(Marks)

- (8) 1. (a) Find the Maclaurin series for $\int_0^x \frac{1 e^{-t^2}}{t^2} dt$.
 - (b) What is the interval of convergence for this power series?
 - (c) Use the answer to 1(a) to approximate $\int_0^{1/2} \frac{1 e^{-t^2}}{t^2} dt$ correctly to 4 decimal places. (Justify your approximation.)
- (7) 2. Given $f(x) = \frac{1}{1-x}$:
 - (a) Find the Maclaurin series for f(x) and for f'(x). What is the radius of convergence for these power series?
 - (b) Use your answer to 2(a) to find the exact value (i.e. not a decimal approximation) of the series $\sum_{n=1}^{\infty} \frac{n+1}{2^n}$
- (10) 3. Suppose that a curve C given by parametric equations in t passes through the point (0,2) at t=1 and satisfies

$$\frac{dx}{dt} = \frac{2}{t}$$
 and $\frac{dy}{dt} = 1 - \frac{1}{t^2}$

- (a) Find the parametric equations for C, (i.e. for x, y) in terms of t.
- (b) Find a cartesian equation for C, (i.e. for x, y) by eliminating the parameter in 3(a).
- (c) Find the arc length of C from t = 1 to t = 2.
- (6) 4. (a) Sketch the graph of $r^2 = \sin \theta$.
 - (b) Find the area enclosed by this curve.
- (5) 5. Sketch and name the following surface, clearly labelling the traces of the graph in the coordinate planes: $x^2 4y^2 + z^2 = 1$
- (6) 6. Convert the equation $\rho = \cot \phi \csc \phi$ into cylindrical coordinates and into cartesian coordinates. Sketch and name the surface.
- (12) 7. A curve is defined by $r(t) = \langle \cos 2t, \sin 2t, -2t \rangle$.
 - (a) Draw a sketch of the curve for $0 \le t \le 2\pi$. (Hint: this curve lies on a cylinder draw that cylinder and show the curve on it.)
 - (b) Find the velocity and acceleration vectors $\boldsymbol{v}(t), \boldsymbol{a}(t)$, the unit tangent and unit normal vectors $\boldsymbol{T}, \boldsymbol{N}$, and the curvature κ .
 - (c) Find the length of the curve for $0 \le t \le 2\pi$.
- (9) 8. Given $f(x, y, z) = x^2 + y^2 + xyz$:
 - (a) find the equation of the tangent plane to the surface f(x, y, z) = 1 at the point P(1, 1, -1);
 - (b) find the directional derivative of f at P in the direction of v = i 2j + 2k;
 - (c) find the maximum rate of change in f at P.
- (4) 9. If z = f(x, y) is implicitly defined by $x^2 \ln(yz) + y e^x = z \sin(xy)$, find $\frac{\partial z}{\partial y}$.

(Marks)

(5) 10. If f(s), g(t) are sufficiently differentiable functions, and z = f(x+2y) + g(x-2y) show that

$$4 \frac{\partial^2 z}{\partial x^2} = \frac{\partial^2 z}{\partial y^2} .$$

- (6) 11. Find and classify the critical points of $f(x,y) = x^3 6xy + y^2$.
- (6) 12. Use Lagrange Multipliers to find the shortest distance from the point (1,2,2) to the sphere $x^2 + y^2 + z^2 = 36$.
- (10) 13. Evaluate the following:
 - (a) $\iint_R y e^{x^3} dA$, where R is the triangular region bounded by y = 2x, y = 0, and x = 1.
 - (b) $\int_0^1 \int_y^1 \cos(x^2) \, dx \, dy$.
- (6) 14. (a) Sketch the solid S which is in the first octant, bounded by the coordinate planes, by the cylindrical surface $x = 4 y^2$, and by the plane z = y.
 - (b) Find the volume of S.