(Marks)

(12) 1. Consider the curve given by the equations

$$x = 3t - t^3 \quad \text{and} \quad y = 3t^2$$

- (a) Find the t-values and the coordinates of the x and y intercepts.
- (b) Find $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$. Use these to sketch the graph of the curve for $-2 \le t < 2$. Carefully indicate horizontal and vertical tangents, and intervals where the curve is concave up and where it is concave down. Label relevant points with their t values as well as their xy coordinates.
- (c) The curve forms a loop in this region; find the area of that loop.
- (d) Find the length of the arc that forms the loop.

 (Hint: the algebra does work out well if you carefully simplify!)
- (7) 2. (a) Sketch the graphs of $r = 2 2\sin\theta$ and $r = 2\sin\theta$, on the same axes. Find all points of intersection
 - (b) Find the area of the region that lies inside the intersection of these two curves.
- (9) 3. (a) Find the Maclaurin series for $\int_0^x e^{-t^4} dt$.
 - (b) What is the interval of convergence for this power series?
 - (c) Use the answer to 3(a) to approximate $\int_0^{1/2} e^{-t^4} dt$ to within an error of $\pm 10^{-4}$. (Justify your approximation.)
- (6) 4. What is the Maclaurin series for the function $f(x) = \frac{1}{(1-3x)^3}$? (Hint: Binomial theorem) Use Taylor's inequality to estimate the error in using the second degree Maclaurin polynomial $T_2(x)$ to approximate f(x) for $|x| \le 0.01$.
- (6) 5. Sketch a graph of the surface $\frac{x^2}{4} \frac{y^2}{4} z^2 = 1$. Find the equation of the tangent plane at the point $P_0(3,1,1)$.
- (6) 6. Suppose you are on a surface $z = 100 \frac{1}{2}x^2 \frac{1}{4}y^2$ at the point P(2, 2, 97).
 - (a) In which direction should you go to climb up the surface as steeply as possible?
 - (b) If you go in that direction, how steep is your climb (*i.e.* what is the slope)? (Bonus: what is the angle of your ascent, measured relative to the horizontal?)
- (10) 7. A curve is defined by $r(t) = \langle t, t^2, \frac{2}{3}t^3 \rangle$. Find the unit tangent and unit normal vectors T, N, and the curvature κ . Find the tangential and normal components of acceleration a_T, a_N .
- (8) 8. (a) If $z = f(x^2 y^2)$, f a differentiable function, show that $y \frac{\partial z}{\partial x} + x \frac{\partial z}{\partial y} = 0$
 - (b) If z=z(x,y) is implicitly defined by the equation $x\sin(yz)+y\cos(xz)=xyz$, find $\frac{\partial z}{\partial y}$.
- (6) 9. Find and classify the critical points of $f(x,y) = x^2 4xy + y^3 + 4y$.
- (8) 10. Use Lagrange Multipliers to find the minimum value of $f(x, y, z) = 4x^2 + y^2 + 6z^2$ on the plane x + 2y + 3z = 23.

(Marks)

11. Evaluate the following.

(5) (a)
$$\int_0^1 \int_y^1 \cos(x^2) \, dx \, dy$$

(5) (b)
$$\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{\sqrt{x^2+y^2}}^{2} (x^2+y^2) dz dy dx$$

- 12. Let S be the solid region above the xy plane, inside the cylinder $x^2 + y^2 = 4$, and below the cone $z^2 = x^2 + y^2$. Evaluate $\iiint_S \frac{1}{x^2 + y^2 + z^2} dV$. (I suggest you try spherical coordinates.)
- (6) 13. Use the transformation $\left\{x = \frac{u+v}{2}, y = \frac{u-v}{2}\right\}$ to evaluate the integral $\iint_{\mathcal{R}} e^{x-y} dA$, where \mathcal{R} is the diamond-shaped region bounded by the lines y x+y=2, x+y=4, x-y=0, x-y=2.

