- (4) 1. Find $\frac{dy}{dx}$ if $y = (\arctan x)^2 + x \arctan x \operatorname{arcsec}\sqrt{x}$. Do not simplify your answer.
- (6) 2. Calculate the following limits: (a) $\lim_{x \to \infty} x \left(e^{1/x} 1 \right)$ (b) $\lim_{x \to 0^+} (1 + 2x)^{\frac{1}{3x}}$
- (24) 3. Evaluate the following integrals.

(a)
$$\int \left(\frac{1}{2\sqrt{x}} + \frac{2}{x}\right) 3^{\sqrt{x}+2\ln x} dx$$

(b)
$$\int \frac{\sec^3\left(\ln x\right) \tan^3\left(\ln x\right)}{x} dx$$

(c)
$$\int \frac{x+2}{\sqrt{2x-1}} dx$$

(d)
$$\int \frac{x^2+3}{x^3+2x} dx$$

(e)
$$\int e^{2x} \sin 4x dx$$

(f)
$$\int_3^{3\sqrt{2}} \frac{1}{x^3\sqrt{x^2-9}} dx$$

(6) 4. Determine whether the improper integrals converge or diverge; if an integral converges, give its exact value.

(a)
$$\int_{1}^{2} \frac{3}{\sqrt{4-x^{2}}} dx$$
 (b) $\int_{-\infty}^{\infty} \frac{dx}{1+x^{2}}$

- (3) 5. Compute the exact area of the region bounded by the curves $y = 4 x^2$ and $y = x^2 + 2$ between x = 0 and x = 2. Sketch the region and show an element of area.
- (6) 6. (a) Sketch the region R bounded by $y = 4 x^2$ and $y = x^2 + 2$ on the interval [1, 2].
 - (b) Set up, BUT DO NOT EVALUATE, the integral required to find the volume of the solid obtained when R is revolved
 - i. about the line x = 1
 - ii. about the x axis.

Show an element of volume in each case.

- (5) 7. Solve the differential equation: $\frac{\sqrt{1-x^2}}{y}\frac{dy}{dx} + x = 0$; y(0) = 1. (An explicit solution, please)
- (6) 8. Determine, with justification, whether the sequence converges or diverges. If a sequence converges, give the value to which it converges.

(a)
$$\left\{\frac{\ln^3 n}{n}\right\}$$
 (b) $\left\{\frac{e^{3/n}}{3n}\right\}$ (c) $\left\{(-1)^n \cos^2 n\pi\right\}$

(6) 9. Determine whether the series converges or diverges. If a series converges, give its sum.

(a)
$$\sum_{n=1}^{\infty} \left(\operatorname{arcsec} n - \operatorname{arcsec} (n+1) \right)$$
 (b) $\sum_{n=1}^{\infty} \left(\frac{(-1)^n}{e^n} + \frac{2}{3^n} \right)$

(12) 10. Classify each series as convergent or divergent. State the test you use, and verify the conditions for using the test are satisfied.

(a)
$$\sum_{n=1}^{\infty} \left(4 + \frac{2}{n}\right)$$
 (b) $\sum_{n=1}^{\infty} \left(\sqrt[n]{3} - 1\right)^n$ (c) $\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n^2}\right)$ (d) $\sum_{n=1}^{\infty} \frac{n^2 2^n}{(2n)!}$

(8) 11. Classify each series as absolutely convergent, conditionally convergent, or divergent. Justify your conclusions.

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n \sin^2\left(\frac{n\pi}{2}\right)}{n^3}$$
 (b) $\sum_{n=2}^{\infty} \frac{(-1)^n}{n \ln n}$

(4) 12. Determine the interval of convergence for the series $\sum_{n=1}^{\infty} \frac{2^{n-1} (x-1)^n}{(n+1)!}$

13. (a) Use a known power series to determine the sum of the following series:

(2) (b) Use a known power series to find a power series for $f(x) = x e^{-2x}$. What is its interval of convergence?

- (6) 14. For the function $f(x) = \ln (x+1)$
 - (a) find the first five non-zero terms of the Maclaurin series for f(x)
 - (b) find the n^{th} term and write the series in sigma notation
 - (c) determine its radius of convergence.