(Marks)

- (9) 1. (a) Sketch the graphs of the circle r=2 and the cardioid $r=2(1-\cos\theta)$, on the same axes.
 - (b) Find the area of the region that lies inside the intersection of these two curves. Indicate this region on your graph.
 - (c) Find the length of the circumference of the cardioid $r = 2(1 \cos \theta)$.
- (5) 2. Find the Maclaurin series for $f(x) = \frac{1}{\sqrt{4-x}}$ and find its radius of convergence. (Hint: You might want to use the Binomial Theorem.)
- (8) 3. (a) Find the Maclaurin series representation of $\int_0^x \sin(t^2) dt$.
 - (b) Estimate $\int_0^1 \sin(t^2) dt$ with an error less than 0.001. Be sure to justify your answer.
- (9) 4. Sketch the following surfaces:
 - (a) $y^2 x^2 = z$
 - (b) $z^2 = 1 + r^2$
 - (c) $\rho = \cos \varphi$
- (10) 5. A curve is defined by $r(t) = 2t \, i + t^2 \, j + \frac{1}{3} t^3 \, k$
 - (a) Find the unit tangent and unit normal vectors T, N, and the curvature κ .
 - (b) Find the tangential and normal components of acceleration a_{T}, a_{N} .

(Hint: the algebra does work out well if you carefully simplify!)

(6) 6. (a) Is the following function continuous at the origin? Be sure to justify your answer.

$$f(x) = \begin{cases} \frac{5xy}{2x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

- (b) Find $f_x(0,0)$ and $f_y(0,0)$.
- (6) 7. The temperature distribution in a fluid is given by $T(x, y, z) = (x 10)^2 + 2y^2 + 3(z 2)^2$.
 - (a) Determine the rate of temperature change at the point $P_0(9,0,3)$ in the direction $\langle 11,2,4\rangle$.
 - (b) At P_0 , what is the greatest rate of temperature change, and in which direction is it greatest?
- (6) 8. (a) Find the equation of the tangent plane to the ellipsoid $4x^2 + y^2 + z^2 = 9$ at the point $P_0(-1,1,2)$.
 - (b) Find the parametric equations for the tangent line to the curve of intersection of the paraboloid $z = x^2 + y^2$ and the ellipsoid $4x^2 + y^2 + z^2 = 9$ at the point $P_0(-1, 1, 2)$.
- (6) 9. (a) If $h = (x + y + z)^2$, x = s t, $y = \cos(s + t)$, and $z = \sin(s + t)$, find $\frac{\partial h}{\partial t}$ when s = -1, t = 1.
 - (b) Show that w = f(x + ct), f differentiable, c constant, is a solution of the wave equation $\frac{\partial^2 w}{\partial t^2} = c^2 \frac{\partial^2 w}{\partial x^2}.$
- (6) 10. Find and classify the critical points of $f(x,y) = 4xy x^4 y^4$.
- (7) 11. Use Lagrange Multipliers to find the point (x, y, z) on the sphere $x^2 + y^2 + z^2 = 1$ which is furthest from the point (1, 2, 3).

(Marks)

12. Evaluate the following.

(5)
$$(a) \int_0^1 \int_x^1 \sqrt{1+y^2} \, dy \, dx$$

(5) (b)
$$\int_0^{3/\sqrt{2}} \int_x^{\sqrt{9-x^2}} e^{-(x^2+y^2)} dy dx$$

- (6) 13. Let S be the solid region above ("inside") the the cone $z = \sqrt{x^2 + y^2}$, and below ("inside") the sphere $x^2 + y^2 + z^2 = z$. Sketch the region S, and find its volume. (I suggest you try spherical coordinates.)
- (6) 14. Use the transformation $\{x = u v, y = 2u v\}$ to evaluate the integral $\iint_{\mathcal{R}} \sqrt{y x} \, dx \, dy$, where \mathcal{R} is the parallelogram bounded by the lines y = 2x, y = 2x 2, y = x, y = x + 1.

