }
\end{aligned}
$$

so $f^{(n)}(x)=2^{n} e^{x}$
(14) If $\vartheta$ denotes the acute angle between the ladder and the floor, $x$ denotes the distance (in metres) from the bottom of the ladder to the wall and $y$ denotes the distance (in metres) from the top of the ladder to the floor, then $x=12 \cos \vartheta$ and $y=12 \sin \vartheta$. Differentiating the first relation with respect to time gives
$-\frac{1}{10}=\frac{d x}{d t}=-12 \sin \vartheta \frac{d \vartheta}{d t}=-y \frac{d \vartheta}{d t}, \quad$ or $\quad \frac{d \vartheta}{d t}=\frac{1}{10 y}$.
Therefore, when the top of the ladder reaches 8 metres up the wall, the acute angle it makes with the floor is increasing at a rate of $1 / 80$ radians per second.
(15) Antidifferentiating $f^{\prime \prime}$ gives $f^{\prime}(x)=4 x-3 x^{2}-x^{4}+C$. Use the fact that $f^{\prime}(-1)=1$ to find that $C=9$. Then antidifferentiating $f^{\prime}$ gives $f(x)=2 x^{2}-x^{3}-\frac{1}{5} x^{5}+9 x+D$, and the fact that $f(1)=2$ gives us $D=-\frac{39}{5}$, so finally $f(x)=-\frac{39}{5}+9 x+2 x^{2}-x^{3}-\frac{1}{5} x^{5}$.

Alternatively, one could solve the problem as follows: We have

$$
\begin{aligned}
f^{\prime}(x) & =f^{\prime}(-1)+\int_{-1}^{x} f^{\prime \prime}(t) d t=1+\int_{-1}^{x}\left(4-6 t-4 t^{3}\right) d t \\
& =1+\left.\left\{4 t-3 t^{2}-t^{4}\right\}\right|_{-1} ^{x}=9+4 x-3 x^{2}-x^{4}, \quad \text { and } \\
f(x) & =f(1)+\int_{1}^{x} f^{\prime}(t) d t=2+\int_{1}^{x}\left(9+4 t-3 t^{2}-t^{4}\right) d t \\
& =2+\left.\left\{9 t+2 t^{2}-t^{3}-\frac{1}{5} t^{5}\right\}\right|_{1} ^{x}=-\frac{39}{5}+9 x+2 x^{2}-x^{3}-\frac{1}{5} x^{5}
\end{aligned}
$$

(16) Dividing [ 1,4 ] into six subintervals of equal length gives $\Delta x=$ $\frac{1}{2}$, so we approximate $\int_{1}^{4} \frac{1}{x} d x$ with

$$
\begin{aligned}
& \frac{1}{2}\left(f\left(\frac{5}{4}\right)+f\left(\frac{7}{4}\right)+\ldots+f\left(\frac{15}{4}\right)\right) \\
& =\frac{1}{2}\left(\frac{4}{5}+\frac{4}{7}+\frac{4}{9}+\frac{4}{11}+\frac{4}{13}+\frac{4}{15}\right)
\end{aligned}
$$

(17) (a) Expanding and integrating term by term gives
$\int_{1}^{2}(3 x+1)^{2} d x=\int_{1}^{2}\left(9 x^{2}+6 x+1\right) d x=\left.\left(3 x^{3}+3 x^{2}+x\right)\right|_{1} ^{2}=31$.
(b) Integrating term by term gives

$$
\int\left(2^{x}+\sin x+\pi\right) d x=2^{x} /(\ln 2)-\cos x+\pi x+C
$$

(c) Since the integral over $[a, a]$ a function defined at $a$ is zero,

$$
\int_{\frac{1}{9} \pi^{2}}^{\frac{1}{9} \pi^{2}} \sqrt{\cos \sqrt{ } x} d x=0
$$

(d) Dividing and integrating term by term gives

$$
\begin{aligned}
\int \frac{x^{3}+x^{2}+x+1}{x} d x & =\int\left(x^{2}+x+1+1 / x\right) d x \\
& =\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+x+\log |x|+C .
\end{aligned}
$$

(e) Revising the integrand and using a standard integral formula gives
$\int_{0}^{\frac{1}{3} \pi} \frac{\sin x}{\cos ^{2} x} d x=\int_{0}^{\frac{1}{3} \pi} \sec x \tan x d x=\left.\sec x\right|_{0} ^{\frac{1}{3} \pi}=1$.
(18) First, note that $f(x)=-\int_{0}^{x^{2}} \sqrt{1+t^{2}} d t$.

Then, by the Chain Rule and the (First) Fundamental Theorem of Calculus,

$$
f^{\prime}(x)=-2 x \sqrt{1+x^{4}}
$$

(19) Here is a sketch of the graph of $f$, with the region representing the integral shaded.


The region below the $x$-axis is a triangle with base 1 , height 2 , and area is 1 . The region above the $x$-axis decomposes naturally into a triangle with base 2 , height 4 , and area 4 , and a rectangle with base 3 , height 4 , and area 12 . Therefore,

$$
\int_{0}^{6} f(x) d x=\int_{0}^{1} f(x) d x+\int_{1}^{3} f(x) d x+\int_{3}^{6} f(x) d x=-1+4+12=15
$$

