Final Examination Calculus III

Kishore Anand, Frank LoVasco

Spring 2000

1. Approximate $\int_0^{0.5} e^{-x^3} dx$ with 4 decimal place accuracy.	(6%)
2. Obtain the first five non-zero terms of the Maclaurin series for :	
$(a) f(x) = \frac{x}{2x - 5}$	(3%)
(b) $g(x) = e^x \sin x$	(3%)
3. Consider $\frac{x - \sin x}{x^3 \cos x}$	

- (a) Expand the numerator and denominator separately using power series. (4%)
- (b) Use your result for **3a** to calculate $\lim_{x\to 0} \frac{x-\sin x}{x^3\cos x}$. (2%)
- 4. Using the Binomial series for $f(x) = \sqrt{1+x}$ to approximate $\sqrt{105}$ with $|error| < 10^{-5}$. (6%)
- 5. Consider the space curve $\mathbf{R}(t) = (\mathbf{t}, \mathbf{2}\cos\mathbf{t}, \mathbf{2}\sin\mathbf{t})$
 - (a) Draw a rough sketch of the curve. $(0 \le t \le 2\pi)$ (2%)
 - (b) Write the parametric equations of the tangent line to the curve at $\mathbf{P}(0,2,0)$. (2%)
 - (c) Calculate the length of the curve from $\mathbf{P}(0,2,0)$ to $\mathbf{Q}(\pi,-2,0)$. (2%)
 - (d) Find a_T , a_N , $\widehat{\mathbf{T}}$ and $\widehat{\mathbf{N}}$. (4%)
 - (e) Determine the curvature at P(0,2,0). (2%)
- 6. Given the curve $x = t^2 4t$, $y = t^3 3t^2$ (at right)
 - (a) Find the coordinates of all the points at which the curve is not smooth. (1%)
 - (b) Explain why the curve has no vertical tangent lines. (2%)
 - (c) Write, but **DO NOT EVALUATE**, an integral for the length of the curve in the second quadrant. (Hint: Find the values of t for which the curve crosses the axes.) (2%)
 - (d) Demonstrate that the curve is concave up in the second quadrant. (Hint: Find $\frac{d^2y}{dx^2}$.) (2%)
- 7. Calculate the area which lies inside the circle $r = 3\sin\theta$ and outside the limacon $r = 2\sqrt{2} \sin\theta$ (depicted at right) (4%)

- 8. Consider $f(x, y, z) = x^2y 2x + y z^2 + 8 = 0$ $\mathbf{P}_0 = (1, -1, 2)$.
 - (a) Write the equation of the tangent plane at P_0 . (3%)
 - (b) Find the derivative of f in the direction of $\vec{\mathbf{v}} = (2, 1, -1)$ at \mathbf{P}_0 . (2%)
 - (c) Determine the maximum rate of increase of f at \mathbf{P}_0 and the direction in which it occurs. (3%)
- 9. z = f(x, y), $x = r \cos \theta$, $y = r \sin \theta$

(a) Find
$$\frac{\partial z}{\partial r} + \frac{\partial z}{\partial \theta}$$
 (2%)

(b) Demonstrate
$$\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \frac{1}{r^2} \left(\frac{\partial z}{\partial \theta}\right)^2 + \left(\frac{\partial z}{\partial r}\right)^2$$
 (3%)

- 10. Find and classify the critical points of $f(x,y) = x^4 + y^2 8x^2 6y + 2$ (5%)
- 11. Find the maximum and minimum values of f(x, y, z) = 6x + 3y + 2z 7 on the ellipsoid $4x^2 + 2y^2 + z^2 = 70$. (6%)
- 12. In the following problem, set up but

DO NOT ATTEMPT TO EVALUATE THE INTEGRALS.

- (a) (i) Roughly sketch the region bounded by the parabolic cylinder $y = 1 x^2$ and the planes z = 0, z = 3 and y = 0. (1%)
 - (ii) Write an integral to calculate its volume. (4%)
- (b) (i) Roughly sketch the region bounded above by the cone $z = \sqrt{x^2 + y^2}$ and below by the sphere $x^2 + y^2 + z^2 = z$ (1%)
 - (ii) Write an integral using spherical coordinates to calculate its volume. (4%)
- 13. Evaluate

(a)
$$\int_{0}^{\sqrt{2}} \int_{y}^{\sqrt{4-y^2}} e^{x^2+y^2} dx dy$$
 (5%)

(b)
$$\int_{0}^{16} \int_{\sqrt{x}}^{4} \cos(y^3) \, dy dx$$
 (5%)

- 14. Perform the following conversions (simplify as much as you can).
 - (a) Write in spherical coordinates: $(x^2 + y^2 + z^2)^2 = 2z(x^2 + y^2)$ (2%)
 - (b) Write in Cartesian coordinates: $r = \frac{1}{1 2\cos\theta}$ (2%)
- 15. Establish the formula $A = \pi ab$ for the area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ using a double integral and a change of variable. (5%)